1 | ! $Id: lmdz_cv30.f90 5159 2024-08-02 19:58:25Z abarral $ |
---|
2 | |
---|
3 | MODULE lmdz_cv30 |
---|
4 | !------------------------------------------------------------ |
---|
5 | ! Parameters for convectL, iflag_con=30: |
---|
6 | ! (includes - microphysical parameters, |
---|
7 | ! - parameters that control the rate of approach |
---|
8 | ! to quasi-equilibrium) |
---|
9 | ! - noff & minorig (previously in input of convect1) |
---|
10 | !------------------------------------------------------------ |
---|
11 | |
---|
12 | IMPLICIT NONE; PRIVATE |
---|
13 | PUBLIC sigd, spfac, pbcrit, ptcrit, omtrain, dtovsh, dpbase, dttrig, dtcrit, & |
---|
14 | tau, beta, alpha, delta, betad, noff, minorig, nl, nlp, nlm, & |
---|
15 | cv30_param, cv30_prelim, cv30_feed, cv30_undilute1, cv30_trigger, & |
---|
16 | cv30_compress, cv30_undilute2, cv30_closure, cv30_mixing, cv30_unsat, & |
---|
17 | cv30_yield, cv30_tracer, cv30_uncompress, cv30_epmax_fn_cape |
---|
18 | |
---|
19 | INTEGER noff, minorig, nl, nlp, nlm |
---|
20 | REAL sigd, spfac |
---|
21 | REAL pbcrit, ptcrit |
---|
22 | REAL omtrain |
---|
23 | REAL dtovsh, dpbase, dttrig |
---|
24 | REAL dtcrit, tau, beta, alpha |
---|
25 | REAL delta |
---|
26 | REAL betad |
---|
27 | |
---|
28 | !$OMP THREADPRIVATE(sigd, spfac, pbcrit, ptcrit, omtrain, dtovsh, dpbase, dttrig, dtcrit, & |
---|
29 | !$OMP tau, beta, alpha, delta, betad, noff, minorig, nl, nlp, nlm) |
---|
30 | CONTAINS |
---|
31 | |
---|
32 | SUBROUTINE cv30_param(nd, delt) |
---|
33 | USE lmdz_conema3 |
---|
34 | |
---|
35 | IMPLICIT NONE |
---|
36 | |
---|
37 | ! ------------------------------------------------------------ |
---|
38 | ! Set parameters for convectL for iflag_con = 3 |
---|
39 | ! ------------------------------------------------------------ |
---|
40 | |
---|
41 | |
---|
42 | ! *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
43 | ! *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
44 | ! *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
45 | ! *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
46 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
47 | ! *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
48 | ! *** OF CLOUD *** |
---|
49 | |
---|
50 | ! [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
51 | ! *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
52 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
53 | ! *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
54 | ! *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
55 | |
---|
56 | ! *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
57 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
58 | ! *** IT MUST BE LESS THAN 0 *** |
---|
59 | |
---|
60 | INTEGER nd |
---|
61 | REAL delt ! timestep (seconds) |
---|
62 | |
---|
63 | ! noff: integer limit for convection (nd-noff) |
---|
64 | ! minorig: First level of convection |
---|
65 | |
---|
66 | ! -- limit levels for convection: |
---|
67 | |
---|
68 | noff = 1 |
---|
69 | minorig = 1 |
---|
70 | nl = nd - noff |
---|
71 | nlp = nl + 1 |
---|
72 | nlm = nl - 1 |
---|
73 | |
---|
74 | ! -- "microphysical" parameters: |
---|
75 | |
---|
76 | sigd = 0.01 |
---|
77 | spfac = 0.15 |
---|
78 | pbcrit = 150.0 |
---|
79 | ptcrit = 500.0 |
---|
80 | ! IM cf. FH epmax = 0.993 |
---|
81 | |
---|
82 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
83 | |
---|
84 | ! -- misc: |
---|
85 | |
---|
86 | dtovsh = -0.2 ! dT for overshoot |
---|
87 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
88 | dttrig = 5. ! (loose) condition for triggering |
---|
89 | |
---|
90 | ! -- rate of approach to quasi-equilibrium: |
---|
91 | |
---|
92 | dtcrit = -2.0 |
---|
93 | tau = 8000. |
---|
94 | beta = 1.0 - delt / tau |
---|
95 | alpha = 1.5E-3 * delt / tau |
---|
96 | ! increase alpha to compensate W decrease: |
---|
97 | alpha = alpha * 1.5 |
---|
98 | |
---|
99 | ! -- interface cloud parameterization: |
---|
100 | |
---|
101 | delta = 0.01 ! cld |
---|
102 | |
---|
103 | ! -- interface with boundary-layer (gust factor): (sb) |
---|
104 | |
---|
105 | betad = 10.0 ! original value (from convect 4.3) |
---|
106 | |
---|
107 | END SUBROUTINE cv30_param |
---|
108 | |
---|
109 | SUBROUTINE cv30_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm, & |
---|
110 | th) |
---|
111 | USE lmdz_cvthermo |
---|
112 | |
---|
113 | IMPLICIT NONE |
---|
114 | |
---|
115 | ! ===================================================================== |
---|
116 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
117 | ! "ori": from convect4.3 (vectorized) |
---|
118 | ! "convect3": to be exactly consistent with convect3 |
---|
119 | ! ===================================================================== |
---|
120 | |
---|
121 | ! inputs: |
---|
122 | INTEGER len, nd, ndp1 |
---|
123 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
124 | |
---|
125 | ! outputs: |
---|
126 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
127 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
128 | REAL th(len, nd) |
---|
129 | |
---|
130 | ! local variables: |
---|
131 | INTEGER k, i |
---|
132 | REAL rdcp |
---|
133 | REAL tvx, tvy ! convect3 |
---|
134 | REAL cpx(len, nd) |
---|
135 | |
---|
136 | ! ori do 110 k=1,nlp |
---|
137 | DO k = 1, nl ! convect3 |
---|
138 | DO i = 1, len |
---|
139 | ! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
140 | lv(i, k) = lv0 - clmcpv * (t(i, k) - 273.15) |
---|
141 | cpn(i, k) = cpd * (1.0 - q(i, k)) + cpv * q(i, k) |
---|
142 | cpx(i, k) = cpd * (1.0 - q(i, k)) + cl * q(i, k) |
---|
143 | ! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
144 | tv(i, k) = t(i, k) * (1.0 + q(i, k) / eps - q(i, k)) |
---|
145 | rdcp = (rrd * (1. - q(i, k)) + q(i, k) * rrv) / cpn(i, k) |
---|
146 | th(i, k) = t(i, k) * (1000.0 / p(i, k))**rdcp |
---|
147 | END DO |
---|
148 | END DO |
---|
149 | |
---|
150 | ! gz = phi at the full levels (same as p). |
---|
151 | |
---|
152 | DO i = 1, len |
---|
153 | gz(i, 1) = 0.0 |
---|
154 | END DO |
---|
155 | ! ori do 140 k=2,nlp |
---|
156 | DO k = 2, nl ! convect3 |
---|
157 | DO i = 1, len |
---|
158 | tvx = t(i, k) * (1. + q(i, k) / eps - q(i, k)) !convect3 |
---|
159 | tvy = t(i, k - 1) * (1. + q(i, k - 1) / eps - q(i, k - 1)) !convect3 |
---|
160 | gz(i, k) = gz(i, k - 1) + 0.5 * rrd * (tvx + tvy) & !convect3 |
---|
161 | * (p(i, k - 1) - p(i, k)) / ph(i, k) !convect3 |
---|
162 | |
---|
163 | ! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
164 | ! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
165 | END DO |
---|
166 | END DO |
---|
167 | |
---|
168 | ! h = phi + cpT (dry static energy). |
---|
169 | ! hm = phi + cp(T-Tbase)+Lq |
---|
170 | |
---|
171 | ! ori do 170 k=1,nlp |
---|
172 | DO k = 1, nl ! convect3 |
---|
173 | DO i = 1, len |
---|
174 | h(i, k) = gz(i, k) + cpn(i, k) * t(i, k) |
---|
175 | hm(i, k) = gz(i, k) + cpx(i, k) * (t(i, k) - t(i, 1)) + lv(i, k) * q(i, k) |
---|
176 | END DO |
---|
177 | END DO |
---|
178 | |
---|
179 | END SUBROUTINE cv30_prelim |
---|
180 | |
---|
181 | SUBROUTINE cv30_feed(len, nd, t, q, qs, p, ph, hm, gz, nk, icb, icbmax, & |
---|
182 | iflag, tnk, qnk, gznk, plcl) |
---|
183 | |
---|
184 | IMPLICIT NONE |
---|
185 | |
---|
186 | ! ================================================================ |
---|
187 | ! Purpose: CONVECTIVE FEED |
---|
188 | |
---|
189 | ! Main differences with cv_feed: |
---|
190 | ! - ph added in input |
---|
191 | ! - here, nk(i)=minorig |
---|
192 | ! - icb defined differently (plcl compared with ph instead of p) |
---|
193 | |
---|
194 | ! Main differences with convect3: |
---|
195 | ! - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
196 | ! - values iflag different (but tests identical) |
---|
197 | ! - A,B explicitely defined (!...) |
---|
198 | ! ================================================================ |
---|
199 | |
---|
200 | ! inputs: |
---|
201 | INTEGER len, nd |
---|
202 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
203 | REAL hm(len, nd), gz(len, nd) |
---|
204 | REAL ph(len, nd + 1) |
---|
205 | |
---|
206 | ! outputs: |
---|
207 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
208 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
209 | |
---|
210 | ! local variables: |
---|
211 | INTEGER i, k |
---|
212 | INTEGER ihmin(len) |
---|
213 | REAL work(len) |
---|
214 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
215 | REAL a, b ! convect3 |
---|
216 | ! ym |
---|
217 | plcl = 0.0 |
---|
218 | ! @ !------------------------------------------------------------------- |
---|
219 | ! @ ! --- Find level of minimum moist static energy |
---|
220 | ! @ ! --- If level of minimum moist static energy coincides with |
---|
221 | ! @ ! --- or is lower than minimum allowable parcel origin level, |
---|
222 | ! @ ! --- set iflag to 6. |
---|
223 | ! @ !------------------------------------------------------------------- |
---|
224 | ! @ |
---|
225 | ! @ do 180 i=1,len |
---|
226 | ! @ work(i)=1.0e12 |
---|
227 | ! @ ihmin(i)=nl |
---|
228 | ! @ 180 continue |
---|
229 | ! @ do 200 k=2,nlp |
---|
230 | ! @ do 190 i=1,len |
---|
231 | ! @ if((hm(i,k).lt.work(i)).AND. |
---|
232 | ! @ & (hm(i,k).lt.hm(i,k-1)))THEN |
---|
233 | ! @ work(i)=hm(i,k) |
---|
234 | ! @ ihmin(i)=k |
---|
235 | ! @ endif |
---|
236 | ! @ 190 continue |
---|
237 | ! @ 200 continue |
---|
238 | ! @ do 210 i=1,len |
---|
239 | ! @ ihmin(i)=min(ihmin(i),nlm) |
---|
240 | ! @ IF(ihmin(i).le.minorig)THEN |
---|
241 | ! @ iflag(i)=6 |
---|
242 | ! @ endif |
---|
243 | ! @ 210 continue |
---|
244 | ! @ c |
---|
245 | ! @ !------------------------------------------------------------------- |
---|
246 | ! @ ! --- Find that model level below the level of minimum moist static |
---|
247 | ! @ ! --- energy that has the maximum value of moist static energy |
---|
248 | ! @ !------------------------------------------------------------------- |
---|
249 | ! @ |
---|
250 | ! @ do 220 i=1,len |
---|
251 | ! @ work(i)=hm(i,minorig) |
---|
252 | ! @ nk(i)=minorig |
---|
253 | ! @ 220 continue |
---|
254 | ! @ do 240 k=minorig+1,nl |
---|
255 | ! @ do 230 i=1,len |
---|
256 | ! @ if((hm(i,k).gt.work(i)).AND.(k.le.ihmin(i)))THEN |
---|
257 | ! @ work(i)=hm(i,k) |
---|
258 | ! @ nk(i)=k |
---|
259 | ! @ endif |
---|
260 | ! @ 230 continue |
---|
261 | ! @ 240 continue |
---|
262 | |
---|
263 | ! ------------------------------------------------------------------- |
---|
264 | ! --- Origin level of ascending parcels for convect3: |
---|
265 | ! ------------------------------------------------------------------- |
---|
266 | |
---|
267 | DO i = 1, len |
---|
268 | nk(i) = minorig |
---|
269 | END DO |
---|
270 | |
---|
271 | ! ------------------------------------------------------------------- |
---|
272 | ! --- Check whether parcel level temperature and specific humidity |
---|
273 | ! --- are reasonable |
---|
274 | ! ------------------------------------------------------------------- |
---|
275 | DO i = 1, len |
---|
276 | IF (((t(i, nk(i))<250.0) .OR. (q(i, nk(i))<=0.0)) & ! @ & .OR.( |
---|
277 | ! p(i,ihmin(i)).lt.400.0 |
---|
278 | ! ) ) |
---|
279 | .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
280 | END DO |
---|
281 | ! ------------------------------------------------------------------- |
---|
282 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
283 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
284 | ! ------------------------------------------------------------------- |
---|
285 | |
---|
286 | a = 1669.0 ! convect3 |
---|
287 | b = 122.0 ! convect3 |
---|
288 | |
---|
289 | DO i = 1, len |
---|
290 | |
---|
291 | IF (iflag(i)/=7) THEN ! modif sb Jun7th 2002 |
---|
292 | |
---|
293 | tnk(i) = t(i, nk(i)) |
---|
294 | qnk(i) = q(i, nk(i)) |
---|
295 | gznk(i) = gz(i, nk(i)) |
---|
296 | pnk(i) = p(i, nk(i)) |
---|
297 | qsnk(i) = qs(i, nk(i)) |
---|
298 | |
---|
299 | rh(i) = qnk(i) / qsnk(i) |
---|
300 | ! ori rh(i)=min(1.0,rh(i)) ! removed for convect3 |
---|
301 | ! ori chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
302 | chi(i) = tnk(i) / (a - b * rh(i) - tnk(i)) ! convect3 |
---|
303 | plcl(i) = pnk(i) * (rh(i)**chi(i)) |
---|
304 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag & |
---|
305 | (i) = 8 |
---|
306 | |
---|
307 | END IF ! iflag=7 |
---|
308 | |
---|
309 | END DO |
---|
310 | |
---|
311 | ! ------------------------------------------------------------------- |
---|
312 | ! --- Calculate first level above lcl (=icb) |
---|
313 | ! ------------------------------------------------------------------- |
---|
314 | |
---|
315 | ! @ do 270 i=1,len |
---|
316 | ! @ icb(i)=nlm |
---|
317 | ! @ 270 continue |
---|
318 | ! @c |
---|
319 | ! @ do 290 k=minorig,nl |
---|
320 | ! @ do 280 i=1,len |
---|
321 | ! @ if((k.ge.(nk(i)+1)).AND.(p(i,k).lt.plcl(i))) |
---|
322 | ! @ & icb(i)=min(icb(i),k) |
---|
323 | ! @ 280 continue |
---|
324 | ! @ 290 continue |
---|
325 | ! @c |
---|
326 | ! @ do 300 i=1,len |
---|
327 | ! @ if((icb(i).ge.nlm).AND.(iflag(i).EQ.0))iflag(i)=9 |
---|
328 | ! @ 300 continue |
---|
329 | |
---|
330 | DO i = 1, len |
---|
331 | icb(i) = nlm |
---|
332 | END DO |
---|
333 | |
---|
334 | ! la modification consiste a comparer plcl a ph et non a p: |
---|
335 | ! icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
336 | ! @ do 290 k=minorig,nl |
---|
337 | DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
---|
338 | DO i = 1, len |
---|
339 | IF (ph(i, k)<plcl(i)) icb(i) = min(icb(i), k) |
---|
340 | END DO |
---|
341 | END DO |
---|
342 | |
---|
343 | DO i = 1, len |
---|
344 | ! @ if((icb(i).ge.nlm).AND.(iflag(i).EQ.0))iflag(i)=9 |
---|
345 | IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
346 | END DO |
---|
347 | |
---|
348 | DO i = 1, len |
---|
349 | icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
---|
350 | END DO |
---|
351 | |
---|
352 | ! Compute icbmax. |
---|
353 | |
---|
354 | icbmax = 2 |
---|
355 | DO i = 1, len |
---|
356 | ! icbmax=max(icbmax,icb(i)) |
---|
357 | IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
---|
358 | END DO |
---|
359 | |
---|
360 | END SUBROUTINE cv30_feed |
---|
361 | |
---|
362 | SUBROUTINE cv30_undilute1(len, nd, t, q, qs, gz, plcl, p, nk, icb, tp, tvp, & |
---|
363 | clw, icbs) |
---|
364 | USE lmdz_cvthermo |
---|
365 | |
---|
366 | IMPLICIT NONE |
---|
367 | |
---|
368 | ! ---------------------------------------------------------------- |
---|
369 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
370 | |
---|
371 | ! Differences with convect4: |
---|
372 | ! - specify plcl in input |
---|
373 | ! - icbs is the first level above LCL (may differ from icb) |
---|
374 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
375 | ! - many minor differences in the iterations |
---|
376 | ! - tvp is computed in only one time |
---|
377 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
378 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
379 | ! ---------------------------------------------------------------- |
---|
380 | |
---|
381 | |
---|
382 | |
---|
383 | ! inputs: |
---|
384 | INTEGER len, nd |
---|
385 | INTEGER nk(len), icb(len) |
---|
386 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
387 | REAL p(len, nd) |
---|
388 | REAL plcl(len) ! convect3 |
---|
389 | |
---|
390 | ! outputs: |
---|
391 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
392 | |
---|
393 | ! local variables: |
---|
394 | INTEGER i, k |
---|
395 | INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
396 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
397 | REAL ah0(len), cpp(len) |
---|
398 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
399 | REAL qsicb(len) ! convect3 |
---|
400 | REAL cpinv(len) ! convect3 |
---|
401 | |
---|
402 | ! ------------------------------------------------------------------- |
---|
403 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
404 | ! --- the actual temperature, and the adiabatic |
---|
405 | ! --- liquid water content. The procedure is to solve the equation. |
---|
406 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
407 | ! ------------------------------------------------------------------- |
---|
408 | |
---|
409 | DO i = 1, len |
---|
410 | tnk(i) = t(i, nk(i)) |
---|
411 | qnk(i) = q(i, nk(i)) |
---|
412 | gznk(i) = gz(i, nk(i)) |
---|
413 | ! ori ticb(i)=t(i,icb(i)) |
---|
414 | ! ori gzicb(i)=gz(i,icb(i)) |
---|
415 | END DO |
---|
416 | |
---|
417 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
418 | |
---|
419 | DO i = 1, len |
---|
