[4664] | 1 | MODULE lmdz_lscp |
---|
[3999] | 2 | |
---|
[5111] | 3 | IMPLICIT NONE |
---|
[3999] | 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[5111] | 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 8 | SUBROUTINE lscp(klon, klev, dtime, missing_val, & |
---|
[5226] | 9 | paprs, pplay, temp, qt, qice_save, ptconv, ratqs, sigma_qtherm, & |
---|
[5224] | 10 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
---|
[5111] | 11 | pfraclr, pfracld, & |
---|
| 12 | cldfraliq, sigma2_icefracturb, mean_icefracturb, & |
---|
| 13 | radocond, radicefrac, rain, snow, & |
---|
| 14 | frac_impa, frac_nucl, beta, & |
---|
| 15 | prfl, psfl, rhcl, qta, fraca, & |
---|
| 16 | tv, pspsk, tla, thl, iflag_cld_th, & |
---|
[5224] | 17 | iflag_ice_thermo, distcltop, temp_cltop, & |
---|
| 18 | tke, tke_dissip, & |
---|
| 19 | cell_area, & |
---|
| 20 | cf_seri, rvc_seri, u_seri, v_seri, & |
---|
| 21 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
---|
| 22 | ratio_qi_qtot, dcf_sub, dcf_con, dcf_mix, & |
---|
| 23 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
---|
| 24 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
---|
| 25 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi, & |
---|
| 26 | dqi_avi, dqvc_avi, flight_dist, flight_h2o, & |
---|
[5111] | 27 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & |
---|
| 28 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
---|
| 29 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim, & |
---|
| 30 | dqsmelt, dqsfreez) |
---|
[3999] | 31 | |
---|
[5111] | 32 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 33 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
| 34 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
| 35 | !-------------------------------------------------------------------------------- |
---|
| 36 | ! Date: 01/2021 |
---|
| 37 | !-------------------------------------------------------------------------------- |
---|
| 38 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
[5099] | 39 | |
---|
[5111] | 40 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
| 41 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
| 42 | ! and 'ilp' (il pleut, L. Li) |
---|
[5099] | 43 | |
---|
[5111] | 44 | ! Compared to the original fisrtilp code, lscp |
---|
| 45 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
| 46 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
| 47 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
| 48 | ! -> option "oldbug" by JYG has been removed |
---|
| 49 | ! -> iflag_t_glace >0 always |
---|
| 50 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
| 51 | ! -> rectangular distribution from L. Li no longer available |
---|
| 52 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
| 53 | !-------------------------------------------------------------------------------- |
---|
| 54 | ! References: |
---|
[5099] | 55 | |
---|
[5111] | 56 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
| 57 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
| 58 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
| 59 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
| 60 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
| 61 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
| 62 | ! ------------------------------------------------------------------------------- |
---|
| 63 | ! Code structure: |
---|
[5099] | 64 | |
---|
[5111] | 65 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
| 66 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
| 67 | ! P2> Cloud formation (at the k level) |
---|
| 68 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
| 69 | ! values of T and Q |
---|
| 70 | ! P2.A.2> Coupling between condensed water and temperature |
---|
| 71 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
| 72 | ! P2.B> Release of Latent heat after cloud formation |
---|
| 73 | ! P3> Autoconversion to precipitation (k-level) |
---|
| 74 | ! P4> Wet scavenging |
---|
| 75 | !------------------------------------------------------------------------------ |
---|
| 76 | ! Some preliminary comments (JBM) : |
---|
[5099] | 77 | |
---|
[5111] | 78 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
| 79 | ! water used in the physics and the dynamics |
---|
[5099] | 80 | |
---|
[5111] | 81 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
| 82 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
| 83 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
| 84 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
| 85 | ! by the dynamics. |
---|
[5099] | 86 | |
---|
[5111] | 87 | ! In summary: |
---|
[5099] | 88 | |
---|
[5111] | 89 | ! Radiation: |
---|
| 90 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
| 91 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
[5099] | 92 | |
---|
[5111] | 93 | ! Notetheless, be aware of: |
---|
[5099] | 94 | |
---|
[5111] | 95 | ! radocond .NE. ocond(nc) |
---|
| 96 | ! i.e.: |
---|
| 97 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
| 98 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
| 99 | ! (which is not trivial) |
---|
| 100 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4654] | 101 | |
---|
[5111] | 102 | ! USE de modules contenant des fonctions. |
---|
| 103 | USE lmdz_cloudth, ONLY: cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
---|
| 104 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat |
---|
| 105 | USE lmdz_lscp_tools, ONLY: icefrac_lscp, icefrac_lscp_turb |
---|
| 106 | USE lmdz_lscp_tools, ONLY: fallice_velocity, distance_to_cloud_top |
---|
[5224] | 107 | USE lmdz_lscp_condensation, ONLY: condensation_lognormal, condensation_ice_supersat |
---|
[5111] | 108 | USE lmdz_lscp_poprecip, ONLY: poprecip_precld, poprecip_postcld |
---|
[3999] | 109 | |
---|
[5111] | 110 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
[5224] | 111 | USE lmdz_lscp_ini, ONLY: prt_level, lunout, eps |
---|
[5111] | 112 | USE lmdz_lscp_ini, ONLY: seuil_neb, niter_lscp, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
---|
| 113 | USE lmdz_lscp_ini, ONLY: ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc |
---|
| 114 | USE lmdz_lscp_ini, ONLY: iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min |
---|
| 115 | USE lmdz_lscp_ini, ONLY: coef_eva, coef_sub, cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con |
---|
| 116 | USE lmdz_lscp_ini, ONLY: iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo |
---|
| 117 | USE lmdz_lscp_ini, ONLY: iflag_autoconversion, ffallv_con, ffallv_lsc, min_frac_th_cld |
---|
| 118 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
| 119 | USE lmdz_lscp_ini, ONLY: ok_poprecip |
---|
[5227] | 120 | USE lmdz_lscp_ini, ONLY: ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
---|
[5111] | 121 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
| 122 | IMPLICIT NONE |
---|
[3999] | 123 | |
---|
[5111] | 124 | !=============================================================================== |
---|
| 125 | ! VARIABLES DECLARATION |
---|
| 126 | !=============================================================================== |
---|
[3999] | 127 | |
---|
[5111] | 128 | ! INPUT VARIABLES: |
---|
| 129 | !----------------- |
---|
[3999] | 130 | |
---|
[5111] | 131 | INTEGER, INTENT(IN) :: klon, klev ! number of horizontal grid points and vertical levels |
---|
| 132 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
| 133 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
[4059] | 134 | |
---|
[5111] | 135 | REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
| 136 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
| 137 | REAL, DIMENSION(klon, klev), INTENT(IN) :: temp ! temperature (K) |
---|
| 138 | REAL, DIMENSION(klon, klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
| 139 | REAL, DIMENSION(klon, klev), INTENT(IN) :: qice_save ! ice specific from previous time step [kg/kg] |
---|
| 140 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
| 141 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
[5116] | 142 | ! CR: if iflag_ice_thermo=2, ONLY convection is active |
---|
[5111] | 143 | LOGICAL, DIMENSION(klon, klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
[3999] | 144 | |
---|
[5111] | 145 | !Inputs associated with thermal plumes |
---|
[4226] | 146 | |
---|
[5111] | 147 | REAL, DIMENSION(klon, klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
---|
| 148 | REAL, DIMENSION(klon, klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
---|
| 149 | REAL, DIMENSION(klon, klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
| 150 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
---|
| 151 | REAL, DIMENSION(klon, klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
---|
[5224] | 152 | REAL, DIMENSION(klon, klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
---|
| 153 | REAL, DIMENSION(klon, klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
---|
[3999] | 154 | |
---|
[5111] | 155 | ! INPUT/OUTPUT variables |
---|
| 156 | !------------------------ |
---|
[4059] | 157 | |
---|
[5226] | 158 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
---|
| 159 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: ratqs, sigma_qtherm ! function of pressure that sets the large-scale |
---|
[4380] | 160 | |
---|
[5224] | 161 | ! INPUT/OUTPUT condensation and ice supersaturation |
---|
| 162 | !-------------------------------------------------- |
---|
| 163 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: cf_seri ! cloud fraction [-] |
---|
| 164 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: ratio_qi_qtot ! solid specific water to total specific water ratio [-] |
---|
| 165 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: rvc_seri ! cloudy water vapor to total water vapor ratio [-] |
---|
| 166 | REAL, DIMENSION(klon, klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
