[1403] | 1 | ! $Id: lmdz_cv30.f90 5159 2024-08-02 19:58:25Z fhourdin $ |
---|
[879] | 2 | |
---|
[5141] | 3 | MODULE lmdz_cv30 |
---|
| 4 | !------------------------------------------------------------ |
---|
| 5 | ! Parameters for convectL, iflag_con=30: |
---|
| 6 | ! (includes - microphysical parameters, |
---|
[5158] | 7 | ! - parameters that control the rate of approach |
---|
[5141] | 8 | ! to quasi-equilibrium) |
---|
[5158] | 9 | ! - noff & minorig (previously in input of convect1) |
---|
[5141] | 10 | !------------------------------------------------------------ |
---|
[879] | 11 | |
---|
[5141] | 12 | IMPLICIT NONE; PRIVATE |
---|
| 13 | PUBLIC sigd, spfac, pbcrit, ptcrit, omtrain, dtovsh, dpbase, dttrig, dtcrit, & |
---|
| 14 | tau, beta, alpha, delta, betad, noff, minorig, nl, nlp, nlm, & |
---|
| 15 | cv30_param, cv30_prelim, cv30_feed, cv30_undilute1, cv30_trigger, & |
---|
| 16 | cv30_compress, cv30_undilute2, cv30_closure, cv30_mixing, cv30_unsat, & |
---|
| 17 | cv30_yield, cv30_tracer, cv30_uncompress, cv30_epmax_fn_cape |
---|
[879] | 18 | |
---|
[5141] | 19 | INTEGER noff, minorig, nl, nlp, nlm |
---|
| 20 | REAL sigd, spfac |
---|
| 21 | REAL pbcrit, ptcrit |
---|
| 22 | REAL omtrain |
---|
| 23 | REAL dtovsh, dpbase, dttrig |
---|
| 24 | REAL dtcrit, tau, beta, alpha |
---|
| 25 | REAL delta |
---|
| 26 | REAL betad |
---|
[879] | 27 | |
---|
[5141] | 28 | !$OMP THREADPRIVATE(sigd, spfac, pbcrit, ptcrit, omtrain, dtovsh, dpbase, dttrig, dtcrit, & |
---|
| 29 | !$OMP tau, beta, alpha, delta, betad, noff, minorig, nl, nlp, nlm) |
---|
| 30 | CONTAINS |
---|
[879] | 31 | |
---|
[5141] | 32 | SUBROUTINE cv30_param(nd, delt) |
---|
| 33 | USE lmdz_conema3 |
---|
[879] | 34 | |
---|
[5141] | 35 | IMPLICIT NONE |
---|
[879] | 36 | |
---|
[5141] | 37 | ! ------------------------------------------------------------ |
---|
| 38 | ! Set parameters for convectL for iflag_con = 3 |
---|
| 39 | ! ------------------------------------------------------------ |
---|
[879] | 40 | |
---|
| 41 | |
---|
[5141] | 42 | ! *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
| 43 | ! *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
| 44 | ! *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
| 45 | ! *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
| 46 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 47 | ! *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 48 | ! *** OF CLOUD *** |
---|
[879] | 49 | |
---|
[5141] | 50 | ! [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
| 51 | ! *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 52 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 53 | ! *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
| 54 | ! *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
[879] | 55 | |
---|
[5141] | 56 | ! *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
| 57 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 58 | ! *** IT MUST BE LESS THAN 0 *** |
---|
[879] | 59 | |
---|
[5141] | 60 | INTEGER nd |
---|
| 61 | REAL delt ! timestep (seconds) |