420 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) + qnk(i) * (lv0 - clmcpv * (tnk(i) - & |
---|
421 | 273.15)) + gznk(i) |
---|
422 | cpp(i) = cpd * (1. - qnk(i)) + qnk(i) * cpv |
---|
423 | cpinv(i) = 1. / cpp(i) |
---|
424 | END DO |
---|
425 | |
---|
426 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
427 | |
---|
428 | DO i = 1, len !convect3 |
---|
429 | icb1(i) = min(max(icb(i), 2), nl) |
---|
430 | ! if icb is below LCL, start loop at ICB+1: |
---|
431 | ! (icbs est le premier niveau au-dessus du LCL) |
---|
432 | icbs(i) = icb1(i) !convect3 |
---|
433 | IF (plcl(i)<p(i, icb1(i))) THEN |
---|
434 | icbs(i) = min(icbs(i) + 1, nl) !convect3 |
---|
435 | END IF |
---|
436 | END DO !convect3 |
---|
437 | |
---|
438 | DO i = 1, len !convect3 |
---|
439 | ticb(i) = t(i, icbs(i)) !convect3 |
---|
440 | gzicb(i) = gz(i, icbs(i)) !convect3 |
---|
441 | qsicb(i) = qs(i, icbs(i)) !convect3 |
---|
442 | END DO !convect3 |
---|
443 | |
---|
444 | |
---|
445 | ! Re-compute icbsmax (icbsmax2): !convect3 |
---|
446 | !convect3 |
---|
447 | icbsmax2 = 2 !convect3 |
---|
448 | DO i = 1, len !convect3 |
---|
449 | icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
---|
450 | END DO !convect3 |
---|
451 | |
---|
452 | ! initialization outputs: |
---|
453 | |
---|
454 | DO k = 1, icbsmax2 ! convect3 |
---|
455 | DO i = 1, len ! convect3 |
---|
456 | tp(i, k) = 0.0 ! convect3 |
---|
457 | tvp(i, k) = 0.0 ! convect3 |
---|
458 | clw(i, k) = 0.0 ! convect3 |
---|
459 | END DO ! convect3 |
---|
460 | END DO ! convect3 |
---|
461 | |
---|
462 | ! tp and tvp below cloud base: |
---|
463 | |
---|
464 | DO k = minorig, icbsmax2 - 1 |
---|
465 | DO i = 1, len |
---|
466 | tp(i, k) = tnk(i) - (gz(i, k) - gznk(i)) * cpinv(i) |
---|
467 | tvp(i, k) = tp(i, k) * (1. + qnk(i) / eps - qnk(i)) !whole thing (convect3) |
---|
468 | END DO |
---|
469 | END DO |
---|
470 | |
---|
471 | ! *** Find lifted parcel quantities above cloud base *** |
---|
472 | |
---|
473 | DO i = 1, len |
---|
474 | tg = ticb(i) |
---|
475 | ! ori qg=qs(i,icb(i)) |
---|
476 | qg = qsicb(i) ! convect3 |
---|
477 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
478 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
479 | |
---|
480 | ! First iteration. |
---|
481 | |
---|
482 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
483 | s = cpd * (1. - qnk(i)) + cl * qnk(i) & ! convect3 |
---|
484 | + alv * alv * qg / (rrv * ticb(i) * ticb(i)) ! convect3 |
---|
485 | s = 1. / s |
---|
486 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
487 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
488 | tg = tg + s * (ah0(i) - ahg) |
---|
489 | ! ori tg=max(tg,35.0) |
---|
490 | ! debug tc=tg-t0 |
---|
491 | tc = tg - 273.15 |
---|
492 | denom = 243.5 + tc |
---|
493 | denom = max(denom, 1.0) ! convect3 |
---|
494 | ! ori IF(tc.ge.0.0)THEN |
---|
495 | es = 6.112 * exp(17.67 * tc / denom) |
---|
496 | ! ori else |
---|
497 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
498 | ! ori endif |
---|
499 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
500 | qg = eps * es / (p(i, icbs(i)) - es * (1. - eps)) |
---|
501 | |
---|
502 | ! Second iteration. |
---|
503 | |
---|
504 | |
---|
505 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
506 | ! ori s=1./s |
---|
507 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
508 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
509 | tg = tg + s * (ah0(i) - ahg) |
---|
510 | ! ori tg=max(tg,35.0) |
---|
511 | ! debug tc=tg-t0 |
---|
512 | tc = tg - 273.15 |
---|
513 | denom = 243.5 + tc |
---|
514 | denom = max(denom, 1.0) ! convect3 |
---|
515 | ! ori IF(tc.ge.0.0)THEN |
---|
516 | es = 6.112 * exp(17.67 * tc / denom) |
---|
517 | ! ori else |
---|
518 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
519 | ! ori end if |
---|
520 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
521 | qg = eps * es / (p(i, icbs(i)) - es * (1. - eps)) |
---|
522 | |
---|
523 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
524 | |
---|
525 | ! ori c approximation here: |
---|
526 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
527 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
528 | |
---|
529 | ! convect3: no approximation: |
---|
530 | tp(i, icbs(i)) = (ah0(i) - gz(i, icbs(i)) - alv * qg) / (cpd + (cl - cpd) * qnk(i)) |
---|
531 | |
---|
532 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
533 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
534 | clw(i, icbs(i)) = qnk(i) - qg |
---|
535 | clw(i, icbs(i)) = max(0.0, clw(i, icbs(i))) |
---|
536 | |
---|
537 | rg = qg / (1. - qnk(i)) |
---|
538 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
539 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
540 | tvp(i, icbs(i)) = tp(i, icbs(i)) * (1. + qg / eps - qnk(i)) !whole thing |
---|
541 | |
---|
542 | END DO |
---|
543 | |
---|
544 | ! ori do 380 k=minorig,icbsmax2 |
---|
545 | ! ori do 370 i=1,len |
---|
546 | ! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
547 | ! ori 370 continue |
---|
548 | ! ori 380 continue |
---|
549 | |
---|
550 | |
---|
551 | ! -- The following is only for convect3: |
---|
552 | |
---|
553 | ! * icbs is the first level above the LCL: |
---|
554 | ! if plcl<p(icb), then icbs=icb+1 |
---|
555 | ! if plcl>p(icb), then icbs=icb |
---|
556 | |
---|
557 | ! * the routine above computes tvp from minorig to icbs (included). |
---|
558 | |
---|
559 | ! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
560 | ! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
561 | |
---|
562 | ! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
563 | ! (tvp at other levels will be computed in cv3_undilute2.F) |
---|
564 | |
---|
565 | DO i = 1, len |
---|
566 | ticb(i) = t(i, icb(i) + 1) |
---|
567 | gzicb(i) = gz(i, icb(i) + 1) |
---|
568 | qsicb(i) = qs(i, icb(i) + 1) |
---|
569 | END DO |
---|
570 | |
---|
571 | DO i = 1, len |
---|
572 | tg = ticb(i) |
---|
573 | qg = qsicb(i) ! convect3 |
---|
574 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
575 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
576 | |
---|
577 | ! First iteration. |
---|
578 | |
---|
579 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
580 | s = cpd * (1. - qnk(i)) + cl * qnk(i) & ! convect3 |
---|
581 | + alv * alv * qg / (rrv * ticb(i) * ticb(i)) ! convect3 |
---|
582 | s = 1. / s |
---|
583 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
584 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
585 | tg = tg + s * (ah0(i) - ahg) |
---|
586 | ! ori tg=max(tg,35.0) |
---|
587 | ! debug tc=tg-t0 |
---|
588 | tc = tg - 273.15 |
---|
589 | denom = 243.5 + tc |
---|
590 | denom = max(denom, 1.0) ! convect3 |
---|
591 | ! ori IF(tc.ge.0.0)THEN |
---|
592 | es = 6.112 * exp(17.67 * tc / denom) |
---|
593 | ! ori else |
---|
594 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
595 | ! ori endif |
---|
596 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
597 | qg = eps * es / (p(i, icb(i) + 1) - es * (1. - eps)) |
---|
598 | |
---|
599 | ! Second iteration. |
---|
600 | |
---|
601 | |
---|
602 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
603 | ! ori s=1./s |
---|
604 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
605 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
606 | tg = tg + s * (ah0(i) - ahg) |
---|
607 | ! ori tg=max(tg,35.0) |
---|
608 | ! debug tc=tg-t0 |
---|
609 | tc = tg - 273.15 |
---|
610 | denom = 243.5 + tc |
---|
611 | denom = max(denom, 1.0) ! convect3 |
---|
612 | ! ori IF(tc.ge.0.0)THEN |
---|
613 | es = 6.112 * exp(17.67 * tc / denom) |
---|
614 | ! ori else |
---|
615 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
616 | ! ori end if |
---|
617 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
618 | qg = eps * es / (p(i, icb(i) + 1) - es * (1. - eps)) |
---|
619 | |
---|
620 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
621 | |
---|
622 | ! ori c approximation here: |
---|
623 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
624 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
625 | |
---|
626 | ! convect3: no approximation: |
---|
627 | tp(i, icb(i) + 1) = (ah0(i) - gz(i, icb(i) + 1) - alv * qg) / (cpd + (cl - cpd) * qnk(i)) |
---|
628 | |
---|
629 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
630 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
631 | clw(i, icb(i) + 1) = qnk(i) - qg |
---|
632 | clw(i, icb(i) + 1) = max(0.0, clw(i, icb(i) + 1)) |
---|
633 | |
---|
634 | rg = qg / (1. - qnk(i)) |
---|
635 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
636 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
637 | tvp(i, icb(i) + 1) = tp(i, icb(i) + 1) * (1. + qg / eps - qnk(i)) !whole thing |
---|
638 | |
---|
639 | END DO |
---|
640 | |
---|
641 | END SUBROUTINE cv30_undilute1 |
---|
642 | |
---|
643 | SUBROUTINE cv30_trigger(len, nd, icb, plcl, p, th, tv, tvp, pbase, buoybase, & |
---|
644 | iflag, sig, w0) |
---|
645 | IMPLICIT NONE |
---|
646 | |
---|
647 | ! ------------------------------------------------------------------- |
---|
648 | ! --- TRIGGERING |
---|
649 | |
---|
650 | ! - computes the cloud base |
---|
651 | ! - triggering (crude in this version) |
---|
652 | ! - relaxation of sig and w0 when no convection |
---|
653 | |
---|
654 | ! Caution1: if no convection, we set iflag=4 |
---|
655 | ! (it used to be 0 in convect3) |
---|
656 | |
---|
657 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
658 | ! through icb only! |
---|
659 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
660 | ! ------------------------------------------------------------------- |
---|
661 | |
---|
662 | |
---|
663 | |
---|
664 | ! input: |
---|
665 | INTEGER len, nd |
---|
666 | INTEGER icb(len) |
---|
667 | REAL plcl(len), p(len, nd) |
---|
668 | REAL th(len, nd), tv(len, nd), tvp(len, nd) |
---|
669 | |
---|
670 | ! output: |
---|
671 | REAL pbase(len), buoybase(len) |
---|
672 | |
---|
673 | ! input AND output: |
---|
674 | INTEGER iflag(len) |
---|
675 | REAL sig(len, nd), w0(len, nd) |
---|
676 | |
---|
677 | ! local variables: |
---|
678 | INTEGER i, k |
---|
679 | REAL tvpbase, tvbase, tdif, ath, ath1 |
---|
680 | |
---|
681 | |
---|
682 | ! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
683 | |
---|
684 | DO i = 1, len |
---|
685 | pbase(i) = plcl(i) + dpbase |
---|
686 | tvpbase = tvp(i, icb(i)) * (pbase(i) - p(i, icb(i) + 1)) / & |
---|
687 | (p(i, icb(i)) - p(i, icb(i) + 1)) + tvp(i, icb(i) + 1) * (p(i, icb(i)) - pbase(i)) / (& |
---|
688 | p(i, icb(i)) - p(i, icb(i) + 1)) |
---|
689 | tvbase = tv(i, icb(i)) * (pbase(i) - p(i, icb(i) + 1)) / & |
---|
690 | (p(i, icb(i)) - p(i, icb(i) + 1)) + tv(i, icb(i) + 1) * (p(i, icb(i)) - pbase(i)) / (p & |
---|
691 | (i, icb(i)) - p(i, icb(i) + 1)) |
---|
692 | buoybase(i) = tvpbase - tvbase |
---|
693 | END DO |
---|
694 | |
---|
695 | |
---|
696 | ! *** make sure that column is dry adiabatic between the surface *** |
---|
697 | ! *** and cloud base, and that lifted air is positively buoyant *** |
---|
698 | ! *** at cloud base *** |
---|
699 | ! *** if not, return to calling program after resetting *** |
---|
700 | ! *** sig(i) and w0(i) *** |
---|
701 | |
---|
702 | |
---|
703 | ! oct3 do 200 i=1,len |
---|
704 | ! oct3 |
---|
705 | ! oct3 tdif = buoybase(i) |
---|
706 | ! oct3 ath1 = th(i,1) |
---|
707 | ! oct3 ath = th(i,icb(i)-1) - dttrig |
---|
708 | ! oct3 |
---|
709 | ! oct3 if (tdif.lt.dtcrit .OR. ath.gt.ath1) THEN |
---|
710 | ! oct3 do 60 k=1,nl |
---|
711 | ! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
712 | ! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
713 | ! oct3 w0(i,k) = beta*w0(i,k) |
---|
714 | ! oct3 60 continue |
---|
715 | ! oct3 iflag(i)=4 ! pour version vectorisee |
---|
716 | ! oct3c convect3 iflag(i)=0 |
---|
717 | ! oct3cccc RETURN |
---|
718 | ! oct3 endif |
---|
719 | ! oct3 |
---|
720 | ! oct3200 continue |
---|
721 | |
---|
722 | ! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
723 | |
---|
724 | DO k = 1, nl |
---|
725 | DO i = 1, len |
---|
726 | |
---|
727 | tdif = buoybase(i) |
---|
728 | ath1 = th(i, 1) |
---|
729 | ath = th(i, icb(i) - 1) - dttrig |
---|
730 | |
---|
731 | IF (tdif<dtcrit .OR. ath>ath1) THEN |
---|
732 | sig(i, k) = beta * sig(i, k) - 2. * alpha * tdif * tdif |
---|
733 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
734 | w0(i, k) = beta * w0(i, k) |
---|
735 | iflag(i) = 4 ! pour version vectorisee |
---|
736 | ! convect3 iflag(i)=0 |
---|
737 | END IF |
---|
738 | |
---|
739 | END DO |
---|
740 | END DO |
---|
741 | |
---|
742 | ! fin oct3 -- |
---|
743 | |
---|
744 | END SUBROUTINE cv30_trigger |
---|
745 | |
---|
746 | SUBROUTINE cv30_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, icbs1, & |
---|
747 | plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, & |
---|
748 | th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, & |
---|
749 | iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, & |
---|
750 | v, gz, th, tra, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0) |
---|
751 | USE lmdz_print_control, ONLY: lunout |
---|
752 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
753 | IMPLICIT NONE |
---|
754 | |
---|
755 | |
---|
756 | |
---|
757 | ! inputs: |
---|
758 | INTEGER len, ncum, nd, ntra, nloc |
---|
759 | INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
---|
760 | REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
761 | REAL pbase1(len), buoybase1(len) |
---|
762 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
763 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
764 | REAL p1(len, nd), ph1(len, nd + 1), tv1(len, nd), tp1(len, nd) |
---|
765 | REAL tvp1(len, nd), clw1(len, nd) |
---|
766 | REAL th1(len, nd) |
---|
767 | REAL sig1(len, nd), w01(len, nd) |
---|
768 | REAL tra1(len, nd, ntra) |
---|
769 | |
---|
770 | ! outputs: |
---|
771 | ! en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
772 | INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
---|
773 | REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
774 | REAL pbase(nloc), buoybase(nloc) |
---|
775 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
776 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
777 | REAL p(nloc, nd), ph(nloc, nd + 1), tv(nloc, nd), tp(nloc, nd) |
---|
778 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
779 | REAL th(nloc, nd) |
---|
780 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
781 | REAL tra(nloc, nd, ntra) |
---|
782 | |
---|
783 | ! local variables: |
---|
784 | INTEGER i, k, nn, j |
---|
785 | |
---|
786 | CHARACTER (LEN = 20) :: modname = 'cv30_compress' |
---|
787 | CHARACTER (LEN = 80) :: abort_message |
---|
788 | |
---|
789 | DO k = 1, nl + 1 |
---|
790 | nn = 0 |
---|
791 | DO i = 1, len |
---|
792 | IF (iflag1(i)==0) THEN |
---|
793 | nn = nn + 1 |
---|
794 | sig(nn, k) = sig1(i, k) |
---|
795 | w0(nn, k) = w01(i, k) |
---|
796 | t(nn, k) = t1(i, k) |
---|
797 | q(nn, k) = q1(i, k) |
---|
798 | qs(nn, k) = qs1(i, k) |
---|
799 | u(nn, k) = u1(i, k) |
---|
800 | v(nn, k) = v1(i, k) |
---|
801 | gz(nn, k) = gz1(i, k) |
---|
802 | h(nn, k) = h1(i, k) |
---|
803 | lv(nn, k) = lv1(i, k) |
---|
804 | cpn(nn, k) = cpn1(i, k) |
---|
805 | p(nn, k) = p1(i, k) |
---|
806 | ph(nn, k) = ph1(i, k) |
---|
807 | tv(nn, k) = tv1(i, k) |
---|
808 | tp(nn, k) = tp1(i, k) |
---|
809 | tvp(nn, k) = tvp1(i, k) |
---|
810 | clw(nn, k) = clw1(i, k) |
---|
811 | th(nn, k) = th1(i, k) |
---|
812 | END IF |
---|
813 | END DO |
---|
814 | END DO |
---|
815 | |
---|
816 | ! do 121 j=1,ntra |
---|
817 | ! do 111 k=1,nd |
---|
818 | ! nn=0 |
---|
819 | ! do 101 i=1,len |
---|
820 | ! IF(iflag1(i).EQ.0)THEN |
---|
821 | ! nn=nn+1 |
---|
822 | ! tra(nn,k,j)=tra1(i,k,j) |
---|
823 | ! END IF |
---|
824 | ! 101 continue |
---|
825 | ! 111 continue |
---|
826 | ! 121 continue |
---|
827 | |
---|
828 | IF (nn/=ncum) THEN |
---|
829 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
830 | abort_message = '' |
---|
831 | CALL abort_physic(modname, abort_message, 1) |
---|
832 | END IF |
---|
833 | |
---|
834 | nn = 0 |
---|
835 | DO i = 1, len |
---|
836 | IF (iflag1(i)==0) THEN |
---|
837 | nn = nn + 1 |
---|
838 | pbase(nn) = pbase1(i) |
---|
839 | buoybase(nn) = buoybase1(i) |
---|
840 | plcl(nn) = plcl1(i) |
---|
841 | tnk(nn) = tnk1(i) |
---|
842 | qnk(nn) = qnk1(i) |
---|
843 | gznk(nn) = gznk1(i) |
---|
844 | nk(nn) = nk1(i) |
---|
845 | icb(nn) = icb1(i) |
---|
846 | icbs(nn) = icbs1(i) |
---|
847 | iflag(nn) = iflag1(i) |
---|
848 | END IF |
---|
849 | END DO |
---|