---|
| 167 | REAL, DIMENSION(klon, klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
---|
| 168 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
---|
[3999] | 169 | |
---|
[5224] | 170 | ! INPUT/OUTPUT aviation |
---|
| 171 | !-------------------------------------------------- |
---|
| 172 | REAL, DIMENSION(klon, klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] |
---|
| 173 | REAL, DIMENSION(klon, klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] |
---|
[4686] | 174 | |
---|
[5111] | 175 | ! OUTPUT variables |
---|
| 176 | !----------------- |
---|
[3999] | 177 | |
---|
[5224] | 178 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
| 179 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
| 180 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
| 181 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
| 182 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
| 183 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
| 184 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
| 185 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
[5111] | 186 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
---|
| 187 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
| 188 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
[5224] | 189 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
| 190 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
| 191 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
| 192 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
| 193 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
| 194 | REAL, DIMENSION(klon, klev + 1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
| 195 | REAL, DIMENSION(klon, klev + 1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
| 196 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
| 197 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
| 198 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
[4686] | 199 | |
---|
[5111] | 200 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
[4686] | 201 | |
---|
[5111] | 202 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
| 203 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
[4803] | 204 | |
---|
[5224] | 205 | ! for condensation and ice supersaturation |
---|
[3999] | 206 | |
---|
[5224] | 207 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
---|
| 208 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
---|
| 209 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
---|
| 210 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
---|
| 211 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
---|
| 212 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
---|
| 213 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
---|
| 214 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
---|
| 215 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
---|
| 216 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
| 217 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
---|
| 218 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
---|
| 219 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
| 220 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
| 221 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
| 222 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
| 223 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
| 224 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
---|
| 225 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
---|
[3999] | 226 | |
---|
[5224] | 227 | ! for contrails and aviation |
---|
| 228 | |
---|
| 229 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] |
---|
| 230 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] |
---|
| 231 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) |
---|
| 232 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails |
---|
| 233 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails |
---|
| 234 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] |
---|
| 235 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] |
---|
| 236 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
| 237 | |
---|
[5111] | 238 | ! for POPRECIP |
---|
[3999] | 239 | |
---|
[5111] | 240 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
| 241 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
| 242 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
---|
| 243 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
| 244 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
| 245 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
| 246 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
| 247 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
| 248 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
| 249 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
| 250 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
| 251 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
| 252 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
[3999] | 253 | |
---|
[5224] | 254 | ! for thermals |
---|
[3999] | 255 | |
---|
[5224] | 256 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
---|
| 257 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
---|
| 258 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
---|
| 259 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
---|
| 260 | |
---|
| 261 | |
---|
[5111] | 262 | ! LOCAL VARIABLES: |
---|
| 263 | !---------------- |
---|
| 264 | REAL, DIMENSION(klon) :: qsl, qsi ! saturation threshold at current vertical level |
---|
| 265 | REAL :: zct, zcl, zexpo |
---|
| 266 | REAL, DIMENSION(klon, klev) :: ctot |
---|
| 267 | REAL, DIMENSION(klon, klev) :: ctot_vol |
---|
| 268 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
| 269 | REAL :: zdelta, zcor, zcvm5 |
---|
| 270 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
| 271 | REAL, DIMENSION(klon) :: gammasat, dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
| 272 | REAL, DIMENSION(klon) :: Tbef, qlbef, DT ! temperature, humidity and temp. variation during lognormal iteration |
---|
| 273 | REAL :: num, denom |
---|
| 274 | REAL :: cste |
---|
| 275 | REAL, DIMENSION(klon) :: zpdf_sig, zpdf_k, zpdf_delta ! lognormal parameters |
---|
| 276 | REAL, DIMENSION(klon) :: Zpdf_a, zpdf_b, zpdf_e1, zpdf_e2 ! lognormal intermediate variables |
---|
| 277 | REAL :: erf |
---|
| 278 | REAL, DIMENSION(klon) :: zfice_th |
---|
| 279 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
---|
| 280 | REAL, DIMENSION(klon) :: zrfl, zrfln |
---|
| 281 | REAL :: zqev, zqevt |
---|
| 282 | REAL, DIMENSION(klon) :: zifl, zifln, ziflprev |
---|
| 283 | REAL :: zqev0, zqevi, zqevti |
---|
| 284 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
---|
| 285 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
| 286 | REAL, DIMENSION(klon) :: zt |
---|
| 287 | REAL, DIMENSION(klon, klev) :: zrho |
---|
| 288 | REAL, DIMENSION(klon) :: zdz, iwc |
---|
| 289 | REAL :: zchau, zfroi |
---|
| 290 | REAL, DIMENSION(klon) :: zfice, zneb, znebprecip |
---|
| 291 | REAL :: zmelt, zrain, zsnow, zprecip |
---|
| 292 | REAL, DIMENSION(klon) :: dzfice |
---|
| 293 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
---|
| 294 | REAL :: zsolid |
---|
| 295 | REAL, DIMENSION(klon) :: qtot, qzero |
---|
| 296 | REAL, DIMENSION(klon) :: dqsl, dqsi |
---|
| 297 | REAL :: smallestreal |
---|
| 298 | ! Variables for Bergeron process |
---|
| 299 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
| 300 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
---|
| 301 | ! Variables precipitation energy conservation |
---|
| 302 | REAL, DIMENSION(klon) :: zmqc |
---|
| 303 | REAL :: zalpha_tr |
---|
| 304 | REAL :: zfrac_lessi |
---|
| 305 | REAL, DIMENSION(klon) :: zprec_cond |
---|
| 306 | REAL :: zmair |
---|
| 307 | REAL :: zcpair, zcpeau |
---|
| 308 | REAL, DIMENSION(klon) :: zlh_solid |
---|
| 309 | REAL, DIMENSION(klon) :: ztupnew |
---|
| 310 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
---|
| 311 | REAL :: zm_solid ! for liquid -> solid conversion |
---|
| 312 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
| 313 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
---|
| 314 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
---|
| 315 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
| 316 | REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld |
---|
| 317 | REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb |
---|
| 318 | REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr |
---|
| 319 | REAL, DIMENSION(klon, klev) :: velo |
---|
| 320 | REAL :: vr, ffallv |
---|
| 321 | REAL :: qlmpc, qimpc, rnebmpc |
---|
| 322 | REAL, DIMENSION(klon, klev) :: radocondi, radocondl |
---|
| 323 | REAL :: effective_zneb |
---|
| 324 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
---|
| 325 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
---|
[3999] | 326 | |
---|
[5224] | 327 | ! for condensation and ice supersaturation |
---|
| 328 | REAL, DIMENSION(klon) :: qvc, shear |
---|
| 329 | REAL :: delta_z |
---|
| 330 | !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) |
---|
| 331 | ! Constants used for calculating ratios that are advected (using a parent-child |
---|
| 332 | ! formalism). This is not done in the dynamical core because at this moment, |
---|
| 333 | ! only isotopes can use this parent-child formalism. Note that the two constants |
---|
| 334 | ! are the same as the one use in the dynamical core, being also defined in |
---|
| 335 | ! dyn3d_common/infotrac.F90 |
---|
| 336 | REAL :: min_qParent, min_ratio |
---|
| 337 | |
---|
[5111] | 338 | INTEGER i, k, n, kk, iter |
---|
| 339 | INTEGER, DIMENSION(klon) :: n_i |
---|
| 340 | INTEGER ncoreczq |
---|
| 341 | INTEGER, DIMENSION(klon, klev) :: mpc_bl_points |