---|
[879] | 62 | |
---|
[5141] | 63 | ! noff: integer limit for convection (nd-noff) |
---|
| 64 | ! minorig: First level of convection |
---|
[879] | 65 | |
---|
[5141] | 66 | ! -- limit levels for convection: |
---|
[879] | 67 | |
---|
[5141] | 68 | noff = 1 |
---|
| 69 | minorig = 1 |
---|
| 70 | nl = nd - noff |
---|
| 71 | nlp = nl + 1 |
---|
| 72 | nlm = nl - 1 |
---|
[879] | 73 | |
---|
[5141] | 74 | ! -- "microphysical" parameters: |
---|
[879] | 75 | |
---|
[5141] | 76 | sigd = 0.01 |
---|
| 77 | spfac = 0.15 |
---|
| 78 | pbcrit = 150.0 |
---|
| 79 | ptcrit = 500.0 |
---|
| 80 | ! IM cf. FH epmax = 0.993 |
---|
[879] | 81 | |
---|
[5141] | 82 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
[879] | 83 | |
---|
[5141] | 84 | ! -- misc: |
---|
[879] | 85 | |
---|
[5141] | 86 | dtovsh = -0.2 ! dT for overshoot |
---|
| 87 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
| 88 | dttrig = 5. ! (loose) condition for triggering |
---|
[879] | 89 | |
---|
[5141] | 90 | ! -- rate of approach to quasi-equilibrium: |
---|
[879] | 91 | |
---|
[5141] | 92 | dtcrit = -2.0 |
---|
| 93 | tau = 8000. |
---|
| 94 | beta = 1.0 - delt / tau |
---|
| 95 | alpha = 1.5E-3 * delt / tau |
---|
| 96 | ! increase alpha to compensate W decrease: |
---|
| 97 | alpha = alpha * 1.5 |
---|
[879] | 98 | |
---|
[5141] | 99 | ! -- interface cloud parameterization: |
---|
[879] | 100 | |
---|
[5141] | 101 | delta = 0.01 ! cld |
---|
[879] | 102 | |
---|
[5141] | 103 | ! -- interface with boundary-layer (gust factor): (sb) |
---|
[879] | 104 | |
---|
[5141] | 105 | betad = 10.0 ! original value (from convect 4.3) |
---|
[879] | 106 | |
---|
[5141] | 107 | END SUBROUTINE cv30_param |
---|
[879] | 108 | |
---|
[5141] | 109 | SUBROUTINE cv30_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm, & |
---|
| 110 | th) |
---|
| 111 | USE lmdz_cvthermo |
---|
[879] | 112 | |
---|
[5141] | 113 | IMPLICIT NONE |
---|
[879] | 114 | |
---|
[5141] | 115 | ! ===================================================================== |
---|
| 116 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 117 | ! "ori": from convect4.3 (vectorized) |
---|
| 118 | ! "convect3": to be exactly consistent with convect3 |
---|
| 119 | ! ===================================================================== |
---|
[879] | 120 | |
---|
[5141] | 121 | ! inputs: |
---|
| 122 | INTEGER len, nd, ndp1 |
---|
| 123 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
[879] | 124 | |
---|
[5141] | 125 | ! outputs: |
---|
| 126 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
| 127 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
| 128 | REAL th(len, nd) |
---|
[879] | 129 | |
---|
[5141] | 130 | ! local variables: |
---|
| 131 | INTEGER k, i |
---|
| 132 | REAL rdcp |
---|
| 133 | REAL tvx, tvy ! convect3 |
---|
| 134 | REAL cpx(len, nd) |
---|
| 135 | |
---|
| 136 | ! ori do 110 k=1,nlp |
---|
| 137 | DO k = 1, nl ! convect3 |
---|
| 138 | DO i = 1, len |
---|
| 139 | ! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
| 140 | lv(i, k) = lv0 - clmcpv * (t(i, k) - 273.15) |