850 | |
---|
851 | END SUBROUTINE cv30_compress |
---|
852 | |
---|
853 | SUBROUTINE cv30_undilute2(nloc, ncum, nd, icb, icbs, nk, tnk, qnk, gznk, t, & |
---|
854 | q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, tvp, clw, hp, & |
---|
855 | ep, sigp, buoy) |
---|
856 | ! epmax_cape: ajout arguments |
---|
857 | USE lmdz_conema3 |
---|
858 | USE lmdz_cvthermo |
---|
859 | |
---|
860 | IMPLICIT NONE |
---|
861 | |
---|
862 | ! --------------------------------------------------------------------- |
---|
863 | ! Purpose: |
---|
864 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
865 | ! & |
---|
866 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
867 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
868 | ! & |
---|
869 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
870 | |
---|
871 | ! Main differences convect3/convect4: |
---|
872 | ! - icbs (input) is the first level above LCL (may differ from icb) |
---|
873 | ! - many minor differences in the iterations |
---|
874 | ! - condensed water not removed from tvp in convect3 |
---|
875 | ! - vertical profile of buoyancy computed here (use of buoybase) |
---|
876 | ! - the determination of inb is different |
---|
877 | ! - no inb1, ONLY inb in output |
---|
878 | ! --------------------------------------------------------------------- |
---|
879 | |
---|
880 | |
---|
881 | |
---|
882 | ! inputs: |
---|
883 | INTEGER ncum, nd, nloc |
---|
884 | INTEGER icb(nloc), icbs(nloc), nk(nloc) |
---|
885 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
886 | REAL p(nloc, nd) |
---|
887 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
888 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
889 | REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
890 | |
---|
891 | ! outputs: |
---|
892 | INTEGER inb(nloc) |
---|
893 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
894 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
895 | REAL buoy(nloc, nd) |
---|
896 | |
---|
897 | ! local variables: |
---|
898 | INTEGER i, k |
---|
899 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
900 | REAL by, defrac, pden |
---|
901 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
902 | LOGICAL lcape(nloc) |
---|
903 | |
---|
904 | ! ===================================================================== |
---|
905 | ! --- SOME INITIALIZATIONS |
---|
906 | ! ===================================================================== |
---|
907 | |
---|
908 | DO k = 1, nl |
---|
909 | DO i = 1, ncum |
---|
910 | ep(i, k) = 0.0 |
---|
911 | sigp(i, k) = spfac |
---|
912 | END DO |
---|
913 | END DO |
---|
914 | |
---|
915 | ! ===================================================================== |
---|
916 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
917 | ! ===================================================================== |
---|
918 | |
---|
919 | ! --- The procedure is to solve the equation. |
---|
920 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
921 | |
---|
922 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
923 | |
---|
924 | DO i = 1, ncum |
---|
925 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) & ! debug & |
---|
926 | ! +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
927 | + qnk(i) * (lv0 - clmcpv * (tnk(i) - 273.15)) + gznk(i) |
---|
928 | END DO |
---|
929 | |
---|
930 | |
---|
931 | ! *** Find lifted parcel quantities above cloud base *** |
---|
932 | |
---|
933 | DO k = minorig + 1, nl |
---|
934 | DO i = 1, ncum |
---|
935 | ! ori IF(k.ge.(icb(i)+1))THEN |
---|
936 | IF (k>=(icbs(i) + 1)) THEN ! convect3 |
---|
937 | tg = t(i, k) |
---|
938 | qg = qs(i, k) |
---|
939 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
940 | alv = lv0 - clmcpv * (t(i, k) - 273.15) |
---|
941 | |
---|
942 | ! First iteration. |
---|
943 | |
---|
944 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
945 | s = cpd * (1. - qnk(i)) + cl * qnk(i) & ! convect3 |
---|
946 | + alv * alv * qg / (rrv * t(i, k) * t(i, k)) ! convect3 |
---|
947 | s = 1. / s |
---|
948 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
949 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gz(i, k) ! convect3 |
---|
950 | tg = tg + s * (ah0(i) - ahg) |
---|
951 | ! ori tg=max(tg,35.0) |
---|
952 | ! debug tc=tg-t0 |
---|
953 | tc = tg - 273.15 |
---|
954 | denom = 243.5 + tc |
---|
955 | denom = max(denom, 1.0) ! convect3 |
---|
956 | ! ori IF(tc.ge.0.0)THEN |
---|
957 | es = 6.112 * exp(17.67 * tc / denom) |
---|
958 | ! ori else |
---|
959 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
960 | ! ori endif |
---|
961 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
962 | |
---|
963 | ! Second iteration. |
---|
964 | |
---|
965 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
966 | ! ori s=1./s |
---|
967 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
968 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gz(i, k) ! convect3 |
---|
969 | tg = tg + s * (ah0(i) - ahg) |
---|
970 | ! ori tg=max(tg,35.0) |
---|
971 | ! debug tc=tg-t0 |
---|
972 | tc = tg - 273.15 |
---|
973 | denom = 243.5 + tc |
---|
974 | denom = max(denom, 1.0) ! convect3 |
---|
975 | ! ori IF(tc.ge.0.0)THEN |
---|
976 | es = 6.112 * exp(17.67 * tc / denom) |
---|
977 | ! ori else |
---|
978 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
979 | ! ori endif |
---|
980 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
981 | |
---|
982 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
983 | alv = lv0 - clmcpv * (t(i, k) - 273.15) |
---|
984 | ! PRINT*,'cpd dans convect2 ',cpd |
---|
985 | ! PRINT*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
986 | ! PRINT*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
987 | |
---|
988 | ! ori c approximation here: |
---|
989 | ! ori |
---|
990 | ! tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
991 | |
---|
992 | ! convect3: no approximation: |
---|
993 | tp(i, k) = (ah0(i) - gz(i, k) - alv * qg) / (cpd + (cl - cpd) * qnk(i)) |
---|
994 | |
---|
995 | clw(i, k) = qnk(i) - qg |
---|
996 | clw(i, k) = max(0.0, clw(i, k)) |
---|
997 | rg = qg / (1. - qnk(i)) |
---|
998 | ! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
999 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
1000 | tvp(i, k) = tp(i, k) * (1. + qg / eps - qnk(i)) ! whole thing |
---|
1001 | END IF |
---|
1002 | END DO |
---|
1003 | END DO |
---|
1004 | |
---|
1005 | ! ===================================================================== |
---|
1006 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
1007 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
1008 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
1009 | ! ===================================================================== |
---|
1010 | |
---|
1011 | ! ori do 320 k=minorig+1,nl |
---|
1012 | DO k = 1, nl ! convect3 |
---|
1013 | DO i = 1, ncum |
---|
1014 | pden = ptcrit - pbcrit |
---|
1015 | ep(i, k) = (plcl(i) - p(i, k) - pbcrit) / pden * epmax |
---|
1016 | ep(i, k) = amax1(ep(i, k), 0.0) |
---|
1017 | ep(i, k) = amin1(ep(i, k), epmax) |
---|
1018 | sigp(i, k) = spfac |
---|
1019 | ! ori IF(k.ge.(nk(i)+1))THEN |
---|
1020 | ! ori tca=tp(i,k)-t0 |
---|
1021 | ! ori IF(tca.ge.0.0)THEN |
---|
1022 | ! ori elacrit=elcrit |
---|
1023 | ! ori else |
---|
1024 | ! ori elacrit=elcrit*(1.0-tca/tlcrit) |
---|
1025 | ! ori endif |
---|
1026 | ! ori elacrit=max(elacrit,0.0) |
---|
1027 | ! ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
1028 | ! ori ep(i,k)=max(ep(i,k),0.0 ) |
---|
1029 | ! ori ep(i,k)=min(ep(i,k),1.0 ) |
---|
1030 | ! ori sigp(i,k)=sigs |
---|
1031 | ! ori endif |
---|
1032 | END DO |
---|
1033 | END DO |
---|
1034 | |
---|
1035 | ! ===================================================================== |
---|
1036 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
1037 | ! --- VIRTUAL TEMPERATURE |
---|
1038 | ! ===================================================================== |
---|
1039 | |
---|
1040 | ! dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
1041 | ! l'eau condensee (~> reversible CAPE) |
---|
1042 | |
---|
1043 | ! ori do 340 k=minorig+1,nl |
---|
1044 | ! ori do 330 i=1,ncum |
---|
1045 | ! ori IF(k.ge.(icb(i)+1))THEN |
---|
1046 | ! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
1047 | ! oric PRINT*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
1048 | ! oric PRINT*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
1049 | ! ori endif |
---|
1050 | ! ori 330 continue |
---|
1051 | ! ori 340 continue |
---|
1052 | |
---|
1053 | ! ori do 350 i=1,ncum |
---|
1054 | ! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
1055 | ! ori 350 continue |
---|
1056 | |
---|
1057 | DO i = 1, ncum ! convect3 |
---|
1058 | tp(i, nlp) = tp(i, nl) ! convect3 |
---|
1059 | END DO ! convect3 |
---|
1060 | |
---|
1061 | ! ===================================================================== |
---|
1062 | ! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
1063 | ! ===================================================================== |
---|
1064 | |
---|
1065 | ! -- this is for convect3 only: |
---|
1066 | |
---|
1067 | ! first estimate of buoyancy: |
---|
1068 | |
---|
1069 | DO i = 1, ncum |
---|
1070 | DO k = 1, nl |
---|
1071 | buoy(i, k) = tvp(i, k) - tv(i, k) |
---|
1072 | END DO |
---|
1073 | END DO |
---|
1074 | |
---|
1075 | ! set buoyancy=buoybase for all levels below base |
---|
1076 | ! for safety, set buoy(icb)=buoybase |
---|
1077 | |
---|
1078 | DO i = 1, ncum |
---|
1079 | DO k = 1, nl |
---|
1080 | IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i, k)>=pbase(i))) THEN |
---|
1081 | buoy(i, k) = buoybase(i) |
---|
1082 | END IF |
---|
1083 | END DO |
---|
1084 | ! IM cf. CRio/JYG 270807 buoy(icb(i),k)=buoybase(i) |
---|
1085 | buoy(i, icb(i)) = buoybase(i) |
---|
1086 | END DO |
---|
1087 | |
---|
1088 | ! -- end convect3 |
---|
1089 | |
---|
1090 | ! ===================================================================== |
---|
1091 | ! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
1092 | ! --- LEVEL OF NEUTRAL BUOYANCY |
---|
1093 | ! ===================================================================== |
---|
1094 | |
---|
1095 | ! -- this is for convect3 only: |
---|
1096 | |
---|
1097 | DO i = 1, ncum |
---|
1098 | inb(i) = nl - 1 |
---|
1099 | END DO |
---|
1100 | |
---|
1101 | DO i = 1, ncum |
---|
1102 | DO k = 1, nl - 1 |
---|
1103 | IF ((k>=icb(i)) .AND. (buoy(i, k)<dtovsh)) THEN |
---|
1104 | inb(i) = min(inb(i), k) |
---|
1105 | END IF |
---|
1106 | END DO |
---|
1107 | END DO |
---|
1108 | |
---|
1109 | ! -- end convect3 |
---|
1110 | |
---|
1111 | ! ori do 510 i=1,ncum |
---|
1112 | ! ori cape(i)=0.0 |
---|
1113 | ! ori capem(i)=0.0 |
---|
1114 | ! ori inb(i)=icb(i)+1 |
---|
1115 | ! ori inb1(i)=inb(i) |
---|
1116 | ! ori 510 continue |
---|
1117 | |
---|
1118 | ! Originial Code |
---|
1119 | |
---|
1120 | ! do 530 k=minorig+1,nl-1 |
---|
1121 | ! do 520 i=1,ncum |
---|
1122 | ! IF(k.ge.(icb(i)+1))THEN |
---|
1123 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1124 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1125 | ! cape(i)=cape(i)+by |
---|
1126 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
1127 | ! IF(cape(i).gt.0.0)THEN |
---|
1128 | ! inb(i)=k+1 |
---|
1129 | ! capem(i)=cape(i) |
---|
1130 | ! END IF |
---|
1131 | ! END IF |
---|
1132 | ! 520 continue |
---|
1133 | ! 530 continue |
---|
1134 | ! do 540 i=1,ncum |
---|
1135 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
1136 | ! cape(i)=capem(i)+byp |
---|
1137 | ! defrac=capem(i)-cape(i) |
---|
1138 | ! defrac=max(defrac,0.001) |
---|
1139 | ! frac(i)=-cape(i)/defrac |
---|
1140 | ! frac(i)=min(frac(i),1.0) |
---|
1141 | ! frac(i)=max(frac(i),0.0) |
---|
1142 | ! 540 continue |
---|
1143 | |
---|
1144 | ! K Emanuel fix |
---|
1145 | |
---|
1146 | ! CALL zilch(byp,ncum) |
---|
1147 | ! do 530 k=minorig+1,nl-1 |
---|
1148 | ! do 520 i=1,ncum |
---|
1149 | ! IF(k.ge.(icb(i)+1))THEN |
---|
1150 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1151 | ! cape(i)=cape(i)+by |
---|
1152 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
1153 | ! IF(cape(i).gt.0.0)THEN |
---|
1154 | ! inb(i)=k+1 |
---|
1155 | ! capem(i)=cape(i) |
---|
1156 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1157 | ! END IF |
---|
1158 | ! END IF |
---|
1159 | ! 520 continue |
---|
1160 | ! 530 continue |
---|
1161 | ! do 540 i=1,ncum |
---|
1162 | ! inb(i)=max(inb(i),inb1(i)) |
---|
1163 | ! cape(i)=capem(i)+byp(i) |
---|
1164 | ! defrac=capem(i)-cape(i) |
---|
1165 | ! defrac=max(defrac,0.001) |
---|
1166 | ! frac(i)=-cape(i)/defrac |
---|
1167 | ! frac(i)=min(frac(i),1.0) |
---|
1168 | ! frac(i)=max(frac(i),0.0) |
---|
1169 | ! 540 continue |
---|
1170 | |
---|
1171 | ! J Teixeira fix |
---|
1172 | |
---|
1173 | ! ori CALL zilch(byp,ncum) |
---|
1174 | ! ori do 515 i=1,ncum |
---|
1175 | ! ori lcape(i)=.TRUE. |
---|
1176 | ! ori 515 continue |
---|
1177 | ! ori do 530 k=minorig+1,nl-1 |
---|
1178 | ! ori do 520 i=1,ncum |
---|
1179 | ! ori IF(cape(i).lt.0.0)lcape(i)=.FALSE. |
---|
1180 | ! ori if((k.ge.(icb(i)+1)).AND.lcape(i))THEN |
---|
1181 | ! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1182 | ! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1183 | ! ori cape(i)=cape(i)+by |
---|
1184 | ! ori IF(by.ge.0.0)inb1(i)=k+1 |
---|
1185 | ! ori IF(cape(i).gt.0.0)THEN |
---|
1186 | ! ori inb(i)=k+1 |
---|
1187 | ! ori capem(i)=cape(i) |
---|
1188 | ! ori endif |
---|
1189 | ! ori endif |
---|
1190 | ! ori 520 continue |
---|
1191 | ! ori 530 continue |
---|
1192 | ! ori do 540 i=1,ncum |
---|
1193 | ! ori cape(i)=capem(i)+byp(i) |
---|
1194 | ! ori defrac=capem(i)-cape(i) |
---|
1195 | ! ori defrac=max(defrac,0.001) |
---|
1196 | ! ori frac(i)=-cape(i)/defrac |
---|
1197 | ! ori frac(i)=min(frac(i),1.0) |
---|
1198 | ! ori frac(i)=max(frac(i),0.0) |
---|
1199 | ! ori 540 continue |
---|
1200 | |
---|
1201 | ! ===================================================================== |
---|
1202 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
1203 | ! ===================================================================== |
---|
1204 | |
---|
1205 | ! ym do i=1,ncum*nlp |
---|
1206 | ! ym hp(i,1)=h(i,1) |
---|
1207 | ! ym enddo |
---|
1208 | |
---|
1209 | DO k = 1, nlp |
---|
1210 | DO i = 1, ncum |
---|
1211 | hp(i, k) = h(i, k) |
---|
1212 | END DO |
---|
1213 | END DO |
---|
1214 | |
---|
1215 | DO k = minorig + 1, nl |
---|
1216 | DO i = 1, ncum |
---|
1217 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
1218 | hp(i, k) = h(i, nk(i)) + (lv(i, k) + (cpd - cpv) * t(i, k)) * ep(i, k) * clw(i, k & |
---|
1219 | ) |
---|
1220 | END IF |
---|
1221 | END DO |
---|
1222 | END DO |
---|
1223 | |
---|
1224 | END SUBROUTINE cv30_undilute2 |
---|
1225 | |
---|
1226 | SUBROUTINE cv30_closure(nloc, ncum, nd, icb, inb, pbase, p, ph, tv, buoy, & |
---|
1227 | sig, w0, cape, m) |
---|
1228 | USE lmdz_cvthermo |
---|
1229 | |
---|
1230 | IMPLICIT NONE |
---|
1231 | |
---|
1232 | ! =================================================================== |
---|
1233 | ! --- CLOSURE OF CONVECT3 |
---|
1234 | |
---|
1235 | ! vectorization: S. Bony |
---|
1236 | ! =================================================================== |
---|
1237 | |
---|
1238 | |
---|
1239 | |
---|
1240 | ! input: |
---|
1241 | INTEGER ncum, nd, nloc |
---|
1242 | INTEGER icb(nloc), inb(nloc) |
---|
1243 | REAL pbase(nloc) |
---|
1244 | REAL p(nloc, nd), ph(nloc, nd + 1) |
---|
1245 | REAL tv(nloc, nd), buoy(nloc, nd) |
---|
1246 | |
---|
1247 | ! input/output: |
---|
1248 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
1249 | |
---|
1250 | ! output: |
---|
1251 | REAL cape(nloc) |
---|
1252 | REAL m(nloc, nd) |
---|
1253 | |
---|
1254 | ! local variables: |
---|
1255 | INTEGER i, j, k, icbmax |
---|
1256 | REAL deltap, fac, w, amu |
---|
1257 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
1258 | |
---|
1259 | ! ------------------------------------------------------- |
---|
1260 | ! -- Initialization |
---|
1261 | ! ------------------------------------------------------- |
---|
1262 | |
---|
1263 | DO k = 1, nl |
---|
1264 | DO i = 1, ncum |
---|
1265 | m(i, k) = 0.0 |
---|
1266 | END DO |
---|
1267 | END DO |
---|
1268 | |
---|
1269 | ! ------------------------------------------------------- |
---|
1270 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
1271 | ! ------------------------------------------------------- |
---|
1272 | |
---|
1273 | ! update sig and w0 above LNB: |
---|
1274 | |
---|
1275 | DO k = 1, nl - 1 |