---|
| 342 | LOGICAL iftop |
---|
[4654] | 343 | |
---|
[5111] | 344 | LOGICAL, DIMENSION(klon) :: lognormale |
---|
| 345 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
[3999] | 346 | |
---|
[5111] | 347 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
| 348 | CHARACTER (len = 80) :: abort_message |
---|
[3999] | 349 | |
---|
| 350 | |
---|
[5111] | 351 | !=============================================================================== |
---|
| 352 | ! INITIALISATION |
---|
| 353 | !=============================================================================== |
---|
[3999] | 354 | |
---|
[5111] | 355 | ! Few initial checks |
---|
[3999] | 356 | |
---|
[5111] | 357 | IF (iflag_fisrtilp_qsat < 0) THEN |
---|
| 358 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
| 359 | CALL abort_physic(modname, abort_message, 1) |
---|
| 360 | ENDIF |
---|
[4380] | 361 | |
---|
[5111] | 362 | ! Few initialisations |
---|
[5007] | 363 | |
---|
[5111] | 364 | znebprecip(:) = 0.0 |
---|
| 365 | ctot_vol(1:klon, 1:klev) = 0.0 |
---|
| 366 | rneblsvol(1:klon, 1:klev) = 0.0 |
---|
| 367 | smallestreal = 1.e-9 |
---|
| 368 | znebprecipclr(:) = 0.0 |
---|
| 369 | znebprecipcld(:) = 0.0 |
---|
| 370 | mpc_bl_points(:, :) = 0 |
---|
[3999] | 371 | |
---|
[5111] | 372 | IF (prt_level>9) WRITE(lunout, *) 'NUAGES4 A. JAM' |
---|
[4803] | 373 | |
---|
[5111] | 374 | ! AA for 'safety' reasons |
---|
| 375 | zalpha_tr = 0. |
---|
| 376 | zfrac_lessi = 0. |
---|
| 377 | beta(:, :) = 0. |
---|
[4803] | 378 | |
---|
[5111] | 379 | ! Initialisation of variables: |
---|
[4392] | 380 | |
---|
[5111] | 381 | prfl(:, :) = 0.0 |
---|
| 382 | psfl(:, :) = 0.0 |
---|
| 383 | d_t(:, :) = 0.0 |
---|
| 384 | d_q(:, :) = 0.0 |
---|
| 385 | d_ql(:, :) = 0.0 |
---|
| 386 | d_qi(:, :) = 0.0 |
---|
| 387 | rneb(:, :) = 0.0 |
---|
| 388 | pfraclr(:, :) = 0.0 |
---|
| 389 | pfracld(:, :) = 0.0 |
---|
| 390 | cldfraliq(:, :) = 0. |
---|
| 391 | sigma2_icefracturb(:, :) = 0. |
---|
| 392 | mean_icefracturb(:, :) = 0. |
---|
| 393 | radocond(:, :) = 0.0 |
---|
| 394 | radicefrac(:, :) = 0.0 |
---|
| 395 | frac_nucl(:, :) = 1.0 |
---|
| 396 | frac_impa(:, :) = 1.0 |
---|
| 397 | rain(:) = 0.0 |
---|
| 398 | snow(:) = 0.0 |
---|
| 399 | zoliq(:) = 0.0 |
---|
| 400 | zfice(:) = 0.0 |
---|
| 401 | dzfice(:) = 0.0 |
---|
| 402 | zfice_turb(:) = 0.0 |
---|
| 403 | dzfice_turb(:) = 0.0 |
---|
| 404 | zqprecl(:) = 0.0 |
---|
| 405 | zqpreci(:) = 0.0 |
---|
| 406 | zrfl(:) = 0.0 |
---|
| 407 | zifl(:) = 0.0 |
---|
| 408 | ziflprev(:) = 0.0 |
---|
| 409 | zneb(:) = seuil_neb |
---|
| 410 | zrflclr(:) = 0.0 |
---|
| 411 | ziflclr(:) = 0.0 |
---|
| 412 | zrflcld(:) = 0.0 |
---|
| 413 | ziflcld(:) = 0.0 |
---|
| 414 | tot_zneb(:) = 0.0 |
---|
| 415 | tot_znebn(:) = 0.0 |
---|
| 416 | d_tot_zneb(:) = 0.0 |
---|
| 417 | qzero(:) = 0.0 |
---|
| 418 | zdistcltop(:) = 0.0 |
---|
| 419 | ztemp_cltop(:) = 0.0 |
---|
| 420 | ztupnew(:) = 0.0 |
---|
[5224] | 421 | |
---|
| 422 | distcltop(:, :) = 0. |
---|
| 423 | temp_cltop(:, :) = 0. |
---|
| 424 | |
---|
| 425 | !--Ice supersaturation |
---|
| 426 | gamma_cond(:, :) = 1. |
---|
| 427 | qissr(:, :) = 0. |
---|
| 428 | issrfra(:, :) = 0. |
---|
| 429 | dcf_sub(:, :) = 0. |
---|
| 430 | dcf_con(:, :) = 0. |
---|
| 431 | dcf_mix(:, :) = 0. |
---|
| 432 | dqi_adj(:, :) = 0. |
---|
| 433 | dqi_sub(:, :) = 0. |
---|
| 434 | dqi_con(:, :) = 0. |
---|
| 435 | dqi_mix(:, :) = 0. |
---|
| 436 | dqvc_adj(:, :) = 0. |
---|
| 437 | dqvc_sub(:, :) = 0. |
---|
| 438 | dqvc_con(:, :) = 0. |
---|
| 439 | dqvc_mix(:, :) = 0. |
---|
| 440 | fcontrN(:, :) = 0. |
---|
| 441 | fcontrP(:, :) = 0. |
---|
[5111] | 442 | Tcontr(:, :) = missing_val |
---|
| 443 | qcontr(:, :) = missing_val |
---|
| 444 | qcontr2(:, :) = missing_val |
---|
[5224] | 445 | dcf_avi(:, :) = 0. |
---|
| 446 | dqi_avi(:, :) = 0. |
---|
| 447 | dqvc_avi(:, :) = 0. |
---|
| 448 | qvc(:) = 0. |
---|
| 449 | shear(:) = 0. |
---|
| 450 | min_qParent = 1.e-30 |
---|
| 451 | min_ratio = 1.e-16 |
---|
[4392] | 452 | |
---|
[5111] | 453 | !-- poprecip |
---|
| 454 | qraindiag(:, :) = 0. |
---|
| 455 | qsnowdiag(:, :) = 0. |
---|
| 456 | dqreva(:, :) = 0. |
---|
| 457 | dqrauto(:, :) = 0. |
---|
| 458 | dqrmelt(:, :) = 0. |
---|
| 459 | dqrfreez(:, :) = 0. |
---|
| 460 | dqrcol(:, :) = 0. |
---|
| 461 | dqssub(:, :) = 0. |
---|
| 462 | dqsauto(:, :) = 0. |
---|
| 463 | dqsrim(:, :) = 0. |
---|
| 464 | dqsagg(:, :) = 0. |
---|
| 465 | dqsfreez(:, :) = 0. |
---|
| 466 | dqsmelt(:, :) = 0. |
---|
| 467 | zqupnew(:) = 0. |
---|
| 468 | zqvapclr(:) = 0. |
---|
[3999] | 469 | |
---|
| 470 | |
---|
| 471 | |
---|
[5111] | 472 | !c_iso: variable initialisation for iso |
---|
[4803] | 473 | |
---|
[5111] | 474 | |
---|
| 475 | !=============================================================================== |
---|
| 476 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
| 477 | !=============================================================================== |
---|
| 478 | |
---|
| 479 | ncoreczq = 0 |
---|
| 480 | |
---|
| 481 | DO k = klev, 1, -1 |
---|
| 482 | |
---|
| 483 | IF (k<=klev - 1) THEN |
---|
| 484 | iftop = .FALSE. |
---|
| 485 | ELSE |
---|
| 486 | iftop = .TRUE. |
---|
| 487 | ENDIF |
---|
| 488 | |
---|
| 489 | ! Initialisation temperature and specific humidity |
---|
| 490 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
---|
| 491 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
---|
| 492 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
---|
| 493 | ! d_t = temperature tendency due to lscp |
---|
| 494 | ! The temperature of the overlying layer is updated here because needed for thermalization |
---|
| 495 | DO i = 1, klon |
---|
| 496 | zt(i) = temp(i, k) |
---|
| 497 | zq(i) = qt(i, k) |
---|
[5117] | 498 | IF (.NOT. iftop) THEN |
---|
[5111] | 499 | ztupnew(i) = temp(i, k + 1) + d_t(i, k + 1) |
---|
| 500 | zqupnew(i) = qt(i, k + 1) + d_q(i, k + 1) + d_ql(i, k + 1) + d_qi(i, k + 1) |
---|
| 501 | !--zqs(i) is the saturation specific humidity in the layer above |
---|
| 502 | zqvapclr(i) = MAX(0., qt(i, k + 1) + d_q(i, k + 1) - rneb(i, k + 1) * zqs(i)) |
---|
[4803] | 503 | ENDIF |
---|
[4392] | 504 | !c_iso init of iso |
---|
[5111] | 505 | ENDDO |
---|
[4803] | 506 | |
---|
[5111] | 507 | !================================================================ |
---|
| 508 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
| 509 | IF (ok_poprecip) THEN |
---|
[4803] | 510 | |
---|
[5111] | 511 | CALL poprecip_precld(klon, dtime, iftop, paprs(:, k), paprs(:, k + 1), pplay(:, k), & |
---|
| 512 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
---|
| 513 | zqvapclr, zqupnew, & |
---|
| 514 | zrfl, zrflclr, zrflcld, & |
---|
| 515 | zifl, ziflclr, ziflcld, & |
---|
| 516 | dqreva(:, k), dqssub(:, k) & |
---|
| 517 | ) |
---|
[4803] | 518 | |
---|
[5111] | 519 | !================================================================ |
---|
| 520 | ELSE |
---|
[3999] | 521 | |
---|
[5111] | 522 | ! -------------------------------------------------------------------- |
---|
| 523 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
| 524 | ! -------------------------------------------------------------------- |
---|
| 525 | ! Computes air temperature variation due to enthalpy transported by |
---|
| 526 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
| 527 | ! layer. |
---|
| 528 | ! The precipitation should remain thermalized throughout the different |
---|
| 529 | ! thermodynamical transformations. |
---|
| 530 | ! The corresponding water mass should |
---|
| 531 | ! be added when calculating the layer's enthalpy change with |
---|
| 532 | ! temperature |
---|
| 533 | ! See lmdzpedia page todoan |
---|
| 534 | ! todoan: check consistency with ice phase |
---|
| 535 | ! todoan: understand why several steps |
---|
| 536 | ! --------------------------------------------------------------------- |
---|
| 537 | |
---|
| 538 | IF (iftop) THEN |
---|
| 539 | |
---|
| 540 | DO i = 1, klon |
---|
[4803] | 541 | zmqc(i) = 0. |
---|
[5111] | 542 | ENDDO |
---|
[4803] | 543 | |
---|
[5111] | 544 | ELSE |
---|
[4803] | 545 | |
---|
[5111] | 546 | DO i = 1, klon |
---|
| 547 | |
---|
| 548 | zmair = (paprs(i, k) - paprs(i, k + 1)) / RG |
---|
[3999] | 549 | ! no condensed water so cp=cp(vapor+dry air) |
---|
| 550 | ! RVTMP2=rcpv/rcpd-1 |
---|
[5111] | 551 | zcpair = RCPD * (1.0 + RVTMP2 * zq(i)) |
---|
| 552 | zcpeau = RCPD * RVTMP2 |
---|
[4226] | 553 | |
---|
[5111] | 554 | ! zmqc: precipitation mass that has to be thermalized with |
---|
[3999] | 555 | ! layer's air so that precipitation at the ground has the |
---|
| 556 | ! same temperature as the lowermost layer |
---|
[5111] | 557 | zmqc(i) = (zrfl(i) + zifl(i)) * dtime / zmair |
---|
[3999] | 558 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
[5111] | 559 | zt(i) = (ztupnew(i) * zmqc(i) * zcpeau + zcpair * zt(i)) & |
---|
| 560 | / (zcpair + zmqc(i) * zcpeau) |
---|
[4226] | 561 | |
---|
[5111] | 562 | ENDDO |
---|
[3999] | 563 | |
---|
[5111] | 564 | ENDIF |
---|
[3999] | 565 | |
---|
[5111] | 566 | ! -------------------------------------------------------------------- |
---|
| 567 | ! P2> Precipitation evaporation/sublimation/melting |
---|
| 568 | ! -------------------------------------------------------------------- |
---|
| 569 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
| 570 | ! -------------------------------------------------------------------- |
---|
[3999] | 571 | |
---|
[5111] | 572 | IF (iflag_evap_prec>=1) THEN |
---|
[4226] | 573 | |
---|
[5111] | 574 | ! Calculation of saturation specific humidity |
---|
| 575 | ! depending on temperature: |
---|
| 576 | CALL calc_qsat_ecmwf(klon, zt(:), qzero(:), pplay(:, k), RTT, 0, .FALSE., zqs(:), zdqs(:)) |
---|
| 577 | ! wrt liquid water |
---|