---|
| 141 | cpn(i, k) = cpd * (1.0 - q(i, k)) + cpv * q(i, k) |
---|
| 142 | cpx(i, k) = cpd * (1.0 - q(i, k)) + cl * q(i, k) |
---|
| 143 | ! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
| 144 | tv(i, k) = t(i, k) * (1.0 + q(i, k) / eps - q(i, k)) |
---|
| 145 | rdcp = (rrd * (1. - q(i, k)) + q(i, k) * rrv) / cpn(i, k) |
---|
| 146 | th(i, k) = t(i, k) * (1000.0 / p(i, k))**rdcp |
---|
| 147 | END DO |
---|
[1992] | 148 | END DO |
---|
[879] | 149 | |
---|
[5141] | 150 | ! gz = phi at the full levels (same as p). |
---|
[879] | 151 | |
---|
[1992] | 152 | DO i = 1, len |
---|
[5141] | 153 | gz(i, 1) = 0.0 |
---|
| 154 | END DO |
---|
| 155 | ! ori do 140 k=2,nlp |
---|
| 156 | DO k = 2, nl ! convect3 |
---|
| 157 | DO i = 1, len |
---|
| 158 | tvx = t(i, k) * (1. + q(i, k) / eps - q(i, k)) !convect3 |
---|
| 159 | tvy = t(i, k - 1) * (1. + q(i, k - 1) / eps - q(i, k - 1)) !convect3 |
---|
| 160 | gz(i, k) = gz(i, k - 1) + 0.5 * rrd * (tvx + tvy) & !convect3 |
---|
| 161 | * (p(i, k - 1) - p(i, k)) / ph(i, k) !convect3 |
---|
[879] | 162 | |
---|
[5141] | 163 | ! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
| 164 | ! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
| 165 | END DO |
---|
[1992] | 166 | END DO |
---|
[879] | 167 | |
---|
[5141] | 168 | ! h = phi + cpT (dry static energy). |
---|
| 169 | ! hm = phi + cp(T-Tbase)+Lq |
---|
[879] | 170 | |
---|
[5141] | 171 | ! ori do 170 k=1,nlp |
---|
| 172 | DO k = 1, nl ! convect3 |
---|
| 173 | DO i = 1, len |
---|
| 174 | h(i, k) = gz(i, k) + cpn(i, k) * t(i, k) |
---|
| 175 | hm(i, k) = gz(i, k) + cpx(i, k) * (t(i, k) - t(i, 1)) + lv(i, k) * q(i, k) |
---|
| 176 | END DO |
---|
[1992] | 177 | END DO |
---|
[879] | 178 | |
---|
[5141] | 179 | END SUBROUTINE cv30_prelim |
---|
[879] | 180 | |
---|
[5141] | 181 | SUBROUTINE cv30_feed(len, nd, t, q, qs, p, ph, hm, gz, nk, icb, icbmax, & |
---|
| 182 | iflag, tnk, qnk, gznk, plcl) |
---|
[879] | 183 | |
---|
[5141] | 184 | IMPLICIT NONE |
---|
[879] | 185 | |
---|
[5141] | 186 | ! ================================================================ |
---|
| 187 | ! Purpose: CONVECTIVE FEED |
---|
[879] | 188 | |
---|
[5141] | 189 | ! Main differences with cv_feed: |
---|
| 190 | ! - ph added in input |
---|
| 191 | ! - here, nk(i)=minorig |
---|
| 192 | ! - icb defined differently (plcl compared with ph instead of p) |
---|
[879] | 193 | |
---|
[5141] | 194 | ! Main differences with convect3: |
---|
| 195 | ! - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
| 196 | ! - values iflag different (but tests identical) |
---|
| 197 | ! - A,B explicitely defined (!...) |
---|
| 198 | ! ================================================================ |
---|
[879] | 199 | |
---|
[5141] | 200 | ! inputs: |
---|
| 201 | INTEGER len, nd |
---|
| 202 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
| 203 | REAL hm(len, nd), gz(len, nd) |
---|
| 204 | REAL ph(len, nd + 1) |
---|
[879] | 205 | |
---|
[5141] | 206 | ! outputs: |
---|
| 207 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