---|
1276 | DO i = 1, ncum |
---|
1277 | IF ((inb(i)<(nl - 1)) .AND. (k>=(inb(i) + 1))) THEN |
---|
1278 | sig(i, k) = beta * sig(i, k) + 2. * alpha * buoy(i, inb(i)) * abs(buoy(i, inb(& |
---|
1279 | i))) |
---|
1280 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
1281 | w0(i, k) = beta * w0(i, k) |
---|
1282 | END IF |
---|
1283 | END DO |
---|
1284 | END DO |
---|
1285 | |
---|
1286 | ! compute icbmax: |
---|
1287 | |
---|
1288 | icbmax = 2 |
---|
1289 | DO i = 1, ncum |
---|
1290 | icbmax = max(icbmax, icb(i)) |
---|
1291 | END DO |
---|
1292 | |
---|
1293 | ! update sig and w0 below cloud base: |
---|
1294 | |
---|
1295 | DO k = 1, icbmax |
---|
1296 | DO i = 1, ncum |
---|
1297 | IF (k<=icb(i)) THEN |
---|
1298 | sig(i, k) = beta * sig(i, k) - 2. * alpha * buoy(i, icb(i)) * buoy(i, icb(i)) |
---|
1299 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
1300 | w0(i, k) = beta * w0(i, k) |
---|
1301 | END IF |
---|
1302 | END DO |
---|
1303 | END DO |
---|
1304 | |
---|
1305 | ! IF(inb.lt.(nl-1))THEN |
---|
1306 | ! do 85 i=inb+1,nl-1 |
---|
1307 | ! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
1308 | ! 1 abs(buoy(inb)) |
---|
1309 | ! sig(i)=amax1(sig(i),0.0) |
---|
1310 | ! w0(i)=beta*w0(i) |
---|
1311 | ! 85 continue |
---|
1312 | ! end if |
---|
1313 | |
---|
1314 | ! do 87 i=1,icb |
---|
1315 | ! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
1316 | ! sig(i)=amax1(sig(i),0.0) |
---|
1317 | ! w0(i)=beta*w0(i) |
---|
1318 | ! 87 continue |
---|
1319 | |
---|
1320 | ! ------------------------------------------------------------- |
---|
1321 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
1322 | ! -- and after 10 time steps of no convection |
---|
1323 | ! ------------------------------------------------------------- |
---|
1324 | |
---|
1325 | DO k = 1, nl - 1 |
---|
1326 | DO i = 1, ncum |
---|
1327 | IF (sig(i, nd)<1.5 .OR. sig(i, nd)>12.0) THEN |
---|
1328 | sig(i, k) = 0.0 |
---|
1329 | w0(i, k) = 0.0 |
---|
1330 | END IF |
---|
1331 | END DO |
---|
1332 | END DO |
---|
1333 | |
---|
1334 | ! ------------------------------------------------------------- |
---|
1335 | ! -- Calculate convective available potential energy (cape), |
---|
1336 | ! -- vertical velocity (w), fractional area covered by |
---|
1337 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
1338 | ! ------------------------------------------------------------- |
---|
1339 | |
---|
1340 | DO i = 1, ncum |
---|
1341 | cape(i) = 0.0 |
---|
1342 | END DO |
---|
1343 | |
---|
1344 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
1345 | |
---|
1346 | DO i = 1, ncum |
---|
1347 | DO k = 1, nl |
---|
1348 | dtmin(i, k) = 100.0 |
---|
1349 | END DO |
---|
1350 | END DO |
---|
1351 | |
---|
1352 | DO i = 1, ncum |
---|
1353 | DO k = 1, nl |
---|
1354 | DO j = minorig, nl |
---|
1355 | IF ((k>=(icb(i) + 1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k - & |
---|
1356 | 1))) THEN |
---|
1357 | dtmin(i, k) = amin1(dtmin(i, k), buoy(i, j)) |
---|
1358 | END IF |
---|
1359 | END DO |
---|
1360 | END DO |
---|
1361 | END DO |
---|
1362 | |
---|
1363 | ! the interval on which cape is computed starts at pbase : |
---|
1364 | DO k = 1, nl |
---|
1365 | DO i = 1, ncum |
---|
1366 | |
---|
1367 | IF ((k>=(icb(i) + 1)) .AND. (k<=inb(i))) THEN |
---|
1368 | |
---|
1369 | deltap = min(pbase(i), ph(i, k - 1)) - min(pbase(i), ph(i, k)) |
---|
1370 | cape(i) = cape(i) + rrd * buoy(i, k - 1) * deltap / p(i, k - 1) |
---|
1371 | cape(i) = amax1(0.0, cape(i)) |
---|
1372 | sigold(i, k) = sig(i, k) |
---|
1373 | |
---|
1374 | ! dtmin(i,k)=100.0 |
---|
1375 | ! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
1376 | ! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
1377 | ! 97 continue |
---|
1378 | |
---|
1379 | sig(i, k) = beta * sig(i, k) + alpha * dtmin(i, k) * abs(dtmin(i, k)) |
---|
1380 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
1381 | sig(i, k) = amin1(sig(i, k), 0.01) |
---|
1382 | fac = amin1(((dtcrit - dtmin(i, k)) / dtcrit), 1.0) |
---|
1383 | w = (1. - beta) * fac * sqrt(cape(i)) + beta * w0(i, k) |
---|
1384 | amu = 0.5 * (sig(i, k) + sigold(i, k)) * w |
---|
1385 | m(i, k) = amu * 0.007 * p(i, k) * (ph(i, k) - ph(i, k + 1)) / tv(i, k) |
---|
1386 | w0(i, k) = w |
---|
1387 | END IF |
---|
1388 | |
---|
1389 | END DO |
---|
1390 | END DO |
---|
1391 | |
---|
1392 | DO i = 1, ncum |
---|
1393 | w0(i, icb(i)) = 0.5 * w0(i, icb(i) + 1) |
---|
1394 | m(i, icb(i)) = 0.5 * m(i, icb(i) + 1) * (ph(i, icb(i)) - ph(i, icb(i) + 1)) / & |
---|
1395 | (ph(i, icb(i) + 1) - ph(i, icb(i) + 2)) |
---|
1396 | sig(i, icb(i)) = sig(i, icb(i) + 1) |
---|
1397 | sig(i, icb(i) - 1) = sig(i, icb(i)) |
---|
1398 | END DO |
---|
1399 | |
---|
1400 | |
---|
1401 | ! cape=0.0 |
---|
1402 | ! do 98 i=icb+1,inb |
---|
1403 | ! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
1404 | ! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
1405 | ! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
1406 | ! dlnp=deltap/p(i-1) |
---|
1407 | ! cape=amax1(0.0,cape) |
---|
1408 | ! sigold=sig(i) |
---|
1409 | |
---|
1410 | ! dtmin=100.0 |
---|
1411 | ! do 97 j=icb,i-1 |
---|
1412 | ! dtmin=amin1(dtmin,buoy(j)) |
---|
1413 | ! 97 continue |
---|
1414 | |
---|
1415 | ! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
1416 | ! sig(i)=amax1(sig(i),0.0) |
---|
1417 | ! sig(i)=amin1(sig(i),0.01) |
---|
1418 | ! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
1419 | ! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
1420 | ! amu=0.5*(sig(i)+sigold)*w |
---|
1421 | ! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
1422 | ! w0(i)=w |
---|
1423 | ! 98 continue |
---|
1424 | ! w0(icb)=0.5*w0(icb+1) |
---|
1425 | ! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
1426 | ! sig(icb)=sig(icb+1) |
---|
1427 | ! sig(icb-1)=sig(icb) |
---|
1428 | |
---|
1429 | END SUBROUTINE cv30_closure |
---|
1430 | |
---|
1431 | SUBROUTINE cv30_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, ph, t, rr, rs, & |
---|
1432 | u, v, tra, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, qent, uent, & |
---|
1433 | vent, sij, elij, ments, qents, traent) |
---|
1434 | USE lmdz_cvthermo |
---|
1435 | |
---|
1436 | IMPLICIT NONE |
---|
1437 | |
---|
1438 | ! --------------------------------------------------------------------- |
---|
1439 | ! a faire: |
---|
1440 | ! - changer rr(il,1) -> qnk(il) |
---|
1441 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
1442 | ! --------------------------------------------------------------------- |
---|
1443 | |
---|
1444 | |
---|
1445 | |
---|
1446 | ! inputs: |
---|
1447 | INTEGER ncum, nd, na, ntra, nloc |
---|
1448 | INTEGER icb(nloc), inb(nloc), nk(nloc) |
---|
1449 | REAL sig(nloc, nd) |
---|
1450 | REAL qnk(nloc) |
---|
1451 | REAL ph(nloc, nd + 1) |
---|
1452 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
1453 | REAL u(nloc, nd), v(nloc, nd) |
---|
1454 | REAL tra(nloc, nd, ntra) ! input of convect3 |
---|
1455 | REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
---|
1456 | REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
1457 | REAL m(nloc, na) ! input of convect3 |
---|
1458 | |
---|
1459 | ! outputs: |
---|
1460 | REAL ment(nloc, na, na), qent(nloc, na, na) |
---|
1461 | REAL uent(nloc, na, na), vent(nloc, na, na) |
---|
1462 | REAL sij(nloc, na, na), elij(nloc, na, na) |
---|
1463 | REAL traent(nloc, nd, nd, ntra) |
---|
1464 | REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
---|
1465 | REAL sigij(nloc, nd, nd) |
---|
1466 | |
---|
1467 | ! local variables: |
---|
1468 | INTEGER i, j, k, il, im, jm |
---|
1469 | INTEGER num1, num2 |
---|
1470 | INTEGER nent(nloc, na) |
---|
1471 | REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
1472 | REAL alt, smid, sjmin, sjmax, delp, delm |
---|
1473 | REAL asij(nloc), smax(nloc), scrit(nloc) |
---|
1474 | REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
---|
1475 | REAL wgh |
---|
1476 | REAL zm(nloc, na) |
---|
1477 | LOGICAL lwork(nloc) |
---|
1478 | |
---|
1479 | ! ===================================================================== |
---|
1480 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
1481 | ! ===================================================================== |
---|
1482 | |
---|
1483 | ! ori do 360 i=1,ncum*nlp |
---|
1484 | DO j = 1, nl |
---|
1485 | DO i = 1, ncum |
---|
1486 | nent(i, j) = 0 |
---|
1487 | ! in convect3, m is computed in cv3_closure |
---|
1488 | ! ori m(i,1)=0.0 |
---|
1489 | END DO |
---|
1490 | END DO |
---|
1491 | |
---|
1492 | ! ori do 400 k=1,nlp |
---|
1493 | ! ori do 390 j=1,nlp |
---|
1494 | DO j = 1, nl |
---|
1495 | DO k = 1, nl |
---|
1496 | DO i = 1, ncum |
---|
1497 | qent(i, k, j) = rr(i, j) |
---|
1498 | uent(i, k, j) = u(i, j) |
---|
1499 | vent(i, k, j) = v(i, j) |
---|
1500 | elij(i, k, j) = 0.0 |
---|
1501 | ! ym ment(i,k,j)=0.0 |
---|
1502 | ! ym sij(i,k,j)=0.0 |
---|
1503 | END DO |
---|
1504 | END DO |
---|
1505 | END DO |
---|
1506 | |
---|
1507 | ! ym |
---|
1508 | ment(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
1509 | sij(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
1510 | |
---|
1511 | ! do k=1,ntra |
---|
1512 | ! do j=1,nd ! instead nlp |
---|
1513 | ! do i=1,nd ! instead nlp |
---|
1514 | ! do il=1,ncum |
---|
1515 | ! traent(il,i,j,k)=tra(il,j,k) |
---|
1516 | ! enddo |
---|
1517 | ! enddo |
---|
1518 | ! enddo |
---|
1519 | ! enddo |
---|
1520 | zm(:, :) = 0. |
---|
1521 | |
---|
1522 | ! ===================================================================== |
---|
1523 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
1524 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
1525 | ! --- FRACTION (sij) |
---|
1526 | ! ===================================================================== |
---|
1527 | |
---|
1528 | DO i = minorig + 1, nl |
---|
1529 | |
---|
1530 | DO j = minorig, nl |
---|
1531 | DO il = 1, ncum |
---|
1532 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il) - & |
---|
1533 | 1)) .AND. (j<=inb(il))) THEN |
---|
1534 | |
---|
1535 | rti = rr(il, 1) - ep(il, i) * clw(il, i) |
---|
1536 | bf2 = 1. + lv(il, j) * lv(il, j) * rs(il, j) / (rrv * t(il, j) * t(il, j) * cpd) |
---|
1537 | anum = h(il, j) - hp(il, i) + (cpv - cpd) * t(il, j) * (rti - rr(il, j)) |
---|
1538 | denom = h(il, i) - hp(il, i) + (cpd - cpv) * (rr(il, i) - rti) * t(il, j) |
---|
1539 | dei = denom |
---|
1540 | IF (abs(dei)<0.01) dei = 0.01 |
---|
1541 | sij(il, i, j) = anum / dei |
---|
1542 | sij(il, i, i) = 1.0 |
---|
1543 | altem = sij(il, i, j) * rr(il, i) + (1. - sij(il, i, j)) * rti - rs(il, j) |
---|
1544 | altem = altem / bf2 |
---|
1545 | cwat = clw(il, j) * (1. - ep(il, j)) |
---|
1546 | stemp = sij(il, i, j) |
---|
1547 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
1548 | anum = anum - lv(il, j) * (rti - rs(il, j) - cwat * bf2) |
---|
1549 | denom = denom + lv(il, j) * (rr(il, i) - rti) |
---|
1550 | IF (abs(denom)<0.01) denom = 0.01 |
---|
1551 | sij(il, i, j) = anum / denom |
---|
1552 | altem = sij(il, i, j) * rr(il, i) + (1. - sij(il, i, j)) * rti - & |
---|
1553 | rs(il, j) |
---|
1554 | altem = altem - (bf2 - 1.) * cwat |
---|
1555 | END IF |
---|
1556 | IF (sij(il, i, j)>0.0 .AND. sij(il, i, j)<0.95) THEN |
---|
1557 | qent(il, i, j) = sij(il, i, j) * rr(il, i) + (1. - sij(il, i, j)) * rti |
---|
1558 | uent(il, i, j) = sij(il, i, j) * u(il, i) + & |
---|
1559 | (1. - sij(il, i, j)) * u(il, nk(il)) |
---|
1560 | vent(il, i, j) = sij(il, i, j) * v(il, i) + & |
---|
1561 | (1. - sij(il, i, j)) * v(il, nk(il)) |
---|
1562 | ! !!! do k=1,ntra |
---|
1563 | ! !!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
1564 | ! !!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
1565 | ! !!! END DO |
---|
1566 | elij(il, i, j) = altem |
---|
1567 | elij(il, i, j) = amax1(0.0, elij(il, i, j)) |
---|
1568 | ment(il, i, j) = m(il, i) / (1. - sij(il, i, j)) |
---|
1569 | nent(il, i) = nent(il, i) + 1 |
---|
1570 | END IF |
---|
1571 | sij(il, i, j) = amax1(0.0, sij(il, i, j)) |
---|
1572 | sij(il, i, j) = amin1(1.0, sij(il, i, j)) |
---|
1573 | END IF ! new |
---|
1574 | END DO |
---|
1575 | END DO |
---|
1576 | |
---|
1577 | ! do k=1,ntra |
---|
1578 | ! do j=minorig,nl |
---|
1579 | ! do il=1,ncum |
---|
1580 | ! IF( (i.ge.icb(il)).AND.(i.le.inb(il)).AND. |
---|
1581 | ! : (j.ge.(icb(il)-1)).AND.(j.le.inb(il)))THEN |
---|
1582 | ! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
1583 | ! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
1584 | ! END IF |
---|
1585 | ! enddo |
---|
1586 | ! enddo |
---|
1587 | ! enddo |
---|
1588 | |
---|
1589 | |
---|
1590 | ! *** if no air can entrain at level i assume that updraft detrains |
---|
1591 | ! *** |
---|
1592 | ! *** at that level and calculate detrained air flux and properties |
---|
1593 | ! *** |
---|
1594 | |
---|
1595 | |
---|
1596 | ! @ do 170 i=icb(il),inb(il) |
---|
1597 | |
---|
1598 | DO il = 1, ncum |
---|
1599 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il, i)==0)) THEN |
---|
1600 | ! @ IF(nent(il,i).EQ.0)THEN |
---|
1601 | ment(il, i, i) = m(il, i) |
---|
1602 | qent(il, i, i) = rr(il, nk(il)) - ep(il, i) * clw(il, i) |
---|
1603 | uent(il, i, i) = u(il, nk(il)) |
---|
1604 | vent(il, i, i) = v(il, nk(il)) |
---|
1605 | elij(il, i, i) = clw(il, i) |
---|
1606 | ! MAF sij(il,i,i)=1.0 |
---|
1607 | sij(il, i, i) = 0.0 |
---|
1608 | END IF |
---|
1609 | END DO |
---|
1610 | END DO |
---|
1611 | |
---|
1612 | ! do j=1,ntra |
---|
1613 | ! do i=minorig+1,nl |
---|
1614 | ! do il=1,ncum |
---|
1615 | ! if (i.ge.icb(il) .AND. i.le.inb(il) .AND. nent(il,i).EQ.0) THEN |
---|
1616 | ! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
1617 | ! END IF |
---|
1618 | ! enddo |
---|
1619 | ! enddo |
---|
1620 | ! enddo |
---|
1621 | |
---|
1622 | DO j = minorig, nl |
---|
1623 | DO i = minorig, nl |
---|
1624 | DO il = 1, ncum |
---|
1625 | IF ((j>=(icb(il) - 1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<= & |
---|
1626 | inb(il))) THEN |
---|
1627 | sigij(il, i, j) = sij(il, i, j) |
---|
1628 | END IF |
---|
1629 | END DO |
---|
1630 | END DO |
---|
1631 | END DO |
---|
1632 | ! @ enddo |
---|
1633 | |
---|
1634 | ! @170 continue |
---|
1635 | |
---|
1636 | ! ===================================================================== |
---|
1637 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
1638 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
1639 | ! ===================================================================== |
---|
1640 | |
---|
1641 | ! ym CALL zilch(asum,ncum*nd) |
---|
1642 | ! ym CALL zilch(bsum,ncum*nd) |
---|
1643 | ! ym CALL zilch(csum,ncum*nd) |
---|
1644 | CALL zilch(asum, nloc * nd) |
---|
1645 | CALL zilch(csum, nloc * nd) |
---|
1646 | CALL zilch(csum, nloc * nd) |
---|
1647 | |
---|
1648 | DO il = 1, ncum |
---|
1649 | lwork(il) = .FALSE. |
---|
1650 | END DO |
---|
1651 | |
---|
1652 | DO i = minorig + 1, nl |
---|
1653 | |
---|
1654 | num1 = 0 |
---|
1655 | DO il = 1, ncum |
---|
1656 | IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
---|
1657 | END DO |
---|
1658 | IF (num1<=0) GO TO 789 |
---|
1659 | |
---|
1660 | DO il = 1, ncum |
---|
1661 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
1662 | lwork(il) = (nent(il, i)/=0) |
---|
1663 | qp = rr(il, 1) - ep(il, i) * clw(il, i) |
---|
1664 | anum = h(il, i) - hp(il, i) - lv(il, i) * (qp - rs(il, i)) + & |
---|
1665 | (cpv - cpd) * t(il, i) * (qp - rr(il, i)) |
---|
1666 | denom = h(il, i) - hp(il, i) + lv(il, i) * (rr(il, i) - qp) + & |
---|
1667 | (cpd - cpv) * t(il, i) * (rr(il, i) - qp) |
---|
1668 | IF (abs(denom)<0.01) denom = 0.01 |
---|
1669 | scrit(il) = anum / denom |
---|
1670 | alt = qp - rs(il, i) + scrit(il) * (rr(il, i) - qp) |
---|
1671 | IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
---|
1672 | smax(il) = 0.0 |
---|
1673 | asij(il) = 0.0 |
---|
1674 | END IF |
---|
1675 | END DO |
---|
1676 | |
---|
1677 | DO j = nl, minorig, -1 |
---|
1678 | |
---|
1679 | num2 = 0 |
---|
1680 | DO il = 1, ncum |
---|
1681 | IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb(& |
---|
1682 | il) - 1) .AND. j<=inb(il) .AND. lwork(il)) num2 = num2 + 1 |
---|
1683 | END DO |
---|
1684 | IF (num2<=0) GO TO 175 |
---|
1685 | |
---|
1686 | DO il = 1, ncum |
---|
1687 | IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb(& |
---|
1688 | il) - 1) .AND. j<=inb(il) .AND. lwork(il)) THEN |
---|
1689 | |
---|
1690 | IF (sij(il, i, j)>1.0E-16 .AND. sij(il, i, j)<0.95) THEN |
---|
1691 | wgh = 1.0 |
---|
1692 | IF (j>i) THEN |
---|