| 578 | CALL calc_qsat_ecmwf(klon, zt(:), qzero(:), pplay(:, k), RTT, 1, .FALSE., qsl(:), dqsl(:)) |
---|
| 579 | ! wrt ice |
---|
| 580 | CALL calc_qsat_ecmwf(klon, zt(:), qzero(:), pplay(:, k), RTT, 2, .FALSE., qsi(:), dqsi(:)) |
---|
| 581 | |
---|
| 582 | DO i = 1, klon |
---|
| 583 | |
---|
[3999] | 584 | ! if precipitation |
---|
[5111] | 585 | IF (zrfl(i) + zifl(i)>0.) THEN |
---|
[4226] | 586 | |
---|
[5111] | 587 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
| 588 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
[4392] | 589 | |
---|
[5111] | 590 | IF (iflag_evap_prec>=4) THEN |
---|
| 591 | zrfl(i) = zrflclr(i) |
---|
| 592 | zifl(i) = ziflclr(i) |
---|
| 593 | ENDIF |
---|
[3999] | 594 | |
---|
[5111] | 595 | IF (iflag_evap_prec==1) THEN |
---|
| 596 | znebprecip(i) = zneb(i) |
---|
| 597 | ELSE |
---|
| 598 | znebprecip(i) = MAX(zneb(i), znebprecip(i)) |
---|
| 599 | ENDIF |
---|
[3999] | 600 | |
---|
[5111] | 601 | IF (iflag_evap_prec>4) THEN |
---|
[4563] | 602 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
| 603 | ! i.e. the fraction where evaporation occurs |
---|
[5111] | 604 | zqev0 = MAX(0.0, (zqs(i) - zq(i)) * znebprecipclr(i)) |
---|
| 605 | ELSEIF (iflag_evap_prec == 4) THEN |
---|
[4226] | 606 | ! Max evaporation not to saturate the whole mesh |
---|
[4563] | 607 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
[5111] | 608 | zqev0 = MAX(0.0, zqs(i) - zq(i)) |
---|
| 609 | ELSE |
---|
[4226] | 610 | ! Max evap not to saturate the fraction below the cloud |
---|
[5111] | 611 | zqev0 = MAX(0.0, (zqs(i) - zq(i)) * znebprecip(i)) |
---|
| 612 | ENDIF |
---|
[3999] | 613 | |
---|
[5111] | 614 | ! Evaporation of liquid precipitation coming from above |
---|
| 615 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
| 616 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
| 617 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
[3999] | 618 | |
---|
[5111] | 619 | IF (iflag_evap_prec==3) THEN |
---|
| 620 | zqevt = znebprecip(i) * coef_eva * (1.0 - zq(i) / qsl(i)) & |
---|
| 621 | * SQRT(zrfl(i) / max(1.e-4, znebprecip(i))) & |
---|
| 622 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
| 623 | ELSE IF (iflag_evap_prec>=4) THEN |
---|
| 624 | zqevt = znebprecipclr(i) * coef_eva * (1.0 - zq(i) / qsl(i)) & |
---|
| 625 | * SQRT(zrfl(i) / max(1.e-8, znebprecipclr(i))) & |
---|
| 626 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
| 627 | ELSE |
---|
| 628 | zqevt = 1. * coef_eva * (1.0 - zq(i) / qsl(i)) * SQRT(zrfl(i)) & |
---|
| 629 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
| 630 | ENDIF |
---|
[3999] | 631 | |
---|
[5111] | 632 | zqevt = MAX(0.0, MIN(zqevt, zrfl(i))) & |
---|
| 633 | * RG * dtime / (paprs(i, k) - paprs(i, k + 1)) |
---|
[3999] | 634 | |
---|
[5111] | 635 | ! sublimation of the solid precipitation coming from above |
---|
| 636 | IF (iflag_evap_prec==3) THEN |
---|
| 637 | zqevti = znebprecip(i) * coef_sub * (1.0 - zq(i) / qsi(i)) & |
---|
| 638 | * SQRT(zifl(i) / max(1.e-4, znebprecip(i))) & |
---|
| 639 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
| 640 | ELSE IF (iflag_evap_prec>=4) THEN |
---|
| 641 | zqevti = znebprecipclr(i) * coef_sub * (1.0 - zq(i) / qsi(i)) & |
---|
| 642 | * SQRT(zifl(i) / max(1.e-8, znebprecipclr(i))) & |
---|
| 643 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
| 644 | ELSE |
---|
| 645 | zqevti = 1. * coef_sub * (1.0 - zq(i) / qsi(i)) * SQRT(zifl(i)) & |
---|
| 646 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
| 647 | ENDIF |
---|
[4226] | 648 | |
---|
[5111] | 649 | zqevti = MAX(0.0, MIN(zqevti, zifl(i))) & |
---|
| 650 | * RG * dtime / (paprs(i, k) - paprs(i, k + 1)) |
---|
[3999] | 651 | |
---|
[5111] | 652 | ! A. JAM |
---|
| 653 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
| 654 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
| 655 | ! does not reach saturation. In this case, we |
---|
| 656 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
[4226] | 657 | |
---|
[5111] | 658 | IF (zqevt + zqevti>zqev0) THEN |
---|
| 659 | zqev = zqev0 * zqevt / (zqevt + zqevti) |
---|
| 660 | zqevi = zqev0 * zqevti / (zqevt + zqevti) |
---|
| 661 | ELSE |
---|
| 662 | zqev = zqevt |
---|
| 663 | zqevi = zqevti |
---|
| 664 | ENDIF |
---|
[3999] | 665 | |
---|
| 666 | |
---|
[5111] | 667 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
| 668 | zrfln(i) = Max(0., zrfl(i) - zqev * (paprs(i, k) - paprs(i, k + 1)) & |
---|
| 669 | / RG / dtime) |
---|
| 670 | zifln(i) = Max(0., zifl(i) - zqevi * (paprs(i, k) - paprs(i, k + 1)) & |
---|
| 671 | / RG / dtime) |
---|
[3999] | 672 | |
---|
[4392] | 673 | |
---|
[5111] | 674 | ! vapor, temperature, precip fluxes update |
---|
| 675 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
| 676 | zq(i) = zq(i) - (zrfln(i) + zifln(i) - zrfl(i) - zifl(i)) & |
---|
| 677 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime |
---|
| 678 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
| 679 | zmqc(i) = zmqc(i) + (zrfln(i) + zifln(i) - zrfl(i) - zifl(i)) & |
---|
| 680 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime |
---|
| 681 | ! air and precip temperature (i.e., gridbox temperature) |
---|
| 682 | ! is updated due to latent heat cooling |
---|
| 683 | zt(i) = zt(i) + (zrfln(i) - zrfl(i)) & |
---|
| 684 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime & |
---|
| 685 | * RLVTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) & |
---|
| 686 | + (zifln(i) - zifl(i)) & |
---|
| 687 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime & |
---|
| 688 | * RLSTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) |
---|
[3999] | 689 | |
---|
[5111] | 690 | ! New values of liquid and solid precipitation |
---|
| 691 | zrfl(i) = zrfln(i) |
---|
| 692 | zifl(i) = zifln(i) |
---|
[3999] | 693 | |
---|
[5111] | 694 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
| 695 | ! due to evap + sublim |
---|
[4392] | 696 | |
---|
[5111] | 697 | IF (iflag_evap_prec>=4) THEN |
---|
| 698 | zrflclr(i) = zrfl(i) |
---|
| 699 | ziflclr(i) = zifl(i) |
---|
| 700 | IF(zrflclr(i) + ziflclr(i)<=0) THEN |
---|
| 701 | znebprecipclr(i) = 0.0 |
---|
[4226] | 702 | ENDIF |
---|
[5111] | 703 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
| 704 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
| 705 | ENDIF |
---|
[3999] | 706 | |
---|
[5111] | 707 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
[3999] | 708 | |
---|
[5111] | 709 | ! Melting: |
---|
| 710 | zmelt = ((zt(i) - RTT) / (ztfondue - RTT)) ! JYG |
---|
| 711 | ! precip fraction that is melted |
---|
| 712 | zmelt = MIN(MAX(zmelt, 0.), 1.) |
---|
[4392] | 713 | |
---|
[5111] | 714 | ! update of rainfall and snowfall due to melting |
---|
| 715 | IF (iflag_evap_prec>=4) THEN |
---|
| 716 | zrflclr(i) = zrflclr(i) + zmelt * ziflclr(i) |
---|
| 717 | zrflcld(i) = zrflcld(i) + zmelt * ziflcld(i) |
---|
| 718 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
| 719 | ELSE |
---|
| 720 | zrfl(i) = zrfl(i) + zmelt * zifl(i) |
---|
| 721 | ENDIF |
---|
[4412] | 722 | |
---|
| 723 | |
---|
[5111] | 724 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
[3999] | 725 | |
---|
[5111] | 726 | ! Latent heat of melting because of precipitation melting |
---|
| 727 | ! NB: the air + precip temperature is simultaneously updated |
---|
| 728 | zt(i) = zt(i) - zifl(i) * zmelt * (RG * dtime) / (paprs(i, k) - paprs(i, k + 1)) & |
---|
| 729 | * RLMLT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) |
---|
[3999] | 730 | |
---|
[5111] | 731 | IF (iflag_evap_prec>=4) THEN |
---|
| 732 | ziflclr(i) = ziflclr(i) * (1. - zmelt) |
---|
| 733 | ziflcld(i) = ziflcld(i) * (1. - zmelt) |
---|
| 734 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
| 735 | ELSE |
---|
| 736 | zifl(i) = zifl(i) * (1. - zmelt) |
---|
| 737 | ENDIF |
---|
| 738 | |
---|
[3999] | 739 | ELSE |
---|
[5111] | 740 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
| 741 | znebprecip(i) = 0. |
---|
[3999] | 742 | |
---|
| 743 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 744 | |
---|
[5111] | 745 | ENDDO ! loop on klon |
---|
[4226] | 746 | |
---|
[5111] | 747 | ENDIF ! (iflag_evap_prec>=1) |
---|
[3999] | 748 | |
---|
[5111] | 749 | ENDIF ! (ok_poprecip) |
---|
[4803] | 750 | |
---|
[5111] | 751 | ! -------------------------------------------------------------------- |
---|
| 752 | ! End precip evaporation |
---|
| 753 | ! -------------------------------------------------------------------- |
---|
[4226] | 754 | |
---|
[5111] | 755 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
| 756 | !------------------------------------------------------- |
---|
[3999] | 757 | |
---|
[5111] | 758 | qtot(:) = zq(:) + zmqc(:) |
---|
| 759 | CALL calc_qsat_ecmwf(klon, zt(:), qtot(:), pplay(:, k), RTT, 0, .FALSE., zqs(:), zdqs(:)) |
---|
| 760 | DO i = 1, klon |
---|
| 761 | zdelta = MAX(0., SIGN(1., RTT - zt(i))) |
---|
| 762 | zdqsdT_raw(i) = zdqs(i) * RCPD * (1.0 + RVTMP2 * zq(i)) / (RLVTT * (1. - zdelta) + RLSTT * zdelta) |
---|
| 763 | IF (zq(i) < 1.e-15) THEN |
---|
| 764 | ncoreczq = ncoreczq + 1 |
---|
| 765 | zq(i) = 1.e-15 |
---|
| 766 | ENDIF |
---|
| 767 | ! c_iso: do something similar for isotopes |
---|
[5099] | 768 | |
---|
[5111] | 769 | ENDDO |
---|
[3999] | 770 | |
---|
[5111] | 771 | ! -------------------------------------------------------------------- |
---|
| 772 | ! P2> Cloud formation |
---|
| 773 | !--------------------------------------------------------------------- |
---|
[3999] | 774 | |
---|
[5111] | 775 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
| 776 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
| 777 | ! is prescribed and depends on large scale variables and boundary layer |
---|
| 778 | ! properties) |
---|
| 779 | ! The decrease in condensed part due tu latent heating is taken into |
---|
| 780 | ! account |