1693 | sjmax = amax1(sij(il, i, j + 1), smax(il)) |
---|
1694 | sjmax = amin1(sjmax, scrit(il)) |
---|
1695 | smax(il) = amax1(sij(il, i, j), smax(il)) |
---|
1696 | sjmin = amax1(sij(il, i, j - 1), smax(il)) |
---|
1697 | sjmin = amin1(sjmin, scrit(il)) |
---|
1698 | IF (sij(il, i, j)<(smax(il) - 1.0E-16)) wgh = 0.0 |
---|
1699 | smid = amin1(sij(il, i, j), scrit(il)) |
---|
1700 | ELSE |
---|
1701 | sjmax = amax1(sij(il, i, j + 1), scrit(il)) |
---|
1702 | smid = amax1(sij(il, i, j), scrit(il)) |
---|
1703 | sjmin = 0.0 |
---|
1704 | IF (j>1) sjmin = sij(il, i, j - 1) |
---|
1705 | sjmin = amax1(sjmin, scrit(il)) |
---|
1706 | END IF |
---|
1707 | delp = abs(sjmax - smid) |
---|
1708 | delm = abs(sjmin - smid) |
---|
1709 | asij(il) = asij(il) + wgh * (delp + delm) |
---|
1710 | ment(il, i, j) = ment(il, i, j) * (delp + delm) * wgh |
---|
1711 | END IF |
---|
1712 | END IF |
---|
1713 | END DO |
---|
1714 | |
---|
1715 | 175 END DO |
---|
1716 | |
---|
1717 | DO il = 1, ncum |
---|
1718 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
1719 | asij(il) = amax1(1.0E-16, asij(il)) |
---|
1720 | asij(il) = 1.0 / asij(il) |
---|
1721 | asum(il, i) = 0.0 |
---|
1722 | bsum(il, i) = 0.0 |
---|
1723 | csum(il, i) = 0.0 |
---|
1724 | END IF |
---|
1725 | END DO |
---|
1726 | |
---|
1727 | DO j = minorig, nl |
---|
1728 | DO il = 1, ncum |
---|
1729 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
1730 | il) - 1) .AND. j<=inb(il)) THEN |
---|
1731 | ment(il, i, j) = ment(il, i, j) * asij(il) |
---|
1732 | END IF |
---|
1733 | END DO |
---|
1734 | END DO |
---|
1735 | |
---|
1736 | DO j = minorig, nl |
---|
1737 | DO il = 1, ncum |
---|
1738 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
1739 | il) - 1) .AND. j<=inb(il)) THEN |
---|
1740 | asum(il, i) = asum(il, i) + ment(il, i, j) |
---|
1741 | ment(il, i, j) = ment(il, i, j) * sig(il, j) |
---|
1742 | bsum(il, i) = bsum(il, i) + ment(il, i, j) |
---|
1743 | END IF |
---|
1744 | END DO |
---|
1745 | END DO |
---|
1746 | |
---|
1747 | DO il = 1, ncum |
---|
1748 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
1749 | bsum(il, i) = amax1(bsum(il, i), 1.0E-16) |
---|
1750 | bsum(il, i) = 1.0 / bsum(il, i) |
---|
1751 | END IF |
---|
1752 | END DO |
---|
1753 | |
---|
1754 | DO j = minorig, nl |
---|
1755 | DO il = 1, ncum |
---|
1756 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
1757 | il) - 1) .AND. j<=inb(il)) THEN |
---|
1758 | ment(il, i, j) = ment(il, i, j) * asum(il, i) * bsum(il, i) |
---|
1759 | END IF |
---|
1760 | END DO |
---|
1761 | END DO |
---|
1762 | |
---|
1763 | DO j = minorig, nl |
---|
1764 | DO il = 1, ncum |
---|
1765 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
1766 | il) - 1) .AND. j<=inb(il)) THEN |
---|
1767 | csum(il, i) = csum(il, i) + ment(il, i, j) |
---|
1768 | END IF |
---|
1769 | END DO |
---|
1770 | END DO |
---|
1771 | |
---|
1772 | DO il = 1, ncum |
---|
1773 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
1774 | csum(il, i)<m(il, i)) THEN |
---|
1775 | nent(il, i) = 0 |
---|
1776 | ment(il, i, i) = m(il, i) |
---|
1777 | qent(il, i, i) = rr(il, 1) - ep(il, i) * clw(il, i) |
---|
1778 | uent(il, i, i) = u(il, nk(il)) |
---|
1779 | vent(il, i, i) = v(il, nk(il)) |
---|
1780 | elij(il, i, i) = clw(il, i) |
---|
1781 | ! MAF sij(il,i,i)=1.0 |
---|
1782 | sij(il, i, i) = 0.0 |
---|
1783 | END IF |
---|
1784 | END DO ! il |
---|
1785 | |
---|
1786 | ! do j=1,ntra |
---|
1787 | ! do il=1,ncum |
---|
1788 | ! if ( i.ge.icb(il) .AND. i.le.inb(il) .AND. lwork(il) |
---|
1789 | ! : .AND. csum(il,i).lt.m(il,i) ) THEN |
---|
1790 | ! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
1791 | ! END IF |
---|
1792 | ! enddo |
---|
1793 | ! enddo |
---|
1794 | 789 END DO |
---|
1795 | |
---|
1796 | ! MAF: renormalisation de MENT |
---|
1797 | DO jm = 1, nd |
---|
1798 | DO im = 1, nd |
---|
1799 | DO il = 1, ncum |
---|
1800 | zm(il, im) = zm(il, im) + (1. - sij(il, im, jm)) * ment(il, im, jm) |
---|
1801 | END DO |
---|
1802 | END DO |
---|
1803 | END DO |
---|
1804 | |
---|
1805 | DO jm = 1, nd |
---|
1806 | DO im = 1, nd |
---|
1807 | DO il = 1, ncum |
---|
1808 | IF (zm(il, im)/=0.) THEN |
---|
1809 | ment(il, im, jm) = ment(il, im, jm) * m(il, im) / zm(il, im) |
---|
1810 | END IF |
---|
1811 | END DO |
---|
1812 | END DO |
---|
1813 | END DO |
---|
1814 | |
---|
1815 | DO jm = 1, nd |
---|
1816 | DO im = 1, nd |
---|
1817 | DO il = 1, ncum |
---|
1818 | qents(il, im, jm) = qent(il, im, jm) |
---|
1819 | ments(il, im, jm) = ment(il, im, jm) |
---|
1820 | END DO |
---|
1821 | END DO |
---|
1822 | END DO |
---|
1823 | |
---|
1824 | END SUBROUTINE cv30_mixing |
---|
1825 | |
---|
1826 | |
---|
1827 | SUBROUTINE cv30_unsat(nloc, ncum, nd, na, ntra, icb, inb, t, rr, rs, gz, u, & |
---|
1828 | v, tra, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, & |
---|
1829 | mp, rp, up, vp, trap, wt, water, evap, b & ! RomP-jyg |
---|
1830 | , wdtraina, wdtrainm) ! 26/08/10 RomP-jyg |
---|
1831 | USE lmdz_cvflag |
---|
1832 | USE lmdz_cvthermo |
---|
1833 | |
---|
1834 | IMPLICIT NONE |
---|
1835 | |
---|
1836 | |
---|
1837 | |
---|
1838 | ! inputs: |
---|
1839 | INTEGER ncum, nd, na, ntra, nloc |
---|
1840 | INTEGER icb(nloc), inb(nloc) |
---|
1841 | REAL delt, plcl(nloc) |
---|
1842 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
1843 | REAL u(nloc, nd), v(nloc, nd) |
---|
1844 | REAL tra(nloc, nd, ntra) |
---|
1845 | REAL p(nloc, nd), ph(nloc, nd + 1) |
---|
1846 | REAL th(nloc, na), gz(nloc, na) |
---|
1847 | REAL lv(nloc, na), ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
---|
1848 | REAL cpn(nloc, na), tv(nloc, na) |
---|
1849 | REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
---|
1850 | |
---|
1851 | ! outputs: |
---|
1852 | REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
---|
1853 | REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
---|
1854 | REAL trap(nloc, na, ntra) |
---|
1855 | REAL b(nloc, na) |
---|
1856 | ! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
---|
1857 | ! lascendance adiabatique et des flux melanges Pa et Pm. |
---|
1858 | ! Distinction des wdtrain |
---|
1859 | ! Pa = wdtrainA Pm = wdtrainM |
---|
1860 | REAL wdtraina(nloc, na), wdtrainm(nloc, na) |
---|
1861 | |
---|
1862 | ! local variables |
---|
1863 | INTEGER i, j, k, il, num1 |
---|
1864 | REAL tinv, delti |
---|
1865 | REAL awat, afac, afac1, afac2, bfac |
---|
1866 | REAL pr1, pr2, sigt, b6, c6, revap, tevap, delth |
---|
1867 | REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
1868 | REAL ampmax |
---|
1869 | REAL lvcp(nloc, na) |
---|
1870 | REAL wdtrain(nloc) |
---|
1871 | LOGICAL lwork(nloc) |
---|
1872 | |
---|
1873 | |
---|
1874 | ! ------------------------------------------------------ |
---|
1875 | |
---|
1876 | delti = 1. / delt |
---|
1877 | tinv = 1. / 3. |
---|
1878 | |
---|
1879 | mp(:, :) = 0. |
---|
1880 | |
---|
1881 | DO i = 1, nl |
---|
1882 | DO il = 1, ncum |
---|
1883 | mp(il, i) = 0.0 |
---|
1884 | rp(il, i) = rr(il, i) |
---|
1885 | up(il, i) = u(il, i) |
---|
1886 | vp(il, i) = v(il, i) |
---|
1887 | wt(il, i) = 0.001 |
---|
1888 | water(il, i) = 0.0 |
---|
1889 | evap(il, i) = 0.0 |
---|
1890 | b(il, i) = 0.0 |
---|
1891 | lvcp(il, i) = lv(il, i) / cpn(il, i) |
---|
1892 | END DO |
---|
1893 | END DO |
---|
1894 | |
---|
1895 | ! do k=1,ntra |
---|
1896 | ! do i=1,nd |
---|
1897 | ! do il=1,ncum |
---|
1898 | ! trap(il,i,k)=tra(il,i,k) |
---|
1899 | ! enddo |
---|
1900 | ! enddo |
---|
1901 | ! enddo |
---|
1902 | ! RomP >>> |
---|
1903 | DO i = 1, nd |
---|
1904 | DO il = 1, ncum |
---|
1905 | wdtraina(il, i) = 0.0 |
---|
1906 | wdtrainm(il, i) = 0.0 |
---|
1907 | END DO |
---|
1908 | END DO |
---|
1909 | ! RomP <<< |
---|
1910 | |
---|
1911 | ! *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
1912 | ! *** downdraft calculation *** |
---|
1913 | |
---|
1914 | DO il = 1, ncum |
---|
1915 | lwork(il) = .TRUE. |
---|
1916 | IF (ep(il, inb(il))<0.0001) lwork(il) = .FALSE. |
---|
1917 | END DO |
---|
1918 | |
---|
1919 | CALL zilch(wdtrain, ncum) |
---|
1920 | |
---|
1921 | DO i = nl + 1, 1, -1 |
---|
1922 | |
---|
1923 | num1 = 0 |
---|
1924 | DO il = 1, ncum |
---|
1925 | IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
---|
1926 | END DO |
---|
1927 | IF (num1<=0) GO TO 400 |
---|
1928 | |
---|
1929 | |
---|
1930 | ! *** integrate liquid water equation to find condensed water *** |
---|
1931 | ! *** and condensed water flux *** |
---|
1932 | |
---|
1933 | |
---|
1934 | |
---|
1935 | ! *** begin downdraft loop *** |
---|
1936 | |
---|
1937 | |
---|
1938 | |
---|
1939 | ! *** calculate detrained precipitation *** |
---|
1940 | |
---|
1941 | DO il = 1, ncum |
---|
1942 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
1943 | IF (cvflag_grav) THEN |
---|
1944 | wdtrain(il) = grav * ep(il, i) * m(il, i) * clw(il, i) |
---|
1945 | wdtraina(il, i) = wdtrain(il) / grav ! Pa 26/08/10 RomP |
---|
1946 | ELSE |
---|
1947 | wdtrain(il) = 10.0 * ep(il, i) * m(il, i) * clw(il, i) |
---|
1948 | wdtraina(il, i) = wdtrain(il) / 10. ! Pa 26/08/10 RomP |
---|
1949 | END IF |
---|
1950 | END IF |
---|
1951 | END DO |
---|
1952 | |
---|
1953 | IF (i>1) THEN |
---|
1954 | |
---|
1955 | DO j = 1, i - 1 |
---|
1956 | DO il = 1, ncum |
---|
1957 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
1958 | awat = elij(il, j, i) - (1. - ep(il, i)) * clw(il, i) |
---|
1959 | awat = amax1(awat, 0.0) |
---|
1960 | IF (cvflag_grav) THEN |
---|
1961 | wdtrain(il) = wdtrain(il) + grav * awat * ment(il, j, i) |
---|
1962 | ELSE |
---|
1963 | wdtrain(il) = wdtrain(il) + 10.0 * awat * ment(il, j, i) |
---|
1964 | END IF |
---|
1965 | END IF |
---|
1966 | END DO |
---|
1967 | END DO |
---|
1968 | DO il = 1, ncum |
---|
1969 | IF (cvflag_grav) THEN |
---|
1970 | wdtrainm(il, i) = wdtrain(il) / grav - wdtraina(il, i) ! Pm 26/08/10 RomP |
---|
1971 | ELSE |
---|
1972 | wdtrainm(il, i) = wdtrain(il) / 10. - wdtraina(il, i) ! Pm 26/08/10 RomP |
---|
1973 | END IF |
---|
1974 | END DO |
---|
1975 | |
---|
1976 | END IF |
---|
1977 | |
---|
1978 | |
---|
1979 | ! *** find rain water and evaporation using provisional *** |
---|
1980 | ! *** estimates of rp(i)and rp(i-1) *** |
---|
1981 | |
---|
1982 | DO il = 1, ncum |
---|
1983 | |
---|
1984 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
1985 | |
---|
1986 | wt(il, i) = 45.0 |
---|
1987 | |
---|
1988 | IF (i<inb(il)) THEN |
---|
1989 | rp(il, i) = rp(il, i + 1) + (cpd * (t(il, i + 1) - t(il, & |
---|
1990 | i)) + gz(il, i + 1) - gz(il, i)) / lv(il, i) |
---|
1991 | rp(il, i) = 0.5 * (rp(il, i) + rr(il, i)) |
---|
1992 | END IF |
---|
1993 | rp(il, i) = amax1(rp(il, i), 0.0) |
---|
1994 | rp(il, i) = amin1(rp(il, i), rs(il, i)) |
---|
1995 | rp(il, inb(il)) = rr(il, inb(il)) |
---|
1996 | |
---|
1997 | IF (i==1) THEN |
---|
1998 | afac = p(il, 1) * (rs(il, 1) - rp(il, 1)) / (1.0E4 + 2000.0 * p(il, 1) * rs(il, 1)) |
---|
1999 | ELSE |
---|
2000 | rp(il, i - 1) = rp(il, i) + (cpd * (t(il, i) - t(il, & |
---|
2001 | i - 1)) + gz(il, i) - gz(il, i - 1)) / lv(il, i) |
---|
2002 | rp(il, i - 1) = 0.5 * (rp(il, i - 1) + rr(il, i - 1)) |
---|
2003 | rp(il, i - 1) = amin1(rp(il, i - 1), rs(il, i - 1)) |
---|
2004 | rp(il, i - 1) = amax1(rp(il, i - 1), 0.0) |
---|
2005 | afac1 = p(il, i) * (rs(il, i) - rp(il, i)) / (1.0E4 + 2000.0 * p(il, i) * rs(il, i) & |
---|
2006 | ) |
---|
2007 | afac2 = p(il, i - 1) * (rs(il, i - 1) - rp(il, i - 1)) / & |
---|
2008 | (1.0E4 + 2000.0 * p(il, i - 1) * rs(il, i - 1)) |
---|
2009 | afac = 0.5 * (afac1 + afac2) |
---|
2010 | END IF |
---|
2011 | IF (i==inb(il)) afac = 0.0 |
---|
2012 | afac = amax1(afac, 0.0) |
---|
2013 | bfac = 1. / (sigd * wt(il, i)) |
---|
2014 | |
---|
2015 | ! jyg1 |
---|
2016 | ! cc sigt=1.0 |
---|
2017 | ! cc IF(i.ge.icb)sigt=sigp(i) |
---|
2018 | ! prise en compte de la variation progressive de sigt dans |
---|
2019 | ! les couches icb et icb-1: |
---|
2020 | ! pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
2021 | ! pour plcl>ph(i), pr1=1 & pr2=0 |
---|
2022 | ! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
2023 | ! sur le nuage, et pr2 est la proportion sous la base du |
---|
2024 | ! nuage. |
---|
2025 | pr1 = (plcl(il) - ph(il, i + 1)) / (ph(il, i) - ph(il, i + 1)) |
---|
2026 | pr1 = max(0., min(1., pr1)) |
---|
2027 | pr2 = (ph(il, i) - plcl(il)) / (ph(il, i) - ph(il, i + 1)) |
---|
2028 | pr2 = max(0., min(1., pr2)) |
---|
2029 | sigt = sigp(il, i) * pr1 + pr2 |
---|
2030 | ! jyg2 |
---|
2031 | |
---|
2032 | b6 = bfac * 50. * sigd * (ph(il, i) - ph(il, i + 1)) * sigt * afac |
---|
2033 | c6 = water(il, i + 1) + bfac * wdtrain(il) - 50. * sigd * bfac * (ph(il, i) - ph(& |
---|
2034 | il, i + 1)) * evap(il, i + 1) |
---|
2035 | IF (c6>0.0) THEN |
---|
2036 | revap = 0.5 * (-b6 + sqrt(b6 * b6 + 4. * c6)) |
---|
2037 | evap(il, i) = sigt * afac * revap |
---|
2038 | water(il, i) = revap * revap |
---|
2039 | ELSE |
---|
2040 | evap(il, i) = -evap(il, i + 1) + 0.02 * (wdtrain(il) + sigd * wt(il, i) * & |
---|
2041 | water(il, i + 1)) / (sigd * (ph(il, i) - ph(il, i + 1))) |
---|
2042 | END IF |
---|
2043 | |
---|
2044 | ! *** calculate precipitating downdraft mass flux under *** |
---|
2045 | ! *** hydrostatic approximation *** |
---|
2046 | |
---|
2047 | IF (i/=1) THEN |
---|
2048 | |
---|
2049 | tevap = amax1(0.0, evap(il, i)) |
---|
2050 | delth = amax1(0.001, (th(il, i) - th(il, i - 1))) |
---|
2051 | IF (cvflag_grav) THEN |
---|
2052 | mp(il, i) = 100. * ginv * lvcp(il, i) * sigd * tevap * (p(il, i - 1) - p(il, i)) / & |
---|
2053 | delth |
---|
2054 | ELSE |
---|
2055 | mp(il, i) = 10. * lvcp(il, i) * sigd * tevap * (p(il, i - 1) - p(il, i)) / delth |
---|
2056 | END IF |
---|
2057 | |
---|
2058 | ! *** if hydrostatic assumption fails, *** |
---|
2059 | ! *** solve cubic difference equation for downdraft theta *** |
---|
2060 | ! *** and mass flux from two simultaneous differential eqns *** |
---|
2061 | |
---|
2062 | amfac = sigd * sigd * 70.0 * ph(il, i) * (p(il, i - 1) - p(il, i)) * & |
---|
2063 | (th(il, i) - th(il, i - 1)) / (tv(il, i) * th(il, i)) |
---|
2064 | amp2 = abs(mp(il, i + 1) * mp(il, i + 1) - mp(il, i) * mp(il, i)) |
---|
2065 | IF (amp2>(0.1 * amfac)) THEN |
---|
2066 | xf = 100.0 * sigd * sigd * sigd * (ph(il, i) - ph(il, i + 1)) |
---|
2067 | tf = b(il, i) - 5.0 * (th(il, i) - th(il, i - 1)) * t(il, i) / (lvcp(il, i) * & |
---|
2068 | sigd * th(il, i)) |
---|
2069 | af = xf * tf + mp(il, i + 1) * mp(il, i + 1) * tinv |
---|
2070 | bf = 2. * (tinv * mp(il, i + 1))**3 + tinv * mp(il, i + 1) * xf * tf + & |
---|
2071 | 50. * (p(il, i - 1) - p(il, i)) * xf * tevap |
---|
2072 | fac2 = 1.0 |
---|
2073 | IF (bf<0.0) fac2 = -1.0 |
---|
2074 | bf = abs(bf) |
---|
2075 | ur = 0.25 * bf * bf - af * af * af * tinv * tinv * tinv |
---|
2076 | IF (ur>=0.0) THEN |
---|
2077 | sru = sqrt(ur) |
---|
2078 | fac = 1.0 |
---|
2079 | IF ((0.5 * bf - sru)<0.0) fac = -1.0 |
---|
2080 | mp(il, i) = mp(il, i + 1) * tinv + (0.5 * bf + sru)**tinv + & |
---|
2081 | fac * (abs(0.5 * bf - sru))**tinv |
---|
2082 | ELSE |
---|
2083 | d = atan(2. * sqrt(-ur) / (bf + 1.0E-28)) |
---|
2084 | IF (fac2<0.0) d = 3.14159 - d |
---|
2085 | mp(il, i) = mp(il, i + 1) * tinv + 2. * sqrt(af * tinv) * cos(d * tinv) |
---|
2086 | END IF |
---|
2087 | mp(il, i) = amax1(0.0, mp(il, i)) |
---|
2088 | |
---|
2089 | IF (cvflag_grav) THEN |
---|
2090 | ! jyg : il y a vraisemblablement une erreur dans la ligne 2 |
---|
2091 | ! suivante: |
---|
2092 | ! il faut diviser par (mp(il,i)*sigd*grav) et non par |
---|
2093 | ! (mp(il,i)+sigd*0.1). |
---|
2094 | ! Et il faut bien revoir les facteurs 100. |
---|
2095 | b(il, i - 1) = b(il, i) + 100.0 * (p(il, i - 1) - p(il, i)) * tevap / (mp(il, & |
---|
2096 | i) + sigd * 0.1) - 10.0 * (th(il, i) - th(il, i - 1)) * t(il, i) / (lvcp(il, i & |
---|
2097 | ) * sigd * th(il, i)) |
---|
2098 | ELSE |
---|
2099 | b(il, i - 1) = b(il, i) + 100.0 * (p(il, i - 1) - p(il, i)) * tevap / (mp(il, & |
---|
2100 | i) + sigd * 0.1) - 10.0 * (th(il, i) - th(il, i - 1)) * t(il, i) / (lvcp(il, i & |
---|
2101 | ) * sigd * th(il, i)) |
---|
2102 | END IF |
---|
2103 | b(il, i - 1) = amax1(b(il, i - 1), 0.0) |
---|
2104 | END IF |
---|
2105 | |
---|
2106 | ! *** limit magnitude of mp(i) to meet cfl condition |
---|
2107 | ! *** |
---|
2108 | |
---|
2109 | ampmax = 2.0 * (ph(il, i) - ph(il, i + 1)) * delti |
---|
2110 | amp2 = 2.0 * (ph(il, i - 1) - ph(il, i)) * delti |
---|
2111 | ampmax = amin1(ampmax, amp2) |
---|
2112 | mp(il, i) = amin1(mp(il, i), ampmax) |
---|
2113 | |
---|
2114 | ! *** force mp to decrease linearly to zero |
---|
2115 | ! *** |
---|
2116 | ! *** between cloud base and the surface |
---|
2117 | ! *** |
---|
2118 | |
---|
2119 | IF (p(il, i)>p(il, icb(il))) THEN |
---|
2120 | mp(il, i) = mp(il, icb(il)) * (p(il, 1) - p(il, i)) / & |
---|
2121 | (p(il, 1) - p(il, icb(il))) |
---|
2122 | END IF |
---|
2123 | |
---|
2124 | END IF ! i.EQ.1 |
---|
2125 | |
---|
2126 | ! *** find mixing ratio of precipitating downdraft *** |
---|
2127 | |
---|
2128 | IF (i/=inb(il)) THEN |
---|
2129 | |
---|
2130 | rp(il, i) = rr(il, i) |
---|
2131 | |
---|
2132 | IF (mp(il, i)>mp(il, i + 1)) THEN |
---|
2133 | |
---|
2134 | IF (cvflag_grav) THEN |
---|
2135 | rp(il, i) = rp(il, i + 1) * mp(il, i + 1) + & |
---|
2136 | rr(il, i) * (mp(il, i) - mp(il, i + 1)) + 100. * ginv * 0.5 * sigd * (ph(il, i & |
---|
2137 | ) - ph(il, i + 1)) * (evap(il, i + 1) + evap(il, i)) |
---|
2138 | ELSE |
---|
2139 | rp(il, i) = rp(il, i + 1) * mp(il, i + 1) + & |
---|
2140 | rr(il, i) * (mp(il, i) - mp(il, i + 1)) + 5. * sigd * (ph(il, i) - ph(il, i + 1 & |
---|
2141 | )) * (evap(il, i + 1) + evap(il, i)) |
---|
2142 | END IF |
---|
2143 | rp(il, i) = rp(il, i) / mp(il, i) |
---|
2144 | up(il, i) = up(il, i + 1) * mp(il, i + 1) + u(il, i) * (mp(il, i) - mp(il, i + & |
---|
2145 | 1)) |
---|
2146 | up(il, i) = up(il, i) / mp(il, i) |
---|
2147 | vp(il, i) = vp(il, i + 1) * mp(il, i + 1) + v(il, i) * (mp(il, i) - mp(il, i + & |
---|
2148 | 1)) |
---|
2149 | vp(il, i) = vp(il, i) / mp(il, i) |
---|
2150 | |
---|
2151 | ! do j=1,ntra |
---|
2152 | ! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
2153 | ! testmaf : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
2154 | ! : +tra(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
2155 | ! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
2156 | ! END DO |
---|
2157 | |
---|
2158 | ELSE |
---|
2159 | |
---|
2160 | IF (mp(il, i + 1)>1.0E-16) THEN |
---|
2161 | IF (cvflag_grav) THEN |
---|
2162 | rp(il, i) = rp(il, i + 1) + 100. * ginv * 0.5 * sigd * (ph(il, i) - ph(il, & |
---|
2163 | i + 1)) * (evap(il, i + 1) + evap(il, i)) / mp(il, i + 1) |
---|
2164 | ELSE |
---|
2165 | rp(il, i) = rp(il, i + 1) + 5. * sigd * (ph(il, i) - ph(il, i + 1)) * (evap & |
---|
2166 | (il, i + 1) + evap(il, i)) / mp(il, i + 1) |
---|
2167 | END IF |
---|
2168 | up(il, i) = up(il, i + 1) |
---|
2169 | vp(il, i) = vp(il, i + 1) |
---|
2170 | |
---|
2171 | ! do j=1,ntra |
---|
2172 | ! trap(il,i,j)=trap(il,i+1,j) |
---|
2173 | ! END DO |
---|
2174 | |
---|
2175 | END IF |
---|
2176 | END IF |
---|
2177 | rp(il, i) = amin1(rp(il, i), rs(il, i)) |
---|
2178 | rp(il, i) = amax1(rp(il, i), 0.0) |
---|
2179 | |
---|
2180 | END IF |
---|
2181 | END IF |
---|
2182 | END DO |
---|
2183 | |
---|
2184 | 400 END DO |
---|
2185 | |
---|
2186 | END SUBROUTINE cv30_unsat |
---|
2187 | |
---|
2188 | SUBROUTINE cv30_yield(nloc, ncum, nd, na, ntra, icb, inb, delt, t, rr, u, v, & |
---|
2189 | tra, gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, rp, up, vp, trap, & |
---|
2190 | wt, water, evap, b, ment, qent, uent, vent, nent, elij, traent, sig, tv, & |
---|
2191 | tvp, iflag, precip, vprecip, ft, fr, fu, fv, ftra, upwd, dnwd, dnwd0, ma, & |
---|
2192 | mike, tls, tps, qcondc, wd) |
---|
2193 | USE lmdz_conema3 |
---|
2194 | USE lmdz_cvflag |
---|
2195 | USE lmdz_cvthermo |
---|
2196 | |
---|
2197 | IMPLICIT NONE |
---|
2198 | |
---|
2199 | ! inputs: |
---|
2200 | INTEGER ncum, nd, na, ntra, nloc |
---|
2201 | INTEGER icb(nloc), inb(nloc) |
---|
2202 | REAL delt |
---|
2203 | REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
2204 | REAL tra(nloc, nd, ntra), sig(nloc, nd) |
---|
2205 | REAL gz(nloc, na), ph(nloc, nd + 1), h(nloc, na), hp(nloc, na) |
---|
2206 | REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
---|
2207 | REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
2208 | REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
---|
2209 | REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
---|
2210 | REAL water(nloc, na), evap(nloc, na), b(nloc, na) |
---|
2211 | REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
---|
2212 | ! ym real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
2213 | REAL vent(nloc, na, na), elij(nloc, na, na) |
---|
2214 | INTEGER nent(nloc, na) |
---|
2215 | REAL traent(nloc, na, na, ntra) |
---|
2216 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
2217 | |
---|
2218 | ! input/output: |
---|
2219 | INTEGER iflag(nloc) |
---|
2220 | |
---|
2221 | ! outputs: |
---|
2222 | REAL precip(nloc) |
---|
2223 | REAL vprecip(nloc, nd + 1) |
---|
2224 | REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
2225 | REAL ftra(nloc, nd, ntra) |
---|
2226 | REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
---|
2227 | REAL dnwd0(nloc, nd), mike(nloc, nd) |
---|
2228 | REAL tls(nloc, nd), tps(nloc, nd) |
---|
2229 | REAL qcondc(nloc, nd) ! cld |
---|
2230 | REAL wd(nloc) ! gust |
---|
2231 | |
---|
2232 | ! local variables: |
---|
2233 | INTEGER i, k, il, n, j, num1 |
---|
2234 | REAL rat, awat, delti |
---|
2235 | REAL ax, bx, cx, dx, ex |
---|
2236 | REAL cpinv, rdcp, dpinv |
---|
2237 | REAL lvcp(nloc, na), mke(nloc, na) |
---|
2238 | REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
2239 | ! !! real up1(nloc), dn1(nloc) |
---|
2240 | REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
---|
2241 | REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
2242 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
2243 | REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
---|
2244 | |
---|
2245 | |
---|
2246 | ! ------------------------------------------------------------- |
---|
2247 | |
---|
2248 | ! initialization: |
---|
2249 | |
---|
2250 | delti = 1.0 / delt |
---|
2251 | |
---|
2252 | DO il = 1, ncum |
---|
2253 | precip(il) = 0.0 |
---|
2254 | wd(il) = 0.0 ! gust |
---|
2255 | vprecip(il, nd + 1) = 0. |
---|
2256 | END DO |
---|
2257 | |
---|
2258 | DO i = 1, nd |
---|
2259 | DO il = 1, ncum |
---|
2260 | vprecip(il, i) = 0.0 |
---|
2261 | ft(il, i) = 0.0 |
---|
2262 | fr(il, i) = 0.0 |
---|
2263 | fu(il, i) = 0.0 |
---|
2264 | fv(il, i) = 0.0 |
---|
2265 | qcondc(il, i) = 0.0 ! cld |
---|
2266 | qcond(il, i) = 0.0 ! cld |
---|
2267 | nqcond(il, i) = 0.0 ! cld |
---|
2268 | END DO |
---|
2269 | END DO |
---|
2270 | |
---|
2271 | ! do j=1,ntra |
---|
2272 | ! do i=1,nd |
---|
2273 | ! do il=1,ncum |
---|
2274 | ! ftra(il,i,j)=0.0 |
---|
2275 | ! enddo |
---|
2276 | ! enddo |
---|
2277 | ! enddo |
---|
2278 | |
---|
2279 | DO i = 1, nl |
---|
2280 | DO il = 1, ncum |
---|
2281 | lvcp(il, i) = lv(il, i) / cpn(il, i) |
---|
2282 | END DO |
---|
2283 | END DO |
---|
2284 | |
---|
2285 | |
---|
2286 | |
---|
2287 | ! *** calculate surface precipitation in mm/day *** |
---|
2288 | |
---|
2289 | DO il = 1, ncum |
---|
2290 | IF (ep(il, inb(il))>=0.0001) THEN |
---|
2291 | IF (cvflag_grav) THEN |
---|
2292 | precip(il) = wt(il, 1) * sigd * water(il, 1) * 86400. * 1000. / (rowl * grav) |
---|
2293 | ELSE |
---|
2294 | precip(il) = wt(il, 1) * sigd * water(il, 1) * 8640. |
---|
2295 | END IF |
---|
2296 | END IF |
---|
2297 | END DO |
---|
2298 | |
---|
2299 | ! *** CALCULATE VERTICAL PROFILE OF PRECIPITATIONs IN kg/m2/s === |
---|
2300 | |
---|
2301 | ! MAF rajout pour lessivage |
---|
2302 | DO k = 1, nl |
---|
2303 | DO il = 1, ncum |
---|
2304 | IF (k<=inb(il)) THEN |
---|
2305 | IF (cvflag_grav) THEN |
---|
2306 | vprecip(il, k) = wt(il, k) * sigd * water(il, k) / grav |
---|
2307 | ELSE |
---|
2308 | vprecip(il, k) = wt(il, k) * sigd * water(il, k) / 10. |
---|
2309 | END IF |
---|
2310 | END IF |
---|
2311 | END DO |
---|
2312 | END DO |
---|
2313 | |
---|
2314 | |
---|
2315 | ! *** Calculate downdraft velocity scale *** |
---|
2316 | ! *** NE PAS UTILISER POUR L'INSTANT *** |
---|
2317 | |
---|
2318 | ! do il=1,ncum |
---|
2319 | ! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
---|
2320 | ! : /(sigd*p(il,icb(il))) |
---|
2321 | ! enddo |
---|
2322 | |
---|
2323 | |
---|
2324 | ! *** calculate tendencies of lowest level potential temperature *** |
---|
2325 | ! *** and mixing ratio *** |
---|
2326 | |
---|
2327 | DO il = 1, ncum |
---|
2328 | work(il) = 1.0 / (ph(il, 1) - ph(il, 2)) |
---|
2329 | am(il) = 0.0 |
---|
2330 | END DO |
---|
2331 | |
---|
2332 | DO k = 2, nl |
---|
2333 | DO il = 1, ncum |
---|
2334 | IF (k<=inb(il)) THEN |
---|
2335 | am(il) = am(il) + m(il, k) |
---|
2336 | END IF |
---|
2337 | END DO |
---|
2338 | END DO |
---|
2339 | |
---|
2340 | DO il = 1, ncum |
---|
2341 | |
---|
2342 | ! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
2343 | IF (cvflag_grav) THEN |
---|
2344 | IF ((0.01 * grav * work(il) * am(il))>=delti) iflag(il) = 1 !consist vect |
---|
2345 | ft(il, 1) = 0.01 * grav * work(il) * am(il) * (t(il, 2) - t(il, 1) + (gz(il, 2) - gz(il, & |
---|
2346 | 1)) / cpn(il, 1)) |
---|
2347 | ELSE |
---|
2348 | IF ((0.1 * work(il) * am(il))>=delti) iflag(il) = 1 !consistency vect |
---|
2349 | ft(il, 1) = 0.1 * work(il) * am(il) * (t(il, 2) - t(il, 1) + (gz(il, 2) - gz(il, & |
---|
2350 | 1)) / cpn(il, 1)) |
---|
2351 | END IF |
---|
2352 | |
---|
2353 | ft(il, 1) = ft(il, 1) - 0.5 * lvcp(il, 1) * sigd * (evap(il, 1) + evap(il, 2)) |
---|
2354 | |
---|
2355 | IF (cvflag_grav) THEN |
---|
2356 | ft(il, 1) = ft(il, 1) - 0.009 * grav * sigd * mp(il, 2) * t(il, 1) * b(il, 1) * & |
---|
2357 | work(il) |
---|
2358 | ELSE |
---|
2359 | ft(il, 1) = ft(il, 1) - 0.09 * sigd * mp(il, 2) * t(il, 1) * b(il, 1) * work(il) |
---|
2360 | END IF |
---|
2361 | |
---|
2362 | ft(il, 1) = ft(il, 1) + 0.01 * sigd * wt(il, 1) * (cl - cpd) * water(il, 2) * (t(il, 2 & |
---|
2363 | ) - t(il, 1)) * work(il) / cpn(il, 1) |
---|
2364 | |
---|
2365 | IF (cvflag_grav) THEN |
---|
2366 | ! jyg1 Correction pour mieux conserver l'eau (conformite avec |
---|
2367 | ! CONVECT4.3) |
---|
2368 | ! (sb: pour l'instant, on ne fait que le chgt concernant grav, pas |
---|
2369 | ! evap) |
---|
2370 | fr(il, 1) = 0.01 * grav * mp(il, 2) * (rp(il, 2) - rr(il, 1)) * work(il) + & |
---|
2371 | sigd * 0.5 * (evap(il, 1) + evap(il, 2)) |
---|
2372 | ! +tard : +sigd*evap(il,1) |
---|
2373 | |
---|
2374 | fr(il, 1) = fr(il, 1) + 0.01 * grav * am(il) * (rr(il, 2) - rr(il, 1)) * work(il) |
---|
2375 | |
---|
2376 | fu(il, 1) = fu(il, 1) + 0.01 * grav * work(il) * (mp(il, 2) * (up(il, 2) - u(il, & |
---|
2377 | 1)) + am(il) * (u(il, 2) - u(il, 1))) |
---|
2378 | fv(il, 1) = fv(il, 1) + 0.01 * grav * work(il) * (mp(il, 2) * (vp(il, 2) - v(il, & |
---|
2379 | 1)) + am(il) * (v(il, 2) - v(il, 1))) |
---|
2380 | ELSE ! cvflag_grav |
---|
2381 | fr(il, 1) = 0.1 * mp(il, 2) * (rp(il, 2) - rr(il, 1)) * work(il) + & |
---|
2382 | sigd * 0.5 * (evap(il, 1) + evap(il, 2)) |
---|
2383 | fr(il, 1) = fr(il, 1) + 0.1 * am(il) * (rr(il, 2) - rr(il, 1)) * work(il) |
---|
2384 | fu(il, 1) = fu(il, 1) + 0.1 * work(il) * (mp(il, 2) * (up(il, 2) - u(il, & |
---|
2385 | 1)) + am(il) * (u(il, 2) - u(il, 1))) |
---|
2386 | fv(il, 1) = fv(il, 1) + 0.1 * work(il) * (mp(il, 2) * (vp(il, 2) - v(il, & |
---|
2387 | 1)) + am(il) * (v(il, 2) - v(il, 1))) |
---|
2388 | END IF ! cvflag_grav |
---|
2389 | |
---|
2390 | END DO ! il |
---|
2391 | |
---|
2392 | ! do j=1,ntra |
---|
2393 | ! do il=1,ncum |
---|
2394 | ! if (cvflag_grav) THEN |
---|
2395 | ! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
2396 | ! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
2397 | ! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
2398 | ! else |
---|
2399 | ! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
2400 | ! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
2401 | ! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
2402 | ! END IF |
---|
2403 | ! enddo |
---|
2404 | ! enddo |
---|
2405 | |
---|
2406 | DO j = 2, nl |
---|
2407 | DO il = 1, ncum |
---|
2408 | IF (j<=inb(il)) THEN |
---|
2409 | IF (cvflag_grav) THEN |
---|
2410 | fr(il, 1) = fr(il, 1) + 0.01 * grav * work(il) * ment(il, j, 1) * (qent(il, & |
---|
2411 | j, 1) - rr(il, 1)) |
---|
2412 | fu(il, 1) = fu(il, 1) + 0.01 * grav * work(il) * ment(il, j, 1) * (uent(il, & |
---|
2413 | j, 1) - u(il, 1)) |
---|
2414 | fv(il, 1) = fv(il, 1) + 0.01 * grav * work(il) * ment(il, j, 1) * (vent(il, & |
---|
2415 | j, 1) - v(il, 1)) |
---|
2416 | ELSE ! cvflag_grav |
---|
2417 | fr(il, 1) = fr(il, 1) + 0.1 * work(il) * ment(il, j, 1) * (qent(il, j, 1) - & |
---|
2418 | rr(il, 1)) |
---|
2419 | fu(il, 1) = fu(il, 1) + 0.1 * work(il) * ment(il, j, 1) * (uent(il, j, 1) - u & |
---|
2420 | (il, 1)) |
---|
2421 | fv(il, 1) = fv(il, 1) + 0.1 * work(il) * ment(il, j, 1) * (vent(il, j, 1) - v & |
---|
2422 | (il, 1)) |
---|
2423 | END IF ! cvflag_grav |
---|
2424 | END IF ! j |
---|
2425 | END DO |
---|
2426 | END DO |
---|
2427 | |
---|
2428 | ! do k=1,ntra |
---|
2429 | ! do j=2,nl |
---|
2430 | ! do il=1,ncum |
---|
2431 | ! if (j.le.inb(il)) THEN |
---|
2432 | ! if (cvflag_grav) THEN |
---|
2433 | ! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
2434 | ! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
2435 | ! else |
---|
2436 | ! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
2437 | ! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
2438 | ! END IF |
---|
2439 | |
---|
2440 | ! END IF |
---|
2441 | ! enddo |
---|
2442 | ! enddo |
---|
2443 | ! enddo |
---|
2444 | |
---|
2445 | |
---|
2446 | ! *** calculate tendencies of potential temperature and mixing ratio *** |
---|
2447 | ! *** at levels above the lowest level *** |
---|
2448 | |
---|
2449 | ! *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
2450 | ! *** through each level *** |
---|
2451 | |
---|
2452 | DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
---|
2453 | |
---|
2454 | num1 = 0 |
---|
2455 | DO il = 1, ncum |
---|
2456 | IF (i<=inb(il)) num1 = num1 + 1 |
---|
2457 | END DO |
---|
2458 | IF (num1<=0) GO TO 500 |
---|
2459 | |
---|
2460 | CALL zilch(amp1, ncum) |
---|
2461 | CALL zilch(ad, ncum) |
---|
2462 | |
---|
2463 | DO k = i + 1, nl + 1 |
---|
2464 | DO il = 1, ncum |
---|
2465 | IF (i<=inb(il) .AND. k<=(inb(il) + 1)) THEN |
---|
2466 | amp1(il) = amp1(il) + m(il, k) |
---|
2467 | END IF |
---|
2468 | END DO |
---|
2469 | END DO |
---|
2470 | |
---|
2471 | DO k = 1, i |
---|
2472 | DO j = i + 1, nl + 1 |
---|
2473 | DO il = 1, ncum |
---|
2474 | IF (i<=inb(il) .AND. j<=(inb(il) + 1)) THEN |
---|
2475 | amp1(il) = amp1(il) + ment(il, k, j) |
---|
2476 | END IF |
---|
2477 | END DO |
---|
2478 | END DO |
---|
2479 | END DO |
---|
2480 | |
---|
2481 | DO k = 1, i - 1 |
---|
2482 | DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
---|
2483 | DO il = 1, ncum |
---|
2484 | IF (i<=inb(il) .AND. j<=inb(il)) THEN |
---|
2485 | ad(il) = ad(il) + ment(il, j, k) |
---|
2486 | END IF |
---|
2487 | END DO |
---|
2488 | END DO |
---|
2489 | END DO |
---|
2490 | |
---|
2491 | DO il = 1, ncum |
---|
2492 | IF (i<=inb(il)) THEN |
---|
2493 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
2494 | cpinv = 1.0 / cpn(il, i) |
---|
2495 | |
---|
2496 | ! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
2497 | IF (cvflag_grav) THEN |
---|
2498 | IF ((0.01 * grav * dpinv * amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
2499 | ELSE |
---|
2500 | IF ((0.1 * dpinv * amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
2501 | END IF |
---|
2502 | |
---|
2503 | IF (cvflag_grav) THEN |
---|
2504 | ft(il, i) = 0.01 * grav * dpinv * (amp1(il) * (t(il, i + 1) - t(il, & |
---|
2505 | i) + (gz(il, i + 1) - gz(il, i)) * cpinv) - ad(il) * (t(il, i) - t(il, & |
---|
2506 | i - 1) + (gz(il, i) - gz(il, i - 1)) * cpinv)) - 0.5 * sigd * lvcp(il, i) * (evap(& |
---|
2507 | il, i) + evap(il, i + 1)) |
---|
2508 | rat = cpn(il, i - 1) * cpinv |
---|
2509 | ft(il, i) = ft(il, i) - 0.009 * grav * sigd * (mp(il, i + 1) * t(il, i) * b(il, i) & |
---|
2510 | - mp(il, i) * t(il, i - 1) * rat * b(il, i - 1)) * dpinv |
---|
2511 | ft(il, i) = ft(il, i) + 0.01 * grav * dpinv * ment(il, i, i) * (hp(il, i) - h(& |
---|
2512 | il, i) + t(il, i) * (cpv - cpd) * (rr(il, i) - qent(il, i, i))) * cpinv |
---|
2513 | ELSE ! cvflag_grav |
---|
2514 | ft(il, i) = 0.1 * dpinv * (amp1(il) * (t(il, i + 1) - t(il, & |
---|
2515 | i) + (gz(il, i + 1) - gz(il, i)) * cpinv) - ad(il) * (t(il, i) - t(il, & |
---|
2516 | i - 1) + (gz(il, i) - gz(il, i - 1)) * cpinv)) - 0.5 * sigd * lvcp(il, i) * (evap(& |
---|
2517 | il, i) + evap(il, i + 1)) |
---|
2518 | rat = cpn(il, i - 1) * cpinv |
---|
2519 | ft(il, i) = ft(il, i) - 0.09 * sigd * (mp(il, i + 1) * t(il, i) * b(il, i) - mp(il & |