---|
| 781 | ! ------------------------------------------------------------------- |
---|
[3999] | 782 | |
---|
[5111] | 783 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
| 784 | ! cloud properties calculation with the initial values of t and q |
---|
| 785 | ! ---------------------------------------------------------------- |
---|
[3999] | 786 | |
---|
[5111] | 787 | ! initialise gammasat and qincloud_mpc |
---|
| 788 | gammasat(:) = 1. |
---|
| 789 | qincloud_mpc(:) = 0. |
---|
[3999] | 790 | |
---|
[5111] | 791 | IF (iflag_cld_th>=5) THEN |
---|
| 792 | ! Cloud cover and content in meshes affected by shallow convection, |
---|
| 793 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
---|
| 794 | ! following Jam et al. 2013 |
---|
[3999] | 795 | |
---|
[5111] | 796 | IF (iflag_cloudth_vert<=2) THEN |
---|
| 797 | ! Old version of Arnaud Jam |
---|
[4651] | 798 | |
---|
[5111] | 799 | CALL cloudth(klon, klev, k, tv, & |
---|
| 800 | zq, qta, fraca, & |
---|
| 801 | qcloud, ctot, pspsk, paprs, pplay, tla, thl, & |
---|
| 802 | ratqs, zqs, temp, & |
---|
| 803 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[3999] | 804 | |
---|
[5111] | 805 | ELSEIF (iflag_cloudth_vert>=3 .AND. iflag_cloudth_vert<=5) THEN |
---|
| 806 | ! Default version of Arnaud Jam |
---|
[3999] | 807 | |
---|
[5111] | 808 | CALL cloudth_v3(klon, klev, k, tv, & |
---|
| 809 | zq, qta, fraca, & |
---|
| 810 | qcloud, ctot, ctot_vol, pspsk, paprs, pplay, tla, thl, & |
---|
[5226] | 811 | ratqs, sigma_qtherm, zqs, temp, & |
---|
[5111] | 812 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[3999] | 813 | |
---|
[5111] | 814 | ELSEIF (iflag_cloudth_vert==6) THEN |
---|
| 815 | ! Jean Jouhaud's version, with specific separation between surface and volume |
---|
| 816 | ! cloud fraction Decembre 2018 |
---|
[3999] | 817 | |
---|
[5111] | 818 | CALL cloudth_v6(klon, klev, k, tv, & |
---|
| 819 | zq, qta, fraca, & |
---|
| 820 | qcloud, ctot, ctot_vol, pspsk, paprs, pplay, tla, thl, & |
---|
| 821 | ratqs, zqs, temp, & |
---|
| 822 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
[4910] | 823 | |
---|
[5111] | 824 | ELSEIF (iflag_cloudth_vert == 7) THEN |
---|
| 825 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
---|
| 826 | ! for boundary-layer mixed phase clouds |
---|
| 827 | CALL cloudth_mpc(klon, klev, k, mpc_bl_points, zt, zq, qta(:, k), fraca(:, k), & |
---|
| 828 | pspsk(:, k), paprs(:, k + 1), paprs(:, k), pplay(:, k), tla(:, k), & |
---|
| 829 | ratqs(:, k), qcloud, qincloud_mpc, zfice_th, ctot(:, k), ctot_vol(:, k), & |
---|
| 830 | cloudth_sth(:, k), cloudth_senv(:, k), cloudth_sigmath(:, k), cloudth_sigmaenv(:, k)) |
---|
[3999] | 831 | |
---|
[5111] | 832 | ENDIF |
---|
[3999] | 833 | |
---|
[5111] | 834 | DO i = 1, klon |
---|
| 835 | rneb(i, k) = ctot(i, k) |
---|
| 836 | rneblsvol(i, k) = ctot_vol(i, k) |
---|
| 837 | zqn(i) = qcloud(i) |
---|
[5224] | 838 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 839 | qvc(i) = rneb(i, k) * zqs(i) |
---|
[5111] | 840 | ENDDO |
---|
[3999] | 841 | |
---|
[5111] | 842 | ENDIF |
---|
[3999] | 843 | |
---|
[5111] | 844 | IF (iflag_cld_th <= 4) THEN |
---|
[3999] | 845 | |
---|
[5111] | 846 | ! lognormal |
---|
| 847 | lognormale(:) = .TRUE. |
---|
[3999] | 848 | |
---|
[5111] | 849 | ELSEIF (iflag_cld_th >= 6) THEN |
---|
[3999] | 850 | |
---|
[5111] | 851 | ! lognormal distribution when no thermals |
---|
| 852 | lognormale(:) = fraca(:, k) < min_frac_th_cld |
---|
[3999] | 853 | |
---|
[5111] | 854 | ELSE |
---|
| 855 | ! When iflag_cld_th=5, we always assume |
---|
| 856 | ! bi-gaussian distribution |
---|
| 857 | lognormale(:) = .FALSE. |
---|
[4226] | 858 | |
---|
[5111] | 859 | ENDIF |
---|
[4226] | 860 | |
---|
[5111] | 861 | DT(:) = 0. |
---|
| 862 | n_i(:) = 0 |
---|
| 863 | Tbef(:) = zt(:) |
---|
| 864 | qlbef(:) = 0. |
---|
[3999] | 865 | |
---|
[5111] | 866 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
| 867 | ! condensation with qsat(T) variation (adaptation) |
---|
| 868 | ! Iterative resolution to converge towards qsat |
---|
| 869 | ! with update of temperature, ice fraction and qsat at |
---|
| 870 | ! each iteration |
---|
[4226] | 871 | |
---|
[5111] | 872 | ! todoan -> sensitivity to iflag_fisrtilp_qsat |
---|
| 873 | DO iter = 1, iflag_fisrtilp_qsat + 1 |
---|
[4226] | 874 | |
---|
[5224] | 875 | keepgoing(:) = .FALSE. |
---|
| 876 | |
---|
[5111] | 877 | DO i = 1, klon |
---|
[3999] | 878 | |
---|
[5111] | 879 | ! keepgoing = .TRUE. while convergence is not satisfied |
---|
[5224] | 880 | IF (((ABS(DT(i))>DDT0) .OR. (n_i(i) == 0)) .AND. lognormale(i)) THEN |
---|
[3999] | 881 | |
---|
| 882 | |
---|
[5111] | 883 | ! if not convergence: |
---|
[5224] | 884 | ! we calculate a new iteration |
---|
| 885 | keepgoing(i) = .TRUE. |
---|
[4226] | 886 | |
---|
[5111] | 887 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
| 888 | ! Calculated variables: |
---|
| 889 | ! rneb : cloud fraction |
---|
| 890 | ! zqn : total water within the cloud |
---|
| 891 | ! zcond: mean condensed water within the mesh |
---|
| 892 | ! rhcl: clear-sky relative humidity |
---|
| 893 | !--------------------------------------------------------------- |
---|
[3999] | 894 | |
---|
[5111] | 895 | ! new temperature that only serves in the iteration process: |
---|
| 896 | Tbef(i) = Tbef(i) + DT(i) |
---|
[4072] | 897 | |
---|
[5111] | 898 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
| 899 | qtot(i) = zq(i) + zmqc(i) |
---|
[4072] | 900 | |
---|
[5224] | 901 | END IF |
---|
[5007] | 902 | |
---|
[5224] | 903 | END DO |
---|
[4072] | 904 | |
---|
[5111] | 905 | ! Calculation of saturation specific humidity and ice fraction |
---|
| 906 | CALL calc_qsat_ecmwf(klon, Tbef(:), qtot(:), pplay(:, k), RTT, 0, .FALSE., zqs(:), zdqs(:)) |
---|
| 907 | CALL calc_gammasat(klon, Tbef(:), qtot(:), pplay(:, k), gammasat(:), dgammasatdt(:)) |
---|
| 908 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
| 909 | zdqs(:) = gammasat(:) * zdqs(:) + zqs(:) * dgammasatdt(:) |
---|
| 910 | ! cloud phase determination |
---|
| 911 | IF (iflag_t_glace>=4) THEN |
---|
| 912 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
| 913 | CALL distance_to_cloud_top(klon, klev, k, temp, pplay, paprs, rneb, zdistcltop, ztemp_cltop) |
---|
[5224] | 914 | END IF |
---|
[4072] | 915 | |
---|
[5111] | 916 | CALL icefrac_lscp(klon, zt(:), iflag_ice_thermo, zdistcltop(:), ztemp_cltop(:), zfice(:), dzfice(:)) |
---|
[4226] | 917 | |
---|
[5224] | 918 | !--AB Activates a condensation scheme that allows for |
---|
| 919 | !--ice supersaturation and contrails evolution from aviation |
---|
| 920 | IF (ok_ice_supersat) THEN |
---|
[4059] | 921 | |
---|
[5224] | 922 | !--Calculate the shear value (input for condensation and ice supersat) |
---|
| 923 | DO i = 1, klon |
---|
| 924 | !--Cell thickness [m] |
---|
| 925 | delta_z = (paprs(i, k) - paprs(i, k + 1)) / RG / pplay(i, k) * Tbef(i) * RD |
---|
| 926 | IF (iftop) THEN |
---|
| 927 | ! top |
---|
| 928 | shear(i) = SQRT(((u_seri(i, k) - u_seri(i, k - 1)) / delta_z)**2. & |
---|
| 929 | + ((v_seri(i, k) - v_seri(i, k - 1)) / delta_z)**2.) |
---|
| 930 | ELSE IF (k == 1) THEN |
---|
| 931 | ! surface |
---|
| 932 | shear(i) = SQRT(((u_seri(i, k + 1) - u_seri(i, k)) / delta_z)**2. & |
---|
| 933 | + ((v_seri(i, k + 1) - v_seri(i, k)) / delta_z)**2.) |
---|
| 934 | ELSE |
---|
| 935 | ! other layers |
---|
| 936 | shear(i) = SQRT((((u_seri(i, k + 1) + u_seri(i, k)) / 2. & |
---|
| 937 | - (u_seri(i, k) + u_seri(i, k - 1)) / 2.) / delta_z)**2. & |
---|
| 938 | + (((v_seri(i, k + 1) + v_seri(i, k)) / 2. & |
---|
| 939 | - (v_seri(i, k) + v_seri(i, k - 1)) / 2.) / delta_z)**2.) |
---|
| 940 | END IF |
---|
| 941 | END DO |
---|
[4059] | 942 | |
---|
[5224] | 943 | !--------------------------------------------- |
---|
| 944 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
---|
| 945 | !--------------------------------------------- |
---|
[4226] | 946 | |
---|
[5224] | 947 | CALL condensation_ice_supersat(& |
---|
| 948 | klon, dtime, missing_val, & |
---|
| 949 | pplay(:, k), paprs(:, k), paprs(:, k + 1), & |
---|
| 950 | cf_seri(:, k), rvc_seri(:, k), ratio_qi_qtot(:, k), & |
---|
| 951 | shear(:), tke_dissip(:, k), cell_area(:), & |
---|
| 952 | Tbef(:), zq(:), zqs(:), gammasat(:), ratqs(:, k), keepgoing(:), & |
---|
| 953 | rneb(:, k), zqn(:), qvc(:), issrfra(:, k), qissr(:, k), & |
---|
| 954 | dcf_sub(:, k), dcf_con(:, k), dcf_mix(:, k), & |
---|
| 955 | dqi_adj(:, k), dqi_sub(:, k), dqi_con(:, k), dqi_mix(:, k), & |
---|
| 956 | dqvc_adj(:, k), dqvc_sub(:, k), dqvc_con(:, k), dqvc_mix(:, k), & |
---|
| 957 | Tcontr(:, k), qcontr(:, k), qcontr2(:, k), fcontrN(:, k), fcontrP(:, k), & |
---|
| 958 | flight_dist(:, k), flight_h2o(:, k), & |
---|
| 959 | dcf_avi(:, k), dqi_avi(:, k), dqvc_avi(:, k)) |
---|
[4226] | 960 | |
---|
[5224] | 961 | |
---|
[5227] | 962 | ELSE |
---|
| 963 | !--generalisedlognormal condensation scheme (Bony and Emanuel 2001) |
---|
[5224] | 964 | |
---|
[5227] | 965 | |
---|
[5224] | 966 | CALL condensation_lognormal(& |
---|
[5227] | 967 | klon, Tbef, zq, zqs, gammasat, ratqs(:, k), & |
---|
| 968 | keepgoing, rneb(:, k), zqn, qvc) |
---|
[5224] | 969 | |
---|
| 970 | |
---|
[5227] | 971 | ENDIF ! .NOT. ok_ice_supersat |
---|
[5224] | 972 | |
---|
| 973 | DO i = 1, klon |
---|
| 974 | IF (keepgoing(i)) THEN |
---|
[3999] | 975 | |
---|
[5111] | 976 | ! If vertical heterogeneity, change fraction by volume as well |
---|
| 977 | IF (iflag_cloudth_vert>=3) THEN |
---|
| 978 | ctot_vol(i, k) = rneb(i, k) |
---|
| 979 | rneblsvol(i, k) = ctot_vol(i, k) |
---|
[5224] | 980 | END IF |
---|
[3999] | 981 | |
---|
| 982 | |
---|
[5111] | 983 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
| 984 | ! due to condensation. |
---|
| 985 | ! Calculated variables: |
---|