---|
2520 | , i) * t(il, i - 1) * rat * b(il, i - 1)) * dpinv |
---|
2521 | ft(il, i) = ft(il, i) + 0.1 * dpinv * ment(il, i, i) * (hp(il, i) - h(il, i) + & |
---|
2522 | t(il, i) * (cpv - cpd) * (rr(il, i) - qent(il, i, i))) * cpinv |
---|
2523 | END IF ! cvflag_grav |
---|
2524 | |
---|
2525 | ft(il, i) = ft(il, i) + 0.01 * sigd * wt(il, i) * (cl - cpd) * water(il, i + 1) * (& |
---|
2526 | t(il, i + 1) - t(il, i)) * dpinv * cpinv |
---|
2527 | |
---|
2528 | IF (cvflag_grav) THEN |
---|
2529 | fr(il, i) = 0.01 * grav * dpinv * (amp1(il) * (rr(il, i + 1) - rr(il, & |
---|
2530 | i)) - ad(il) * (rr(il, i) - rr(il, i - 1))) |
---|
2531 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * (amp1(il) * (u(il, i + 1) - u(il, & |
---|
2532 | i)) - ad(il) * (u(il, i) - u(il, i - 1))) |
---|
2533 | fv(il, i) = fv(il, i) + 0.01 * grav * dpinv * (amp1(il) * (v(il, i + 1) - v(il, & |
---|
2534 | i)) - ad(il) * (v(il, i) - v(il, i - 1))) |
---|
2535 | ELSE ! cvflag_grav |
---|
2536 | fr(il, i) = 0.1 * dpinv * (amp1(il) * (rr(il, i + 1) - rr(il, & |
---|
2537 | i)) - ad(il) * (rr(il, i) - rr(il, i - 1))) |
---|
2538 | fu(il, i) = fu(il, i) + 0.1 * dpinv * (amp1(il) * (u(il, i + 1) - u(il, & |
---|
2539 | i)) - ad(il) * (u(il, i) - u(il, i - 1))) |
---|
2540 | fv(il, i) = fv(il, i) + 0.1 * dpinv * (amp1(il) * (v(il, i + 1) - v(il, & |
---|
2541 | i)) - ad(il) * (v(il, i) - v(il, i - 1))) |
---|
2542 | END IF ! cvflag_grav |
---|
2543 | |
---|
2544 | END IF ! i |
---|
2545 | END DO |
---|
2546 | |
---|
2547 | ! do k=1,ntra |
---|
2548 | ! do il=1,ncum |
---|
2549 | ! if (i.le.inb(il)) THEN |
---|
2550 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2551 | ! cpinv=1.0/cpn(il,i) |
---|
2552 | ! if (cvflag_grav) THEN |
---|
2553 | ! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
2554 | ! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
2555 | ! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
2556 | ! else |
---|
2557 | ! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
2558 | ! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
2559 | ! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
2560 | ! END IF |
---|
2561 | ! END IF |
---|
2562 | ! enddo |
---|
2563 | ! enddo |
---|
2564 | |
---|
2565 | DO k = 1, i - 1 |
---|
2566 | DO il = 1, ncum |
---|
2567 | IF (i<=inb(il)) THEN |
---|
2568 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
2569 | cpinv = 1.0 / cpn(il, i) |
---|
2570 | |
---|
2571 | awat = elij(il, k, i) - (1. - ep(il, i)) * clw(il, i) |
---|
2572 | awat = amax1(awat, 0.0) |
---|
2573 | |
---|
2574 | IF (cvflag_grav) THEN |
---|
2575 | fr(il, i) = fr(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (qent(il, k & |
---|
2576 | , i) - awat - rr(il, i)) |
---|
2577 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (uent(il, k & |
---|
2578 | , i) - u(il, i)) |
---|
2579 | fv(il, i) = fv(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (vent(il, k & |
---|
2580 | , i) - v(il, i)) |
---|
2581 | ELSE ! cvflag_grav |
---|
2582 | fr(il, i) = fr(il, i) + 0.1 * dpinv * ment(il, k, i) * (qent(il, k, i) - & |
---|
2583 | awat - rr(il, i)) |
---|
2584 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (uent(il, k & |
---|
2585 | , i) - u(il, i)) |
---|
2586 | fv(il, i) = fv(il, i) + 0.1 * dpinv * ment(il, k, i) * (vent(il, k, i) - v(& |
---|
2587 | il, i)) |
---|
2588 | END IF ! cvflag_grav |
---|
2589 | |
---|
2590 | ! (saturated updrafts resulting from mixing) ! cld |
---|
2591 | qcond(il, i) = qcond(il, i) + (elij(il, k, i) - awat) ! cld |
---|
2592 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
2593 | END IF ! i |
---|
2594 | END DO |
---|
2595 | END DO |
---|
2596 | |
---|
2597 | ! do j=1,ntra |
---|
2598 | ! do k=1,i-1 |
---|
2599 | ! do il=1,ncum |
---|
2600 | ! if (i.le.inb(il)) THEN |
---|
2601 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2602 | ! cpinv=1.0/cpn(il,i) |
---|
2603 | ! if (cvflag_grav) THEN |
---|
2604 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
2605 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2606 | ! else |
---|
2607 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
2608 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2609 | ! END IF |
---|
2610 | ! END IF |
---|
2611 | ! enddo |
---|
2612 | ! enddo |
---|
2613 | ! enddo |
---|
2614 | |
---|
2615 | DO k = i, nl + 1 |
---|
2616 | DO il = 1, ncum |
---|
2617 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
2618 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
2619 | cpinv = 1.0 / cpn(il, i) |
---|
2620 | |
---|
2621 | IF (cvflag_grav) THEN |
---|
2622 | fr(il, i) = fr(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (qent(il, k & |
---|
2623 | , i) - rr(il, i)) |
---|
2624 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (uent(il, k & |
---|
2625 | , i) - u(il, i)) |
---|
2626 | fv(il, i) = fv(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (vent(il, k & |
---|
2627 | , i) - v(il, i)) |
---|
2628 | ELSE ! cvflag_grav |
---|
2629 | fr(il, i) = fr(il, i) + 0.1 * dpinv * ment(il, k, i) * (qent(il, k, i) - rr & |
---|
2630 | (il, i)) |
---|
2631 | fu(il, i) = fu(il, i) + 0.1 * dpinv * ment(il, k, i) * (uent(il, k, i) - u(& |
---|
2632 | il, i)) |
---|
2633 | fv(il, i) = fv(il, i) + 0.1 * dpinv * ment(il, k, i) * (vent(il, k, i) - v(& |
---|
2634 | il, i)) |
---|
2635 | END IF ! cvflag_grav |
---|
2636 | END IF ! i and k |
---|
2637 | END DO |
---|
2638 | END DO |
---|
2639 | |
---|
2640 | ! do j=1,ntra |
---|
2641 | ! do k=i,nl+1 |
---|
2642 | ! do il=1,ncum |
---|
2643 | ! if (i.le.inb(il) .AND. k.le.inb(il)) THEN |
---|
2644 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2645 | ! cpinv=1.0/cpn(il,i) |
---|
2646 | ! if (cvflag_grav) THEN |
---|
2647 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
2648 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2649 | ! else |
---|
2650 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
2651 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2652 | ! END IF |
---|
2653 | ! END IF ! i and k |
---|
2654 | ! enddo |
---|
2655 | ! enddo |
---|
2656 | ! enddo |
---|
2657 | |
---|
2658 | DO il = 1, ncum |
---|
2659 | IF (i<=inb(il)) THEN |
---|
2660 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
2661 | cpinv = 1.0 / cpn(il, i) |
---|
2662 | |
---|
2663 | IF (cvflag_grav) THEN |
---|
2664 | ! sb: on ne fait pas encore la correction permettant de mieux |
---|
2665 | ! conserver l'eau: |
---|
2666 | fr(il, i) = fr(il, i) + 0.5 * sigd * (evap(il, i) + evap(il, i + 1)) + & |
---|
2667 | 0.01 * grav * (mp(il, i + 1) * (rp(il, i + 1) - rr(il, i)) - mp(il, i) * (rp(il, & |
---|
2668 | i) - rr(il, i - 1))) * dpinv |
---|
2669 | |
---|
2670 | fu(il, i) = fu(il, i) + 0.01 * grav * (mp(il, i + 1) * (up(il, i + 1) - u(il, & |
---|
2671 | i)) - mp(il, i) * (up(il, i) - u(il, i - 1))) * dpinv |
---|
2672 | fv(il, i) = fv(il, i) + 0.01 * grav * (mp(il, i + 1) * (vp(il, i + 1) - v(il, & |
---|
2673 | i)) - mp(il, i) * (vp(il, i) - v(il, i - 1))) * dpinv |
---|
2674 | ELSE ! cvflag_grav |
---|
2675 | fr(il, i) = fr(il, i) + 0.5 * sigd * (evap(il, i) + evap(il, i + 1)) + & |
---|
2676 | 0.1 * (mp(il, i + 1) * (rp(il, i + 1) - rr(il, i)) - mp(il, i) * (rp(il, i) - rr(il, & |
---|
2677 | i - 1))) * dpinv |
---|
2678 | fu(il, i) = fu(il, i) + 0.1 * (mp(il, i + 1) * (up(il, i + 1) - u(il, & |
---|
2679 | i)) - mp(il, i) * (up(il, i) - u(il, i - 1))) * dpinv |
---|
2680 | fv(il, i) = fv(il, i) + 0.1 * (mp(il, i + 1) * (vp(il, i + 1) - v(il, & |
---|
2681 | i)) - mp(il, i) * (vp(il, i) - v(il, i - 1))) * dpinv |
---|
2682 | END IF ! cvflag_grav |
---|
2683 | |
---|
2684 | END IF ! i |
---|
2685 | END DO |
---|
2686 | |
---|
2687 | ! sb: interface with the cloud parameterization: ! cld |
---|
2688 | |
---|
2689 | DO k = i + 1, nl |
---|
2690 | DO il = 1, ncum |
---|
2691 | IF (k<=inb(il) .AND. i<=inb(il)) THEN ! cld |
---|
2692 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
2693 | qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
---|
2694 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
2695 | END IF ! cld |
---|
2696 | END DO ! cld |
---|
2697 | END DO ! cld |
---|
2698 | |
---|
2699 | ! (particular case: no detraining level is found) ! cld |
---|
2700 | DO il = 1, ncum ! cld |
---|
2701 | IF (i<=inb(il) .AND. nent(il, i)==0) THEN ! cld |
---|
2702 | qcond(il, i) = qcond(il, i) + (1. - ep(il, i)) * clw(il, i) ! cld |
---|
2703 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
2704 | END IF ! cld |
---|
2705 | END DO ! cld |
---|
2706 | |
---|
2707 | DO il = 1, ncum ! cld |
---|
2708 | IF (i<=inb(il) .AND. nqcond(il, i)/=0.) THEN ! cld |
---|
2709 | qcond(il, i) = qcond(il, i) / nqcond(il, i) ! cld |
---|
2710 | END IF ! cld |
---|
2711 | END DO |
---|
2712 | |
---|
2713 | ! do j=1,ntra |
---|
2714 | ! do il=1,ncum |
---|
2715 | ! if (i.le.inb(il)) THEN |
---|
2716 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2717 | ! cpinv=1.0/cpn(il,i) |
---|
2718 | |
---|
2719 | ! if (cvflag_grav) THEN |
---|
2720 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
2721 | ! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
2722 | ! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
2723 | ! else |
---|
2724 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
2725 | ! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
2726 | ! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
2727 | ! END IF |
---|
2728 | ! END IF ! i |
---|
2729 | ! enddo |
---|
2730 | ! enddo |
---|
2731 | |
---|
2732 | 500 END DO |
---|
2733 | |
---|
2734 | |
---|
2735 | ! *** move the detrainment at level inb down to level inb-1 *** |
---|
2736 | ! *** in such a way as to preserve the vertically *** |
---|
2737 | ! *** integrated enthalpy and water tendencies *** |
---|
2738 | |
---|
2739 | DO il = 1, ncum |
---|
2740 | |
---|
2741 | ax = 0.1 * ment(il, inb(il), inb(il)) * (hp(il, inb(il)) - h(il, inb(il)) + t(il, & |
---|
2742 | inb(il)) * (cpv - cpd) * (rr(il, inb(il)) - qent(il, inb(il), & |
---|
2743 | inb(il)))) / (cpn(il, inb(il)) * (ph(il, inb(il)) - ph(il, inb(il) + 1))) |
---|
2744 | ft(il, inb(il)) = ft(il, inb(il)) - ax |
---|
2745 | ft(il, inb(il) - 1) = ft(il, inb(il) - 1) + ax * cpn(il, inb(il)) * (ph(il, inb(il & |
---|
2746 | )) - ph(il, inb(il) + 1)) / (cpn(il, inb(il) - 1) * (ph(il, inb(il) - 1) - ph(il, & |
---|
2747 | inb(il)))) |
---|
2748 | |
---|
2749 | bx = 0.1 * ment(il, inb(il), inb(il)) * (qent(il, inb(il), inb(il)) - rr(il, inb(& |
---|
2750 | il))) / (ph(il, inb(il)) - ph(il, inb(il) + 1)) |
---|
2751 | fr(il, inb(il)) = fr(il, inb(il)) - bx |
---|
2752 | fr(il, inb(il) - 1) = fr(il, inb(il) - 1) + bx * (ph(il, inb(il)) - ph(il, inb(il) + & |
---|
2753 | 1)) / (ph(il, inb(il) - 1) - ph(il, inb(il))) |
---|
2754 | |
---|
2755 | cx = 0.1 * ment(il, inb(il), inb(il)) * (uent(il, inb(il), inb(il)) - u(il, inb(il & |
---|
2756 | ))) / (ph(il, inb(il)) - ph(il, inb(il) + 1)) |
---|
2757 | fu(il, inb(il)) = fu(il, inb(il)) - cx |
---|
2758 | fu(il, inb(il) - 1) = fu(il, inb(il) - 1) + cx * (ph(il, inb(il)) - ph(il, inb(il) + & |
---|
2759 | 1)) / (ph(il, inb(il) - 1) - ph(il, inb(il))) |
---|
2760 | |
---|
2761 | dx = 0.1 * ment(il, inb(il), inb(il)) * (vent(il, inb(il), inb(il)) - v(il, inb(il & |
---|
2762 | ))) / (ph(il, inb(il)) - ph(il, inb(il) + 1)) |
---|
2763 | fv(il, inb(il)) = fv(il, inb(il)) - dx |
---|
2764 | fv(il, inb(il) - 1) = fv(il, inb(il) - 1) + dx * (ph(il, inb(il)) - ph(il, inb(il) + & |
---|
2765 | 1)) / (ph(il, inb(il) - 1) - ph(il, inb(il))) |
---|
2766 | |
---|
2767 | END DO |
---|
2768 | |
---|
2769 | ! do j=1,ntra |
---|
2770 | ! do il=1,ncum |
---|
2771 | ! ex=0.1*ment(il,inb(il),inb(il)) |
---|
2772 | ! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
2773 | ! : /(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2774 | ! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
2775 | ! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
2776 | ! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2777 | ! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
2778 | ! enddo |
---|
2779 | ! enddo |
---|
2780 | |
---|
2781 | |
---|
2782 | ! *** homoginize tendencies below cloud base *** |
---|
2783 | |
---|
2784 | DO il = 1, ncum |
---|
2785 | asum(il) = 0.0 |
---|
2786 | bsum(il) = 0.0 |
---|
2787 | csum(il) = 0.0 |
---|
2788 | dsum(il) = 0.0 |
---|
2789 | END DO |
---|
2790 | |
---|
2791 | DO i = 1, nl |
---|
2792 | DO il = 1, ncum |
---|
2793 | IF (i<=(icb(il) - 1)) THEN |
---|
2794 | asum(il) = asum(il) + ft(il, i) * (ph(il, i) - ph(il, i + 1)) |
---|
2795 | bsum(il) = bsum(il) + fr(il, i) * (lv(il, i) + (cl - cpd) * (t(il, i) - t(il, & |
---|
2796 | 1))) * (ph(il, i) - ph(il, i + 1)) |
---|
2797 | csum(il) = csum(il) + (lv(il, i) + (cl - cpd) * (t(il, i) - t(il, & |
---|
2798 | 1))) * (ph(il, i) - ph(il, i + 1)) |
---|
2799 | dsum(il) = dsum(il) + t(il, i) * (ph(il, i) - ph(il, i + 1)) / th(il, i) |
---|
2800 | END IF |
---|
2801 | END DO |
---|
2802 | END DO |
---|
2803 | |
---|
2804 | ! !!! do 700 i=1,icb(il)-1 |
---|
2805 | DO i = 1, nl |
---|
2806 | DO il = 1, ncum |
---|
2807 | IF (i<=(icb(il) - 1)) THEN |
---|
2808 | ft(il, i) = asum(il) * t(il, i) / (th(il, i) * dsum(il)) |
---|
2809 | fr(il, i) = bsum(il) / csum(il) |
---|
2810 | END IF |
---|
2811 | END DO |
---|
2812 | END DO |
---|
2813 | |
---|
2814 | |
---|
2815 | ! *** reset counter and return *** |
---|
2816 | |
---|
2817 | DO il = 1, ncum |
---|
2818 | sig(il, nd) = 2.0 |
---|
2819 | END DO |
---|
2820 | |
---|
2821 | DO i = 1, nd |
---|
2822 | DO il = 1, ncum |
---|
2823 | upwd(il, i) = 0.0 |
---|
2824 | dnwd(il, i) = 0.0 |
---|
2825 | END DO |
---|
2826 | END DO |
---|
2827 | |
---|
2828 | DO i = 1, nl |
---|
2829 | DO il = 1, ncum |
---|
2830 | dnwd0(il, i) = -mp(il, i) |
---|
2831 | END DO |
---|
2832 | END DO |
---|
2833 | DO i = nl + 1, nd |
---|
2834 | DO il = 1, ncum |
---|
2835 | dnwd0(il, i) = 0. |
---|
2836 | END DO |
---|
2837 | END DO |
---|
2838 | |
---|
2839 | DO i = 1, nl |
---|
2840 | DO il = 1, ncum |
---|
2841 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
2842 | upwd(il, i) = 0.0 |
---|
2843 | dnwd(il, i) = 0.0 |
---|
2844 | END IF |
---|
2845 | END DO |
---|
2846 | END DO |
---|
2847 | |
---|
2848 | DO i = 1, nl |
---|
2849 | DO k = 1, nl |
---|
2850 | DO il = 1, ncum |
---|
2851 | up1(il, k, i) = 0.0 |
---|
2852 | dn1(il, k, i) = 0.0 |
---|
2853 | END DO |
---|
2854 | END DO |
---|
2855 | END DO |
---|
2856 | |
---|
2857 | DO i = 1, nl |
---|
2858 | DO k = i, nl |
---|
2859 | DO n = 1, i - 1 |
---|
2860 | DO il = 1, ncum |
---|
2861 | IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
---|
2862 | up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
---|
2863 | dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
---|
2864 | END IF |
---|
2865 | END DO |
---|
2866 | END DO |
---|
2867 | END DO |
---|
2868 | END DO |
---|
2869 | |
---|
2870 | DO i = 2, nl |
---|
2871 | DO k = i, nl |
---|
2872 | DO il = 1, ncum |
---|
2873 | ! test if (i.ge.icb(il).AND.i.le.inb(il).AND.k.le.inb(il)) |
---|
2874 | ! THEN |
---|
2875 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
2876 | upwd(il, i) = upwd(il, i) + m(il, k) + up1(il, k, i) |
---|
2877 | dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
---|
2878 | END IF |
---|
2879 | END DO |
---|
2880 | END DO |
---|
2881 | END DO |
---|
2882 | |
---|
2883 | |
---|
2884 | ! !!! DO il=1,ncum |
---|
2885 | ! !!! do i=icb(il),inb(il) |
---|
2886 | ! !!! |
---|
2887 | ! !!! upwd(il,i)=0.0 |
---|
2888 | ! !!! dnwd(il,i)=0.0 |
---|
2889 | ! !!! do k=i,inb(il) |
---|
2890 | ! !!! up1=0.0 |
---|
2891 | ! !!! dn1=0.0 |
---|
2892 | ! !!! do n=1,i-1 |
---|
2893 | ! !!! up1=up1+ment(il,n,k) |
---|
2894 | ! !!! dn1=dn1-ment(il,k,n) |
---|
2895 | ! !!! enddo |
---|
2896 | ! !!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
2897 | ! !!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
2898 | ! !!! enddo |
---|
2899 | ! !!! enddo |
---|
2900 | ! !!! |
---|
2901 | ! !!! ENDDO |
---|
2902 | |
---|
2903 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2904 | ! determination de la variation de flux ascendant entre |
---|
2905 | ! deux niveau non dilue mike |
---|
2906 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2907 | |
---|
2908 | DO i = 1, nl |
---|
2909 | DO il = 1, ncum |
---|
2910 | mike(il, i) = m(il, i) |
---|
2911 | END DO |
---|
2912 | END DO |
---|
2913 | |
---|
2914 | DO i = nl + 1, nd |
---|
2915 | DO il = 1, ncum |
---|
2916 | mike(il, i) = 0. |
---|
2917 | END DO |
---|
2918 | END DO |
---|