| 986 | ! dT : temperature change due to condensation |
---|
| 987 | !--------------------------------------------------------------- |
---|
[3999] | 988 | |
---|
[5111] | 989 | IF (zfice(i)<1) THEN |
---|
| 990 | cste = RLVTT |
---|
| 991 | ELSE |
---|
| 992 | cste = RLSTT |
---|
| 993 | ENDIF |
---|
[3999] | 994 | |
---|
[5111] | 995 | ! LEA_R : check formule |
---|
[5224] | 996 | IF (ok_unadjusted_clouds) THEN |
---|
| 997 | !--AB We relax the saturation adjustment assumption |
---|
| 998 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 999 | IF (rneb(i, k) > eps) THEN |
---|
| 1000 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i, k)) |
---|
| 1001 | ELSE |
---|
| 1002 | qlbef(i) = 0. |
---|
| 1003 | ENDIF |
---|
| 1004 | ELSE |
---|
| 1005 | qlbef(i) = max(0., zqn(i) - zqs(i)) |
---|
| 1006 | ENDIF |
---|
| 1007 | |
---|
[5111] | 1008 | num = -Tbef(i) + zt(i) + rneb(i, k) * ((1 - zfice(i)) * RLVTT & |
---|
| 1009 | + zfice(i) * RLSTT) / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) * qlbef(i) |
---|
| 1010 | denom = 1. + rneb(i, k) * ((1 - zfice(i)) * RLVTT + zfice(i) * RLSTT) / cste * zdqs(i) & |
---|
| 1011 | - (RLSTT - RLVTT) / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) * rneb(i, k) & |
---|
| 1012 | * qlbef(i) * dzfice(i) |
---|
| 1013 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
| 1014 | ! process |
---|
| 1015 | DT(i) = num / denom |
---|
| 1016 | n_i(i) = n_i(i) + 1 |
---|
[3999] | 1017 | |
---|
[5111] | 1018 | ENDIF ! end keepgoing |
---|
[3999] | 1019 | |
---|
[5111] | 1020 | ENDDO ! end loop on i |
---|
[3999] | 1021 | |
---|
[5111] | 1022 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
[4562] | 1023 | |
---|
[5111] | 1024 | ! P2.3> Final quantities calculation |
---|
| 1025 | ! Calculated variables: |
---|
| 1026 | ! rneb : cloud fraction |
---|
| 1027 | ! zcond: mean condensed water in the mesh |
---|
| 1028 | ! zqn : mean water vapor in the mesh |
---|
| 1029 | ! zfice: ice fraction in clouds |
---|
| 1030 | ! zt : temperature |
---|
| 1031 | ! rhcl : clear-sky relative humidity |
---|
| 1032 | ! ---------------------------------------------------------------- |
---|
[5007] | 1033 | |
---|
| 1034 | |
---|
[5111] | 1035 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
| 1036 | IF (iflag_t_glace>=4) THEN |
---|
| 1037 | CALL distance_to_cloud_top(klon, klev, k, temp, pplay, paprs, rneb, zdistcltop, ztemp_cltop) |
---|
| 1038 | distcltop(:, k) = zdistcltop(:) |
---|
| 1039 | temp_cltop(:, k) = ztemp_cltop(:) |
---|
| 1040 | ENDIF |
---|
[5007] | 1041 | |
---|
[5111] | 1042 | ! Partition function depending on temperature |
---|
[5194] | 1043 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
[3999] | 1044 | |
---|
[5111] | 1045 | ! Partition function depending on tke for non shallow-convective clouds |
---|
| 1046 | IF (iflag_icefrac >= 1) THEN |
---|
[3999] | 1047 | |
---|
[5111] | 1048 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:, k), paprs(:, k), paprs(:, k + 1), qice_save(:, k), ziflcld, zqn, & |
---|
| 1049 | rneb(:, k), tke(:, k), tke_dissip(:, k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:, k), sigma2_icefracturb(:, k), mean_icefracturb(:, k)) |
---|
| 1050 | |
---|
| 1051 | ENDIF |
---|
| 1052 | |
---|
| 1053 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
| 1054 | DO i = 1, klon |
---|
| 1055 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
---|
| 1056 | ! iflag_cloudth_vert=7 and specific param is activated |
---|
| 1057 | IF (mpc_bl_points(i, k) > 0) THEN |
---|
| 1058 | zcond(i) = MAX(0.0, qincloud_mpc(i)) * rneb(i, k) |
---|
| 1059 | ! following line is very strange and probably wrong |
---|
| 1060 | rhcl(i, k) = (zqs(i) + zq(i)) / 2. / zqs(i) |
---|
| 1061 | ! water vapor update and partition function if thermals |
---|
| 1062 | zq(i) = zq(i) - zcond(i) |
---|
| 1063 | zfice(i) = zfice_th(i) |
---|
| 1064 | ELSE |
---|
| 1065 | ! Checks on rneb, rhcl and zqn |
---|
| 1066 | IF (rneb(i, k) <= 0.0) THEN |
---|
| 1067 | zqn(i) = 0.0 |
---|
| 1068 | rneb(i, k) = 0.0 |
---|
| 1069 | zcond(i) = 0.0 |
---|
| 1070 | rhcl(i, k) = zq(i) / zqs(i) |
---|
| 1071 | ELSE IF (rneb(i, k) >= 1.0) THEN |
---|
| 1072 | zqn(i) = zq(i) |
---|
| 1073 | rneb(i, k) = 1.0 |
---|
[5224] | 1074 | IF (ok_unadjusted_clouds) THEN |
---|
| 1075 | !--AB We relax the saturation adjustment assumption |
---|
| 1076 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 1077 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
---|
| 1078 | ELSE |
---|
| 1079 | IF (ok_unadjusted_clouds) THEN |
---|
| 1080 | !--AB We relax the saturation adjustment assumption |
---|
| 1081 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 1082 | zcond(i) = MAX(0., zqn(i) * rneb(i, k) - qvc(i)) |
---|
| 1083 | ELSE |
---|
| 1084 | zcond(i) = MAX(0.0, zqn(i) - zqs(i)) * rneb(i, k) |
---|
| 1085 | ENDIF |
---|
| 1086 | ENDIF |
---|
[5111] | 1087 | rhcl(i, k) = 1.0 |
---|
| 1088 | ELSE |
---|
| 1089 | zcond(i) = MAX(0.0, zqn(i) - zqs(i)) * rneb(i, k) |
---|
| 1090 | ! following line is very strange and probably wrong: |
---|
| 1091 | rhcl(i, k) = (zqs(i) + zq(i)) / 2. / zqs(i) |
---|
| 1092 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
---|
| 1093 | IF (iflag_icefrac >= 1) THEN |
---|
| 1094 | IF (lognormale(i)) THEN |
---|
| 1095 | zcond(i) = zqliq(i) + zqice(i) |
---|
| 1096 | zfice(i) = zfice_turb(i) |
---|
| 1097 | rhcl(i, k) = zqvapcl(i) * rneb(i, k) + (zq(i) - zqn(i)) * (1. - rneb(i, k)) |
---|
| 1098 | ENDIF |
---|
[3999] | 1099 | ENDIF |
---|
[5111] | 1100 | ENDIF |
---|
[3999] | 1101 | |
---|
[5111] | 1102 | ! water vapor update |
---|
| 1103 | zq(i) = zq(i) - zcond(i) |
---|
[4392] | 1104 | |
---|
[3999] | 1105 | ENDIF |
---|
| 1106 | |
---|
[5111] | 1107 | ! c_iso : routine that computes in-cloud supersaturation |
---|
| 1108 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
---|
[4226] | 1109 | |
---|
[5111] | 1110 | ! temperature update due to phase change |
---|
| 1111 | zt(i) = zt(i) + (1. - zfice(i)) * zcond(i) & |
---|
| 1112 | * RLVTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i) + zcond(i))) & |
---|
| 1113 | + zfice(i) * zcond(i) * RLSTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i) + zcond(i))) |
---|
[5224] | 1114 | END DO |
---|
[4803] | 1115 | |
---|
[5111] | 1116 | ! If vertical heterogeneity, change volume fraction |
---|
| 1117 | IF (iflag_cloudth_vert >= 3) THEN |
---|
| 1118 | ctot_vol(1:klon, k) = min(max(ctot_vol(1:klon, k), 0.), 1.) |
---|
| 1119 | rneblsvol(1:klon, k) = ctot_vol(1:klon, k) |
---|
[5224] | 1120 | END IF |
---|
[4803] | 1121 | |
---|
[5224] | 1122 | !--AB Write diagnostics and tracers for ice supersaturation |
---|
| 1123 | IF (ok_ice_supersat) THEN |
---|
| 1124 | CALL calc_qsat_ecmwf(klon, zt, qzero, pplay(:, k), RTT, 1, .FALSE., qsatl(:, k), zdqs) |
---|
| 1125 | CALL calc_qsat_ecmwf(klon, zt, qzero, pplay(:, k), RTT, 2, .FALSE., qsati(:, k), zdqs) |
---|
| 1126 | |
---|
| 1127 | DO i = 1, klon |
---|
| 1128 | |
---|
| 1129 | cf_seri(i, k) = rneb(i, k) |
---|
| 1130 | |
---|
| 1131 | IF (.NOT. ok_unadjusted_clouds) THEN |
---|
| 1132 | qvc(i) = zqs(i) * rneb(i, k) |
---|
| 1133 | END IF |
---|
| 1134 | IF (zq(i) > min_qParent) THEN |
---|
| 1135 | rvc_seri(i, k) = qvc(i) / zq(i) |
---|
| 1136 | ELSE |
---|
| 1137 | rvc_seri(i, k) = min_ratio |
---|
| 1138 | END IF |
---|
| 1139 | !--The MIN barrier is NEEDED because of: |
---|
| 1140 | !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) |
---|
| 1141 | !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) |
---|
| 1142 | !--The MAX barrier is a safeguard that should not be activated |
---|
| 1143 | rvc_seri(i, k) = MIN(MAX(rvc_seri(i, k), 0.), 1.) |
---|
| 1144 | |
---|
| 1145 | !--Diagnostics |
---|
| 1146 | gamma_cond(i, k) = gammasat(i) |
---|
| 1147 | IF (issrfra(i, k) < eps) THEN |
---|
| 1148 | issrfra(i, k) = 0. |
---|
| 1149 | qissr(i, k) = 0. |
---|
| 1150 | END IF |
---|
| 1151 | subfra(i, k) = 1. - cf_seri(i, k) - issrfra(i, k) |
---|
| 1152 | qsub(i, k) = zq(i) - qvc(i) - qissr(i, k) |
---|
| 1153 | IF (subfra(i, k) < eps) THEN |
---|
| 1154 | subfra(i, k) = 0. |
---|
| 1155 | qsub(i, k) = 0. |
---|
| 1156 | END IF |
---|
| 1157 | qcld(i, k) = qvc(i) + zcond(i) |
---|
| 1158 | IF (cf_seri(i, k) < eps) THEN |
---|
| 1159 | qcld(i, k) = 0. |
---|
| 1160 | END IF |
---|
| 1161 | END DO |
---|
| 1162 | END IF |
---|
| 1163 | |
---|
[5111] | 1164 | ! ---------------------------------------------------------------- |
---|
| 1165 | ! P3> Precipitation formation |
---|
| 1166 | ! ---------------------------------------------------------------- |
---|
[4819] | 1167 | |
---|
[5111] | 1168 | !================================================================ |
---|
| 1169 | IF (ok_poprecip) THEN |
---|
[4803] | 1170 | |
---|
[5111] | 1171 | DO i = 1, klon |
---|
| 1172 | zoliql(i) = zcond(i) * (1. - zfice(i)) |
---|
| 1173 | zoliqi(i) = zcond(i) * zfice(i) |
---|
[5224] | 1174 | END DO |
---|
[4803] | 1175 | |
---|
[5111] | 1176 | CALL poprecip_postcld(klon, dtime, paprs(:, k), paprs(:, k + 1), pplay(:, k), & |
---|
| 1177 | ctot_vol(:, k), ptconv(:, k), & |
---|
| 1178 | zt, zq, zoliql, zoliqi, zfice, & |
---|
| 1179 | rneb(:, k), znebprecipclr, znebprecipcld, & |
---|
| 1180 | zrfl, zrflclr, zrflcld, & |
---|
| 1181 | zifl, ziflclr, ziflcld, & |
---|
| 1182 | qraindiag(:, k), qsnowdiag(:, k), dqrauto(:, k), & |
---|
| 1183 | dqrcol(:, k), dqrmelt(:, k), dqrfreez(:, k), & |
---|
| 1184 | dqsauto(:, k), dqsagg(:, k), dqsrim(:, k), & |
---|
| 1185 | dqsmelt(:, k), dqsfreez(:, k) & |
---|
| 1186 | ) |
---|
[3999] | 1187 | |
---|
[5111] | 1188 | DO i = 1, klon |
---|
| 1189 | zoliq(i) = zoliql(i) + zoliqi(i) |
---|
| 1190 | IF (zoliq(i) > 0.) THEN |
---|
| 1191 | zfice(i) = zoliqi(i) / zoliq(i) |
---|
| 1192 | ELSE |
---|
| 1193 | zfice(i) = 0.0 |
---|
| 1194 | ENDIF |
---|
[3999] | 1195 | |
---|
[5111] | 1196 | ! calculation of specific content of condensates seen by radiative scheme |
---|
| 1197 | IF (ok_radocond_snow) THEN |
---|
| 1198 | radocond(i, k) = zoliq(i) |
---|
| 1199 | radocondl(i, k) = radocond(i, k) * (1. - zfice(i)) |
---|
| 1200 | radocondi(i, k) = radocond(i, k) * zfice(i) + qsnowdiag(i, k) |
---|
| 1201 | ELSE |
---|
| 1202 | radocond(i, k) = zoliq(i) |
---|
| 1203 | radocondl(i, k) = radocond(i, k) * (1. - zfice(i)) |
---|
| 1204 | radocondi(i, k) = radocond(i, k) * zfice(i) |
---|
| 1205 | ENDIF |
---|
| 1206 | ENDDO |
---|
[3999] | 1207 | |
---|
[5111] | 1208 | !================================================================ |
---|
| 1209 | ELSE |
---|
[3999] | 1210 | |
---|
[5111] | 1211 | ! LTP: |
---|
| 1212 | IF (iflag_evap_prec >= 4) THEN |
---|
[3999] | 1213 | |
---|
[5111] | 1214 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
[3999] | 1215 | |
---|
[5111] | 1216 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
| 1217 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
[3999] | 1218 | |
---|
[5111] | 1219 | DO i = 1, klon |
---|
| 1220 | tot_znebn(i) = 1. - (1. - tot_zneb(i)) * (1 - max(rneb(i, k), zneb(i))) & |
---|
| 1221 | / (1. - min(zneb(i), 1. - smallestreal)) |
---|
| 1222 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
| 1223 | tot_zneb(i) = tot_znebn(i) |
---|
[3999] | 1224 | |
---|
[4559] | 1225 | |
---|
[5111] | 1226 | !1) Cloudy to clear air |
---|
| 1227 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i, k), znebprecipcld(i)) |
---|
| 1228 | IF (znebprecipcld(i) > 0.) THEN |
---|
| 1229 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i) / znebprecipcld(i) * zrflcld(i) |
---|
| 1230 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i) / znebprecipcld(i) * ziflcld(i) |
---|
| 1231 | ELSE |
---|
| 1232 | d_zrfl_cld_clr(i) = 0. |
---|
| 1233 | d_zifl_cld_clr(i) = 0. |
---|
| 1234 | ENDIF |
---|
[4559] | 1235 | |
---|
[5111] | 1236 | !2) Clear to cloudy air |
---|
| 1237 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i, k) - d_tot_zneb(i) - zneb(i))) |
---|
| 1238 | IF (znebprecipclr(i) > 0) THEN |
---|
| 1239 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i) / znebprecipclr(i) * zrflclr(i) |
---|
| 1240 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i) / znebprecipclr(i) * ziflclr(i) |
---|
| 1241 | ELSE |
---|
| 1242 | d_zrfl_clr_cld(i) = 0. |
---|
| 1243 | d_zifl_clr_cld(i) = 0. |
---|
| 1244 | ENDIF |
---|
[4559] | 1245 | |
---|
[5111] | 1246 | !Update variables |
---|
| 1247 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
| 1248 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
| 1249 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
| 1250 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
| 1251 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
| 1252 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
[3999] | 1253 | |
---|
[5111] | 1254 | ! c_iso do the same thing for isotopes precip |
---|
| 1255 | ENDDO |
---|
| 1256 | ENDIF |
---|
[3999] | 1257 | |
---|
| 1258 | |
---|
[5111] | 1259 | ! Autoconversion |
---|
| 1260 | ! ------------------------------------------------------------------------------- |
---|
[3999] | 1261 | |
---|
| 1262 | |
---|
[5111] | 1263 | ! Initialisation of zoliq and radocond variables |
---|
| 1264 | |
---|
[3999] | 1265 | DO i = 1, klon |
---|
[5111] | 1266 | zoliq(i) = zcond(i) |
---|
| 1267 | zoliqi(i) = zoliq(i) * zfice(i) |
---|
| 1268 | zoliql(i) = zoliq(i) * (1. - zfice(i)) |
---|
| 1269 | ! c_iso : initialisation of zoliq* also for isotopes |
---|
| 1270 | zrho(i, k) = pplay(i, k) / zt(i) / RD |
---|
| 1271 | zdz(i) = (paprs(i, k) - paprs(i, k + 1)) / (zrho(i, k) * RG) |
---|
| 1272 | iwc(i) = 0. |
---|
| 1273 | zneb(i) = MAX(rneb(i, k), seuil_neb) |
---|
| 1274 | radocond(i, k) = zoliq(i) / REAL(niter_lscp + 1) |
---|
| 1275 | radocondi(i, k) = zoliq(i) * zfice(i) / REAL(niter_lscp + 1) |
---|
| 1276 | radocondl(i, k) = zoliq(i) * (1. - zfice(i)) / REAL(niter_lscp + 1) |
---|
| 1277 | ENDDO |
---|
[3999] | 1278 | |
---|
[5111] | 1279 | DO n = 1, niter_lscp |
---|
[3999] | 1280 | |
---|
[5111] | 1281 | DO i = 1, klon |
---|
| 1282 | IF (rneb(i, k)>0.0) THEN |
---|
| 1283 | iwc(i) = zrho(i, k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
| 1284 | ENDIF |
---|
| 1285 | ENDDO |
---|
[3999] | 1286 | |
---|
[5111] | 1287 | CALL fallice_velocity(klon, iwc(:), zt(:), zrho(:, k), pplay(:, k), ptconv(:, k), velo(:, k)) |
---|
[4420] | 1288 | |
---|
[5111] | 1289 | DO i = 1, klon |
---|
[3999] | 1290 | |
---|
[5111] | 1291 | IF (rneb(i, k)>0.0) THEN |
---|
[4559] | 1292 | |
---|
[5111] | 1293 | ! Initialization of zrain, zsnow and zprecip: |
---|
| 1294 | zrain = 0. |
---|
| 1295 | zsnow = 0. |
---|
| 1296 | zprecip = 0. |
---|
| 1297 | ! c_iso same init for isotopes. Externalisation? |
---|
[4072] | 1298 | |
---|
[5111] | 1299 | IF (zneb(i)==seuil_neb) THEN |
---|
| 1300 | zprecip = 0.0 |
---|
| 1301 | zsnow = 0.0 |
---|
| 1302 | zrain = 0.0 |
---|
| 1303 | ELSE |
---|
[3999] | 1304 | |
---|
[5111] | 1305 | IF (ptconv(i, k)) THEN ! if convective point |
---|
| 1306 | zcl = cld_lc_con |
---|
| 1307 | zct = 1. / cld_tau_con |
---|
| 1308 | zexpo = cld_expo_con |
---|
| 1309 | ffallv = ffallv_con |
---|
| 1310 | ELSE |
---|
| 1311 | zcl = cld_lc_lsc |
---|
| 1312 | zct = 1. / cld_tau_lsc |
---|
| 1313 | zexpo = cld_expo_lsc |
---|
| 1314 | ffallv = ffallv_lsc |
---|
| 1315 | ENDIF |
---|
[4420] | 1316 | |
---|
| 1317 | |
---|
[5111] | 1318 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1319 | ! the "true" volume fraction instead of a modified |
---|
| 1320 | ! surface fraction (which is larger and artificially |
---|
| 1321 | ! reduces the in-cloud water). |
---|
[4420] | 1322 | |
---|
[5111] | 1323 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
---|
| 1324 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
| 1325 | !......................................................... |
---|
| 1326 | IF ((iflag_cloudth_vert>=3).AND.(iflag_rain_incloud_vol==1)) THEN |
---|
[4420] | 1327 | |
---|
[5111] | 1328 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1329 | ! the "true" volume fraction instead of a modified |
---|
| 1330 | ! surface fraction (which is larger and artificially |
---|
| 1331 | ! reduces the in-cloud water). |
---|
| 1332 | effective_zneb = ctot_vol(i, k) |
---|
| 1333 | ELSE |
---|
| 1334 | effective_zneb = zneb(i) |
---|
| 1335 | ENDIF |
---|
[4559] | 1336 | |
---|
[5111] | 1337 | IF (iflag_autoconversion == 2) THEN |
---|
| 1338 | ! two-steps resolution with niter_lscp=1 sufficient |
---|
| 1339 | ! we first treat the second term (with exponential) in an explicit way |
---|
| 1340 | ! and then treat the first term (-q/tau) in an exact way |
---|
| 1341 | zchau = zoliql(i) * (1. - exp(-dtime / REAL(niter_lscp) * zct & |
---|
| 1342 | * (1. - exp(-(zoliql(i) / effective_zneb / zcl)**zexpo)))) |
---|
| 1343 | ELSE |
---|
| 1344 | ! old explicit resolution with subtimesteps |
---|
| 1345 | zchau = zct * dtime / REAL(niter_lscp) * zoliql(i) & |
---|
| 1346 | * (1.0 - EXP(-(zoliql(i) / effective_zneb / zcl)**zexpo)) |
---|
[3999] | 1347 | ENDIF |
---|
[4226] | 1348 | |
---|
[5111] | 1349 | |
---|
| 1350 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
---|
| 1351 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
| 1352 | !.................................... |
---|
| 1353 | IF (iflag_autoconversion == 2) THEN |
---|
| 1354 | ! exact resolution, niter_lscp=1 is sufficient but works only |
---|
| 1355 | ! with iflag_vice=0 |
---|
| 1356 | IF (zoliqi(i) > 0.) THEN |
---|
| 1357 | zfroi = (zoliqi(i) - ((zoliqi(i)**(-dice_velo)) & |
---|
| 1358 | + dice_velo * dtime / REAL(niter_lscp) * cice_velo / zdz(i) * ffallv)**(-1. / dice_velo)) |
---|
| 1359 | ELSE |
---|
| 1360 | zfroi = 0. |
---|
| 1361 | ENDIF |
---|
[4559] | 1362 | ELSE |
---|
[5111] | 1363 | ! old explicit resolution with subtimesteps |
---|
| 1364 | zfroi = dtime / REAL(niter_lscp) / zdz(i) * zoliqi(i) * velo(i, k) |
---|
[4559] | 1365 | ENDIF |
---|
[3999] | 1366 | |
---|
[5111] | 1367 | zrain = MIN(MAX(zchau, 0.0), zoliql(i)) |
---|
| 1368 | zsnow = MIN(MAX(zfroi, 0.0), zoliqi(i)) |
---|
| 1369 | zprecip = MAX(zrain + zsnow, 0.0) |
---|
[4392] | 1370 | |
---|
[5111] | 1371 | ENDIF |
---|
[4226] | 1372 | |
---|
[5111] | 1373 | IF (iflag_autoconversion >= 1) THEN |
---|
| 1374 | ! debugged version with phase conservation through the autoconversion process |
---|
| 1375 | zoliql(i) = MAX(zoliql(i) - 1. * zrain, 0.0) |
---|
| 1376 | zoliqi(i) = MAX(zoliqi(i) - 1. * zsnow, 0.0) |
---|
| 1377 | zoliq(i) = MAX(zoliq(i) - zprecip, 0.0) |
---|
| 1378 | ELSE |
---|
| 1379 | ! bugged version with phase resetting |
---|
| 1380 | zoliql(i) = MAX(zoliq(i) * (1. - zfice(i)) - 1. * zrain, 0.0) |
---|
| 1381 | zoliqi(i) = MAX(zoliq(i) * zfice(i) - 1. * zsnow, 0.0) |
---|
| 1382 | zoliq(i) = MAX(zoliq(i) - zprecip, 0.0) |
---|
| 1383 | ENDIF |
---|
| 1384 | |
---|
| 1385 | ! c_iso: CALL isotope_conversion (for readibility) or duplicate |
---|
| 1386 | |
---|
| 1387 | radocond(i, k) = radocond(i, k) + zoliq(i) / REAL(niter_lscp + 1) |
---|
| 1388 | radocondl(i, k) = radocondl(i, k) + zoliql(i) / REAL(niter_lscp + 1) |
---|
| 1389 | radocondi(i, k) = radocondi(i, k) + zoliqi(i) / REAL(niter_lscp + 1) |
---|
| 1390 | |
---|
[4072] | 1391 | ENDIF ! rneb >0 |
---|
[3999] | 1392 | |
---|
[5111] | 1393 | ENDDO ! i = 1,klon |
---|
[3999] | 1394 | |
---|
[5111] | 1395 | ENDDO ! n = 1,niter |
---|
[3999] | 1396 | |
---|
[5111] | 1397 | ! Precipitation flux calculation |
---|
[3999] | 1398 | |
---|
[5111] | 1399 | DO i = 1, klon |
---|
[3999] | 1400 | |
---|
[5111] | 1401 | IF (iflag_evap_prec>=4) THEN |
---|
| 1402 | ziflprev(i) = ziflcld(i) |
---|
| 1403 | ELSE |
---|
| 1404 | ziflprev(i) = zifl(i) * zneb(i) |