2919 | |
---|
2920 | DO i = 1, nd |
---|
2921 | DO il = 1, ncum |
---|
2922 | ma(il, i) = 0 |
---|
2923 | END DO |
---|
2924 | END DO |
---|
2925 | |
---|
2926 | DO i = 1, nl |
---|
2927 | DO j = i, nl |
---|
2928 | DO il = 1, ncum |
---|
2929 | ma(il, i) = ma(il, i) + m(il, j) |
---|
2930 | END DO |
---|
2931 | END DO |
---|
2932 | END DO |
---|
2933 | |
---|
2934 | DO i = nl + 1, nd |
---|
2935 | DO il = 1, ncum |
---|
2936 | ma(il, i) = 0. |
---|
2937 | END DO |
---|
2938 | END DO |
---|
2939 | |
---|
2940 | DO i = 1, nl |
---|
2941 | DO il = 1, ncum |
---|
2942 | IF (i<=(icb(il) - 1)) THEN |
---|
2943 | ma(il, i) = 0 |
---|
2944 | END IF |
---|
2945 | END DO |
---|
2946 | END DO |
---|
2947 | |
---|
2948 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2949 | ! icb represente de niveau ou se trouve la |
---|
2950 | ! base du nuage , et inb le top du nuage |
---|
2951 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2952 | |
---|
2953 | DO i = 1, nd |
---|
2954 | DO il = 1, ncum |
---|
2955 | mke(il, i) = upwd(il, i) + dnwd(il, i) |
---|
2956 | END DO |
---|
2957 | END DO |
---|
2958 | |
---|
2959 | DO i = 1, nd |
---|
2960 | DO il = 1, ncum |
---|
2961 | rdcp = (rrd * (1. - rr(il, i)) - rr(il, i) * rrv) / (cpd * (1. - rr(il, & |
---|
2962 | i)) + rr(il, i) * cpv) |
---|
2963 | tls(il, i) = t(il, i) * (1000.0 / p(il, i))**rdcp |
---|
2964 | tps(il, i) = tp(il, i) |
---|
2965 | END DO |
---|
2966 | END DO |
---|
2967 | |
---|
2968 | |
---|
2969 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
2970 | ! *** of condensed water *** ! cld |
---|
2971 | ! cld |
---|
2972 | |
---|
2973 | DO i = 1, nd ! cld |
---|
2974 | DO il = 1, ncum ! cld |
---|
2975 | mac(il, i) = 0.0 ! cld |
---|
2976 | wa(il, i) = 0.0 ! cld |
---|
2977 | siga(il, i) = 0.0 ! cld |
---|
2978 | sax(il, i) = 0.0 ! cld |
---|
2979 | END DO ! cld |
---|
2980 | END DO ! cld |
---|
2981 | |
---|
2982 | DO i = minorig, nl ! cld |
---|
2983 | DO k = i + 1, nl + 1 ! cld |
---|
2984 | DO il = 1, ncum ! cld |
---|
2985 | IF (i<=inb(il) .AND. k<=(inb(il) + 1)) THEN ! cld |
---|
2986 | mac(il, i) = mac(il, i) + m(il, k) ! cld |
---|
2987 | END IF ! cld |
---|
2988 | END DO ! cld |
---|
2989 | END DO ! cld |
---|
2990 | END DO ! cld |
---|
2991 | |
---|
2992 | DO i = 1, nl ! cld |
---|
2993 | DO j = 1, i ! cld |
---|
2994 | DO il = 1, ncum ! cld |
---|
2995 | IF (i>=icb(il) .AND. i<=(inb(il) - 1) & ! cld |
---|
2996 | .AND. j>=icb(il)) THEN ! cld |
---|
2997 | sax(il, i) = sax(il, i) + rrd * (tvp(il, j) - tv(il, j)) & ! cld |
---|
2998 | * (ph(il, j) - ph(il, j + 1)) / p(il, j) ! cld |
---|
2999 | END IF ! cld |
---|
3000 | END DO ! cld |
---|
3001 | END DO ! cld |
---|
3002 | END DO ! cld |
---|
3003 | |
---|
3004 | DO i = 1, nl ! cld |
---|
3005 | DO il = 1, ncum ! cld |
---|
3006 | IF (i>=icb(il) .AND. i<=(inb(il) - 1) & ! cld |
---|
3007 | .AND. sax(il, i)>0.0) THEN ! cld |
---|
3008 | wa(il, i) = sqrt(2. * sax(il, i)) ! cld |
---|
3009 | END IF ! cld |
---|
3010 | END DO ! cld |
---|
3011 | END DO ! cld |
---|
3012 | |
---|
3013 | DO i = 1, nl ! cld |
---|
3014 | DO il = 1, ncum ! cld |
---|
3015 | IF (wa(il, i)>0.0) & ! cld |
---|
3016 | siga(il, i) = mac(il, i) / wa(il, i) & ! cld |
---|
3017 | * rrd * tvp(il, i) / p(il, i) / 100. / delta ! cld |
---|
3018 | siga(il, i) = min(siga(il, i), 1.0) ! cld |
---|
3019 | ! IM cf. FH |
---|
3020 | IF (iflag_clw==0) THEN |
---|
3021 | qcondc(il, i) = siga(il, i) * clw(il, i) * (1. - ep(il, i)) & ! cld |
---|
3022 | + (1. - siga(il, i)) * qcond(il, i) ! cld |
---|
3023 | ELSE IF (iflag_clw==1) THEN |
---|
3024 | qcondc(il, i) = qcond(il, i) ! cld |
---|
3025 | END IF |
---|
3026 | |
---|
3027 | END DO ! cld |
---|
3028 | END DO ! cld |
---|
3029 | |
---|
3030 | END SUBROUTINE cv30_yield |
---|
3031 | |
---|
3032 | !RomP >>> |
---|
3033 | SUBROUTINE cv30_tracer(nloc, len, ncum, nd, na, ment, sij, da, phi, phi2, & |
---|
3034 | d1a, dam, ep, vprecip, elij, clw, epmlmmm, eplamm, icb, inb) |
---|
3035 | IMPLICIT NONE |
---|
3036 | |
---|
3037 | |
---|
3038 | |
---|
3039 | ! inputs: |
---|
3040 | INTEGER ncum, nd, na, nloc, len |
---|
3041 | REAL ment(nloc, na, na), sij(nloc, na, na) |
---|
3042 | REAL clw(nloc, nd), elij(nloc, na, na) |
---|
3043 | REAL ep(nloc, na) |
---|
3044 | INTEGER icb(nloc), inb(nloc) |
---|
3045 | REAL vprecip(nloc, nd + 1) |
---|
3046 | ! ouputs: |
---|
3047 | REAL da(nloc, na), phi(nloc, na, na) |
---|
3048 | REAL phi2(nloc, na, na) |
---|
3049 | REAL d1a(nloc, na), dam(nloc, na) |
---|
3050 | REAL epmlmmm(nloc, na, na), eplamm(nloc, na) |
---|
3051 | ! variables pour tracer dans precip de l'AA et des mel |
---|
3052 | ! local variables: |
---|
3053 | INTEGER i, j, k, nam1 |
---|
3054 | REAL epm(nloc, na, na) |
---|
3055 | |
---|
3056 | nam1 = na - 1 ! Introduced because ep is not defined for j=na |
---|
3057 | ! variables d'Emanuel : du second indice au troisieme |
---|
3058 | ! ---> tab(i,k,j) -> de l origine k a l arrivee j |
---|
3059 | ! ment, sij, elij |
---|
3060 | ! variables personnelles : du troisieme au second indice |
---|
3061 | ! ---> tab(i,j,k) -> de k a j |
---|
3062 | ! phi, phi2 |
---|
3063 | |
---|
3064 | ! initialisations |
---|
3065 | DO j = 1, na |
---|
3066 | DO i = 1, ncum |
---|
3067 | da(i, j) = 0. |
---|
3068 | d1a(i, j) = 0. |
---|
3069 | dam(i, j) = 0. |
---|
3070 | eplamm(i, j) = 0. |
---|
3071 | END DO |
---|
3072 | END DO |
---|
3073 | DO k = 1, na |
---|
3074 | DO j = 1, na |
---|
3075 | DO i = 1, ncum |
---|
3076 | epm(i, j, k) = 0. |
---|
3077 | epmlmmm(i, j, k) = 0. |
---|
3078 | phi(i, j, k) = 0. |
---|
3079 | phi2(i, j, k) = 0. |
---|
3080 | END DO |
---|
3081 | END DO |
---|
3082 | END DO |
---|
3083 | |
---|
3084 | ! fraction deau condensee dans les melanges convertie en precip : epm |
---|
3085 | ! et eau condensée précipitée dans masse d'air saturé : l_m*dM_m/dzdz.dzdz |
---|
3086 | DO j = 1, nam1 |
---|
3087 | DO k = 1, j - 1 |
---|
3088 | DO i = 1, ncum |
---|
3089 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
3090 | !jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
---|
3091 | epm(i, j, k) = 1. - (1. - ep(i, j)) * clw(i, j) / max(elij(i, k, j), 1.E-16) |
---|
3092 | |
---|
3093 | epm(i, j, k) = max(epm(i, j, k), 0.0) |
---|
3094 | END IF |
---|
3095 | END DO |
---|
3096 | END DO |
---|
3097 | END DO |
---|
3098 | |
---|
3099 | DO j = 1, nam1 |
---|
3100 | DO k = 1, nam1 |
---|
3101 | DO i = 1, ncum |
---|
3102 | IF (k>=icb(i) .AND. k<=inb(i)) THEN |
---|
3103 | eplamm(i, j) = eplamm(i, j) + ep(i, j) * clw(i, j) * ment(i, j, k) * (1. - & |
---|
3104 | sij(i, j, k)) |
---|
3105 | END IF |
---|
3106 | END DO |
---|
3107 | END DO |
---|
3108 | END DO |
---|
3109 | |
---|
3110 | DO j = 1, nam1 |
---|
3111 | DO k = 1, j - 1 |
---|
3112 | DO i = 1, ncum |
---|
3113 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
3114 | epmlmmm(i, j, k) = epm(i, j, k) * elij(i, k, j) * ment(i, k, j) |
---|
3115 | END IF |
---|
3116 | END DO |
---|
3117 | END DO |
---|
3118 | END DO |
---|
3119 | |
---|
3120 | ! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
---|
3121 | DO j = 1, nam1 |
---|
3122 | DO k = 1, nam1 |
---|
3123 | DO i = 1, ncum |
---|
3124 | da(i, j) = da(i, j) + (1. - sij(i, k, j)) * ment(i, k, j) |
---|
3125 | phi(i, j, k) = sij(i, k, j) * ment(i, k, j) |
---|
3126 | d1a(i, j) = d1a(i, j) + ment(i, k, j) * ep(i, k) * (1. - sij(i, k, j)) |
---|
3127 | END DO |
---|
3128 | END DO |
---|
3129 | END DO |
---|
3130 | |
---|
3131 | DO j = 1, nam1 |
---|
3132 | DO k = 1, j - 1 |
---|
3133 | DO i = 1, ncum |
---|
3134 | dam(i, j) = dam(i, j) + ment(i, k, j) * epm(i, j, k) * (1. - ep(i, k)) * (1. - & |
---|
3135 | sij(i, k, j)) |
---|
3136 | phi2(i, j, k) = phi(i, j, k) * epm(i, j, k) |
---|
3137 | END DO |
---|
3138 | END DO |
---|
3139 | END DO |
---|
3140 | |
---|
3141 | END SUBROUTINE cv30_tracer |
---|
3142 | ! RomP <<< |
---|
3143 | |
---|
3144 | SUBROUTINE cv30_uncompress(nloc, len, ncum, nd, ntra, idcum, iflag, precip, & |
---|
3145 | vprecip, evap, ep, sig, w0, ft, fq, fu, fv, ftra, inb, ma, upwd, dnwd, & |
---|
3146 | dnwd0, qcondc, wd, cape, da, phi, mp, phi2, d1a, dam, sij, elij, clw, & |
---|
3147 | epmlmmm, eplamm, wdtraina, wdtrainm, epmax_diag, iflag1, precip1, vprecip1, evap1, & |
---|
3148 | ep1, sig1, w01, ft1, fq1, fu1, fv1, ftra1, inb1, ma1, upwd1, dnwd1, & |
---|
3149 | dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1, & |
---|
3150 | elij1, clw1, epmlmmm1, eplamm1, wdtraina1, wdtrainm1, epmax_diag1) ! epmax_cape |
---|
3151 | IMPLICIT NONE |
---|
3152 | |
---|
3153 | |
---|
3154 | |
---|
3155 | ! inputs: |
---|
3156 | INTEGER len, ncum, nd, ntra, nloc |
---|
3157 | INTEGER idcum(nloc) |
---|
3158 | INTEGER iflag(nloc) |
---|
3159 | INTEGER inb(nloc) |
---|
3160 | REAL precip(nloc) |
---|
3161 | REAL vprecip(nloc, nd + 1), evap(nloc, nd) |
---|
3162 | REAL ep(nloc, nd) |
---|
3163 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
3164 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
3165 | REAL ftra(nloc, nd, ntra) |
---|
3166 | REAL ma(nloc, nd) |
---|
3167 | REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
---|
3168 | REAL qcondc(nloc, nd) |
---|
3169 | REAL wd(nloc), cape(nloc) |
---|
3170 | REAL da(nloc, nd), phi(nloc, nd, nd), mp(nloc, nd) |
---|
3171 | REAL epmax_diag(nloc) ! epmax_cape |
---|
3172 | ! RomP >>> |
---|
3173 | REAL phi2(nloc, nd, nd) |
---|
3174 | REAL d1a(nloc, nd), dam(nloc, nd) |
---|
3175 | REAL wdtraina(nloc, nd), wdtrainm(nloc, nd) |
---|
3176 | REAL sij(nloc, nd, nd) |
---|
3177 | REAL elij(nloc, nd, nd), clw(nloc, nd) |
---|
3178 | REAL epmlmmm(nloc, nd, nd), eplamm(nloc, nd) |
---|
3179 | ! RomP <<< |
---|
3180 | |
---|
3181 | ! outputs: |
---|
3182 | INTEGER iflag1(len) |
---|
3183 | INTEGER inb1(len) |
---|
3184 | REAL precip1(len) |
---|
3185 | REAL vprecip1(len, nd + 1), evap1(len, nd) !<<< RomP |
---|
3186 | REAL ep1(len, nd) !<<< RomP |
---|
3187 | REAL sig1(len, nd), w01(len, nd) |
---|
3188 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
3189 | REAL ftra1(len, nd, ntra) |
---|
3190 | REAL ma1(len, nd) |
---|
3191 | REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
---|
3192 | REAL qcondc1(nloc, nd) |
---|
3193 | REAL wd1(nloc), cape1(nloc) |
---|
3194 | REAL da1(nloc, nd), phi1(nloc, nd, nd), mp1(nloc, nd) |
---|
3195 | REAL epmax_diag1(len) ! epmax_cape |
---|
3196 | ! RomP >>> |
---|
3197 | REAL phi21(len, nd, nd) |
---|
3198 | REAL d1a1(len, nd), dam1(len, nd) |
---|
3199 | REAL wdtraina1(len, nd), wdtrainm1(len, nd) |
---|
3200 | REAL sij1(len, nd, nd) |
---|
3201 | REAL elij1(len, nd, nd), clw1(len, nd) |
---|
3202 | REAL epmlmmm1(len, nd, nd), eplamm1(len, nd) |
---|
3203 | ! RomP <<< |
---|
3204 | |
---|
3205 | ! local variables: |
---|
3206 | INTEGER i, k, j |
---|
3207 | |
---|
3208 | DO i = 1, ncum |
---|
3209 | precip1(idcum(i)) = precip(i) |
---|
3210 | iflag1(idcum(i)) = iflag(i) |
---|
3211 | wd1(idcum(i)) = wd(i) |
---|
3212 | inb1(idcum(i)) = inb(i) |
---|
3213 | cape1(idcum(i)) = cape(i) |
---|
3214 | epmax_diag1(idcum(i)) = epmax_diag(i) ! epmax_cape |
---|
3215 | END DO |
---|
3216 | |
---|
3217 | DO k = 1, nl |
---|
3218 | DO i = 1, ncum |
---|
3219 | vprecip1(idcum(i), k) = vprecip(i, k) |
---|
3220 | evap1(idcum(i), k) = evap(i, k) !<<< RomP |
---|
3221 | sig1(idcum(i), k) = sig(i, k) |
---|
3222 | w01(idcum(i), k) = w0(i, k) |
---|
3223 | ft1(idcum(i), k) = ft(i, k) |
---|
3224 | fq1(idcum(i), k) = fq(i, k) |
---|
3225 | fu1(idcum(i), k) = fu(i, k) |
---|
3226 | fv1(idcum(i), k) = fv(i, k) |
---|
3227 | ma1(idcum(i), k) = ma(i, k) |
---|
3228 | upwd1(idcum(i), k) = upwd(i, k) |
---|
3229 | dnwd1(idcum(i), k) = dnwd(i, k) |
---|
3230 | dnwd01(idcum(i), k) = dnwd0(i, k) |
---|
3231 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
3232 | da1(idcum(i), k) = da(i, k) |
---|
3233 | mp1(idcum(i), k) = mp(i, k) |
---|
3234 | ! RomP >>> |
---|
3235 | ep1(idcum(i), k) = ep(i, k) |
---|
3236 | d1a1(idcum(i), k) = d1a(i, k) |
---|
3237 | dam1(idcum(i), k) = dam(i, k) |
---|
3238 | clw1(idcum(i), k) = clw(i, k) |
---|
3239 | eplamm1(idcum(i), k) = eplamm(i, k) |
---|
3240 | wdtraina1(idcum(i), k) = wdtraina(i, k) |
---|
3241 | wdtrainm1(idcum(i), k) = wdtrainm(i, k) |
---|
3242 | ! RomP <<< |
---|
3243 | END DO |
---|
3244 | END DO |
---|
3245 | |
---|
3246 | DO i = 1, ncum |
---|
3247 | sig1(idcum(i), nd) = sig(i, nd) |
---|
3248 | END DO |
---|
3249 | |
---|
3250 | |
---|
3251 | ! do 2100 j=1,ntra |
---|
3252 | ! do 2110 k=1,nd ! oct3 |
---|
3253 | ! do 2120 i=1,ncum |
---|
3254 | ! ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
3255 | ! 2120 continue |
---|
3256 | ! 2110 continue |
---|
3257 | ! 2100 continue |
---|
3258 | DO j = 1, nd |
---|
3259 | DO k = 1, nd |
---|
3260 | DO i = 1, ncum |
---|
3261 | sij1(idcum(i), k, j) = sij(i, k, j) |
---|
3262 | phi1(idcum(i), k, j) = phi(i, k, j) |
---|
3263 | phi21(idcum(i), k, j) = phi2(i, k, j) |
---|
3264 | elij1(idcum(i), k, j) = elij(i, k, j) |
---|
3265 | epmlmmm1(idcum(i), k, j) = epmlmmm(i, k, j) |
---|
3266 | END DO |
---|
3267 | END DO |
---|
3268 | END DO |
---|
3269 | |
---|
3270 | END SUBROUTINE cv30_uncompress |
---|
3271 | |
---|
3272 | SUBROUTINE cv30_epmax_fn_cape(nloc, ncum, nd & |
---|
3273 | , cape, ep, hp, icb, inb, clw, nk, t, h, lv & |
---|
3274 | , epmax_diag) |
---|
3275 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
3276 | USE lmdz_conema3 |
---|
3277 | USE lmdz_cvthermo |
---|
3278 | |
---|
3279 | IMPLICIT NONE |
---|
3280 | |
---|
3281 | ! On fait varier epmax en fn de la cape |
---|
3282 | ! Il faut donc recalculer ep, et hp qui a déjà été calculé et |
---|
3283 | ! qui en dépend |
---|
3284 | ! Toutes les autres variables fn de ep sont calculées plus bas. |
---|
3285 | |
---|
3286 | |
---|
3287 | |
---|
3288 | ! inputs: |
---|
3289 | INTEGER ncum, nd, nloc |
---|
3290 | INTEGER icb(nloc), inb(nloc) |
---|
3291 | REAL cape(nloc) |
---|
3292 | REAL clw(nloc, nd), lv(nloc, nd), t(nloc, nd), h(nloc, nd) |
---|
3293 | INTEGER nk(nloc) |
---|
3294 | ! inouts: |
---|
3295 | REAL ep(nloc, nd) |
---|
3296 | REAL hp(nloc, nd) |
---|
3297 | ! outputs ou local |
---|
3298 | REAL epmax_diag(nloc) |
---|
3299 | ! locals |
---|
3300 | INTEGER i, k |
---|
3301 | REAL hp_bak(nloc, nd) |
---|
3302 | CHARACTER (LEN = 20) :: modname = 'cv30_epmax_fn_cape' |
---|
3303 | CHARACTER (LEN = 80) :: abort_message |
---|
3304 | |
---|
3305 | ! on recalcule ep et hp |
---|
3306 | |
---|
3307 | IF (coef_epmax_cape>1e-12) THEN |
---|
3308 | DO i = 1, ncum |
---|
3309 | epmax_diag(i) = epmax - coef_epmax_cape * sqrt(cape(i)) |
---|
3310 | DO k = 1, nl |
---|
3311 | ep(i, k) = ep(i, k) / epmax * epmax_diag(i) |
---|
3312 | ep(i, k) = amax1(ep(i, k), 0.0) |
---|
3313 | ep(i, k) = amin1(ep(i, k), epmax_diag(i)) |
---|
3314 | enddo |
---|
3315 | enddo |
---|
3316 | |
---|
3317 | ! On recalcule hp: |
---|
3318 | DO k = 1, nl |
---|
3319 | DO i = 1, ncum |
---|
3320 | hp_bak(i, k) = hp(i, k) |
---|
3321 | enddo |
---|
3322 | enddo |
---|
3323 | DO k = 1, nlp |
---|
3324 | DO i = 1, ncum |
---|
3325 | hp(i, k) = h(i, k) |
---|
3326 | enddo |
---|
3327 | enddo |
---|
3328 | DO k = minorig + 1, nl |
---|
3329 | DO i = 1, ncum |
---|
3330 | IF((k>=icb(i)).AND.(k<=inb(i)))THEN |
---|
3331 | hp(i, k) = h(i, nk(i)) + (lv(i, k) + (cpd - cpv) * t(i, k)) * ep(i, k) * clw(i, k) |
---|
3332 | endif |
---|
3333 | enddo |
---|
3334 | enddo !do k=minorig+1,n |
---|
3335 | ! WRITE(*,*) 'cv30_routines 6218: hp(1,20)=',hp(1,20) |
---|
3336 | DO i = 1, ncum |
---|
3337 | DO k = 1, nl |
---|
3338 | IF (abs(hp_bak(i, k) - hp(i, k))>0.01) THEN |
---|
3339 | WRITE(*, *) 'i,k=', i, k |
---|
3340 | WRITE(*, *) 'coef_epmax_cape=', coef_epmax_cape |
---|
3341 | WRITE(*, *) 'epmax_diag(i)=', epmax_diag(i) |
---|
3342 | WRITE(*, *) 'ep(i,k)=', ep(i, k) |
---|
3343 | WRITE(*, *) 'hp(i,k)=', hp(i, k) |
---|
3344 | WRITE(*, *) 'hp_bak(i,k)=', hp_bak(i, k) |
---|
3345 | WRITE(*, *) 'h(i,k)=', h(i, k) |
---|
3346 | WRITE(*, *) 'nk(i)=', nk(i) |
---|
3347 | WRITE(*, *) 'h(i,nk(i))=', h(i, nk(i)) |
---|
3348 | WRITE(*, *) 'lv(i,k)=', lv(i, k) |
---|
3349 | WRITE(*, *) 't(i,k)=', t(i, k) |
---|
3350 | WRITE(*, *) 'clw(i,k)=', clw(i, k) |
---|
3351 | WRITE(*, *) 'cpd,cpv=', cpd, cpv |
---|
3352 | CALL abort_physic(modname, abort_message, 1) |
---|
3353 | endif |
---|
3354 | enddo !do k=1,nl |
---|
3355 | enddo !do i=1,ncum |
---|
3356 | ENDIF !if (coef_epmax_cape.gt.1e-12) THEN |
---|
3357 | END SUBROUTINE cv30_epmax_fn_cape |
---|
3358 | |
---|
3359 | |
---|
3360 | END MODULE lmdz_cv30 |
---|
3361 | |
---|
3362 | |
---|