---|
| 1405 | ENDIF |
---|
[3999] | 1406 | |
---|
[5111] | 1407 | IF (rneb(i, k) > 0.0) THEN |
---|
[4072] | 1408 | |
---|
[5111] | 1409 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
| 1410 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
| 1411 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
| 1412 | ! taken into account through a linearization of the equations and by approximating |
---|
| 1413 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
| 1414 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
| 1415 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
| 1416 | ! Water vapor increases as well |
---|
| 1417 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
[4226] | 1418 | |
---|
[5111] | 1419 | zqpreci(i) = (zcond(i) - zoliq(i)) * zfice(i) |
---|
| 1420 | zqprecl(i) = (zcond(i) - zoliq(i)) * (1. - zfice(i)) |
---|
| 1421 | zcp = RCPD * (1.0 + RVTMP2 * (zq(i) + zmqc(i) + zcond(i))) |
---|
| 1422 | coef1 = rneb(i, k) * RLSTT / zcp * zdqsdT_raw(i) |
---|
| 1423 | ! Computation of DT if all the liquid precip freezes |
---|
| 1424 | DeltaT = RLMLT * zqprecl(i) / (zcp * (1. + coef1)) |
---|
| 1425 | ! T should not exceed the freezing point |
---|
| 1426 | ! that is Delta > RTT-zt(i) |
---|
| 1427 | DeltaT = max(min(RTT - zt(i), DeltaT), 0.) |
---|
| 1428 | zt(i) = zt(i) + DeltaT |
---|
| 1429 | ! water vaporization due to temp. increase |
---|
| 1430 | Deltaq = rneb(i, k) * zdqsdT_raw(i) * DeltaT |
---|
| 1431 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
| 1432 | zq(i) = zq(i) + Deltaq |
---|
| 1433 | ! The three "max" lines herebelow protect from rounding errors |
---|
| 1434 | zcond(i) = max(zcond(i) - Deltaq, 0.) |
---|
| 1435 | ! liquid precipitation converted to ice precip |
---|
| 1436 | Deltaqprecl = -zcp / RLMLT * (1. + coef1) * DeltaT |
---|
| 1437 | zqprecl(i) = max(zqprecl(i) + Deltaqprecl, 0.) |
---|
| 1438 | ! iced water budget |
---|
| 1439 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
[4392] | 1440 | |
---|
[5111] | 1441 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
---|
[3999] | 1442 | |
---|
[5111] | 1443 | IF (iflag_evap_prec>=4) THEN |
---|
| 1444 | zrflcld(i) = zrflcld(i) + zqprecl(i) & |
---|
| 1445 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
| 1446 | ziflcld(i) = ziflcld(i) + zqpreci(i) & |
---|
| 1447 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
| 1448 | znebprecipcld(i) = rneb(i, k) |
---|
| 1449 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
| 1450 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
| 1451 | ELSE |
---|
| 1452 | zrfl(i) = zrfl(i) + zqprecl(i) & |
---|
| 1453 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
| 1454 | zifl(i) = zifl(i) + zqpreci(i) & |
---|
| 1455 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
| 1456 | ENDIF |
---|
| 1457 | ! c_iso : same for isotopes |
---|
[3999] | 1458 | |
---|
[5111] | 1459 | ENDIF ! rneb>0 |
---|
[4114] | 1460 | |
---|
[5111] | 1461 | ENDDO |
---|
[4114] | 1462 | |
---|
[5111] | 1463 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
| 1464 | ! if iflag_evap_prec>=4 |
---|
| 1465 | IF (iflag_evap_prec>=4) THEN |
---|
| 1466 | |
---|
| 1467 | DO i = 1, klon |
---|
| 1468 | |
---|
| 1469 | IF ((zrflclr(i) + ziflclr(i)) > 0.) THEN |
---|
| 1470 | znebprecipclr(i) = min(znebprecipclr(i), max(zrflclr(i) / & |
---|
| 1471 | (MAX(znebprecipclr(i), seuil_neb) * rain_int_min), ziflclr(i) / (MAX(znebprecipclr(i), seuil_neb) * rain_int_min))) |
---|
[3999] | 1472 | ELSE |
---|
[5111] | 1473 | znebprecipclr(i) = 0.0 |
---|
[4226] | 1474 | ENDIF |
---|
| 1475 | |
---|
[5082] | 1476 | IF ((zrflcld(i) + ziflcld(i)) > 0.) THEN |
---|
[5111] | 1477 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i) / & |
---|
| 1478 | (MAX(znebprecipcld(i), seuil_neb) * rain_int_min), ziflcld(i) / (MAX(znebprecipcld(i), seuil_neb) * rain_int_min))) |
---|
[4226] | 1479 | ELSE |
---|
[5111] | 1480 | znebprecipcld(i) = 0.0 |
---|
[4226] | 1481 | ENDIF |
---|
[5224] | 1482 | ENDDO |
---|
[3999] | 1483 | |
---|
[5111] | 1484 | ENDIF |
---|
[3999] | 1485 | |
---|
[5111] | 1486 | ENDIF ! ok_poprecip |
---|
[4910] | 1487 | |
---|
[5111] | 1488 | ! End of precipitation formation |
---|
| 1489 | ! -------------------------------- |
---|
[4803] | 1490 | |
---|
[3999] | 1491 | |
---|
[5111] | 1492 | ! Calculation of cloud condensates amount seen by radiative scheme |
---|
| 1493 | !----------------------------------------------------------------- |
---|
[3999] | 1494 | |
---|
[5111] | 1495 | ! Calculation of the concentration of condensates seen by the radiation scheme |
---|
| 1496 | ! for liquid phase, we take radocondl |
---|
| 1497 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
---|
| 1498 | ! we recalculate radocondi to account for contributions from the precipitation flux |
---|
| 1499 | ! TODO: for the moment, we deactivate this option when ok_poprecip=.TRUE. |
---|
[4803] | 1500 | |
---|
[5111] | 1501 | IF ((ok_radocond_snow) .AND. (k < klev) .AND. (.NOT. ok_poprecip)) THEN |
---|
[4114] | 1502 | ! for the solid phase (crystals + snowflakes) |
---|
[4412] | 1503 | ! we recalculate radocondi by summing |
---|
[4114] | 1504 | ! the ice content calculated in the mesh |
---|
[5111] | 1505 | ! + the contribution of the non-evaporated snowfall |
---|
[4114] | 1506 | ! from the overlying layer |
---|
[5111] | 1507 | DO i = 1, klon |
---|
| 1508 | IF (ziflprev(i) /= 0.0) THEN |
---|
| 1509 | radocondi(i, k) = zoliq(i) * zfice(i) + zqpreci(i) + ziflprev(i) / zrho(i, k + 1) / velo(i, k + 1) |
---|
| 1510 | ELSE |
---|
| 1511 | radocondi(i, k) = zoliq(i) * zfice(i) + zqpreci(i) |
---|
| 1512 | ENDIF |
---|
| 1513 | radocond(i, k) = radocondl(i, k) + radocondi(i, k) |
---|
[4114] | 1514 | ENDDO |
---|
[5111] | 1515 | ENDIF |
---|
[4114] | 1516 | |
---|
[5111] | 1517 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
---|
| 1518 | DO i = 1, klon |
---|
| 1519 | IF (radocond(i, k) > 0.) THEN |
---|
| 1520 | radicefrac(i, k) = MIN(MAX(radocondi(i, k) / radocond(i, k), 0.), 1.) |
---|
[4114] | 1521 | ENDIF |
---|
[5111] | 1522 | ENDDO |
---|
[4114] | 1523 | |
---|
[5111] | 1524 | ! ---------------------------------------------------------------- |
---|
| 1525 | ! P4> Wet scavenging |
---|
| 1526 | ! ---------------------------------------------------------------- |
---|
[3999] | 1527 | |
---|
[5111] | 1528 | !Scavenging through nucleation in the layer |
---|
[3999] | 1529 | |
---|
[5111] | 1530 | DO i = 1, klon |
---|
| 1531 | |
---|
| 1532 | IF(zcond(i)>zoliq(i) + 1.e-10) THEN |
---|
| 1533 | beta(i, k) = (zcond(i) - zoliq(i)) / zcond(i) / dtime |
---|
[3999] | 1534 | ELSE |
---|
[5111] | 1535 | beta(i, k) = 0. |
---|
[3999] | 1536 | ENDIF |
---|
| 1537 | |
---|
[5111] | 1538 | zprec_cond(i) = MAX(zcond(i) - zoliq(i), 0.0) * (paprs(i, k) - paprs(i, k + 1)) / RG |
---|
[3999] | 1539 | |
---|
[5111] | 1540 | IF (rneb(i, k)>0.0.AND.zprec_cond(i)>0.) THEN |
---|
[3999] | 1541 | |
---|
[5111] | 1542 | IF (temp(i, k) >= t_glace_min) THEN |
---|
| 1543 | zalpha_tr = a_tr_sca(3) |
---|
| 1544 | ELSE |
---|
| 1545 | zalpha_tr = a_tr_sca(4) |
---|
| 1546 | ENDIF |
---|
[3999] | 1547 | |
---|
[5111] | 1548 | zfrac_lessi = 1. - EXP(zalpha_tr * zprec_cond(i) / zneb(i)) |
---|
| 1549 | frac_nucl(i, k) = 1. - zneb(i) * zfrac_lessi |
---|
[4226] | 1550 | |
---|
[5111] | 1551 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
| 1552 | zfrac_lessi = 1. - EXP(-zprec_cond(i) / zneb(i)) |
---|
[3999] | 1553 | |
---|
| 1554 | ENDIF |
---|
| 1555 | |
---|
[5111] | 1556 | ENDDO |
---|
[4226] | 1557 | |
---|
[5111] | 1558 | ! Scavenging through impaction in the underlying layer |
---|
[3999] | 1559 | |
---|
[5111] | 1560 | DO kk = k - 1, 1, -1 |
---|
[3999] | 1561 | |
---|
| 1562 | DO i = 1, klon |
---|
| 1563 | |
---|
[5111] | 1564 | IF (rneb(i, k)>0.0.AND.zprec_cond(i)>0.) THEN |
---|
[3999] | 1565 | |
---|
[5111] | 1566 | IF (temp(i, kk) >= t_glace_min) THEN |
---|
| 1567 | zalpha_tr = a_tr_sca(1) |
---|
| 1568 | ELSE |
---|
| 1569 | zalpha_tr = a_tr_sca(2) |
---|
| 1570 | ENDIF |
---|
[3999] | 1571 | |
---|
[5111] | 1572 | zfrac_lessi = 1. - EXP(zalpha_tr * zprec_cond(i) / zneb(i)) |
---|
| 1573 | frac_impa(i, kk) = 1. - zneb(i) * zfrac_lessi |
---|
[3999] | 1574 | |
---|
[5224] | 1575 | END IF |
---|
[3999] | 1576 | |
---|
[5224] | 1577 | END DO |
---|
[3999] | 1578 | |
---|
[5224] | 1579 | END DO |
---|
[4226] | 1580 | |
---|
[5111] | 1581 | ! Outputs: |
---|
| 1582 | !------------------------------- |
---|
| 1583 | ! Precipitation fluxes at layer interfaces |
---|
| 1584 | ! + precipitation fractions + |
---|
| 1585 | ! temperature and water species tendencies |
---|
| 1586 | DO i = 1, klon |
---|
| 1587 | psfl(i, k) = zifl(i) |
---|
| 1588 | prfl(i, k) = zrfl(i) |
---|
| 1589 | pfraclr(i, k) = znebprecipclr(i) |
---|
| 1590 | pfracld(i, k) = znebprecipcld(i) |
---|
| 1591 | d_ql(i, k) = (1 - zfice(i)) * zoliq(i) |
---|
| 1592 | d_qi(i, k) = zfice(i) * zoliq(i) |
---|
| 1593 | d_q(i, k) = zq(i) - qt(i, k) |
---|
[4803] | 1594 | ! c_iso: same for isotopes |
---|
[5111] | 1595 | d_t(i, k) = zt(i) - temp(i, k) |
---|
[5224] | 1596 | END DO |
---|
[5111] | 1597 | |
---|
[5224] | 1598 | END DO |
---|
[4803] | 1599 | |
---|
| 1600 | |
---|
[5111] | 1601 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
| 1602 | DO i = 1, klon |
---|
[3999] | 1603 | snow(i) = zifl(i) |
---|
| 1604 | rain(i) = zrfl(i) |
---|
[4392] | 1605 | ! c_iso final output |
---|
[5111] | 1606 | ENDDO |
---|
[3999] | 1607 | |
---|
[5111] | 1608 | IF (ncoreczq>0) THEN |
---|
| 1609 | WRITE(lunout, *)'WARNING : ZQ in LSCP ', ncoreczq, ' val < 1.e-15.' |
---|
| 1610 | ENDIF |
---|
[3999] | 1611 | |
---|
[5111] | 1612 | END SUBROUTINE lscp |
---|
| 1613 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4654] | 1614 | |
---|
[4664] | 1615 | END MODULE lmdz_lscp |
---|