| 208 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
[879] | 209 | |
---|
[5141] | 210 | ! local variables: |
---|
| 211 | INTEGER i, k |
---|
| 212 | INTEGER ihmin(len) |
---|
| 213 | REAL work(len) |
---|
| 214 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
| 215 | REAL a, b ! convect3 |
---|
| 216 | ! ym |
---|
| 217 | plcl = 0.0 |
---|
| 218 | ! @ !------------------------------------------------------------------- |
---|
| 219 | ! @ ! --- Find level of minimum moist static energy |
---|
| 220 | ! @ ! --- If level of minimum moist static energy coincides with |
---|
| 221 | ! @ ! --- or is lower than minimum allowable parcel origin level, |
---|
| 222 | ! @ ! --- set iflag to 6. |
---|
| 223 | ! @ !------------------------------------------------------------------- |
---|
| 224 | ! @ |
---|
| 225 | ! @ do 180 i=1,len |
---|
| 226 | ! @ work(i)=1.0e12 |
---|
| 227 | ! @ ihmin(i)=nl |
---|
| 228 | ! @ 180 continue |
---|
| 229 | ! @ do 200 k=2,nlp |
---|
| 230 | ! @ do 190 i=1,len |
---|
| 231 | ! @ if((hm(i,k).lt.work(i)).AND. |
---|
| 232 | ! @ & (hm(i,k).lt.hm(i,k-1)))THEN |
---|
| 233 | ! @ work(i)=hm(i,k) |
---|
| 234 | ! @ ihmin(i)=k |
---|
| 235 | ! @ endif |
---|
| 236 | ! @ 190 continue |
---|
| 237 | ! @ 200 continue |
---|
| 238 | ! @ do 210 i=1,len |
---|
| 239 | ! @ ihmin(i)=min(ihmin(i),nlm) |
---|
| 240 | ! @ IF(ihmin(i).le.minorig)THEN |
---|
| 241 | ! @ iflag(i)=6 |
---|
| 242 | ! @ endif |
---|
| 243 | ! @ 210 continue |
---|
| 244 | ! @ c |
---|
| 245 | ! @ !------------------------------------------------------------------- |
---|
| 246 | ! @ ! --- Find that model level below the level of minimum moist static |
---|
| 247 | ! @ ! --- energy that has the maximum value of moist static energy |
---|
| 248 | ! @ !------------------------------------------------------------------- |
---|
| 249 | ! @ |
---|
| 250 | ! @ do 220 i=1,len |
---|
| 251 | ! @ work(i)=hm(i,minorig) |
---|
| 252 | ! @ nk(i)=minorig |
---|
| 253 | ! @ 220 continue |
---|
| 254 | ! @ do 240 k=minorig+1,nl |
---|
| 255 | ! @ do 230 i=1,len |
---|
| 256 | ! @ if((hm(i,k).gt.work(i)).AND.(k.le.ihmin(i)))THEN |
---|
| 257 | ! @ work(i)=hm(i,k) |
---|
| 258 | ! @ nk(i)=k |
---|
| 259 | ! @ endif |
---|
| 260 | ! @ 230 continue |
---|
| 261 | ! @ 240 continue |
---|
[879] | 262 | |
---|
[5141] | 263 | ! ------------------------------------------------------------------- |
---|
| 264 | ! --- Origin level of ascending parcels for convect3: |
---|
| 265 | ! ------------------------------------------------------------------- |
---|
[879] | 266 | |
---|
[5141] | 267 | DO i = 1, len |
---|
| 268 | nk(i) = minorig |
---|
| 269 | END DO |
---|
[879] | 270 | |
---|
[5141] | 271 | ! ------------------------------------------------------------------- |
---|
| 272 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 273 | ! --- are reasonable |
---|
| 274 | ! ------------------------------------------------------------------- |
---|
| 275 | DO i = 1, len |
---|
| 276 | IF (((t(i, nk(i))<250.0) .OR. (q(i, nk(i))<=0.0)) & ! @ & .OR.( |
---|
| 277 | ! p(i,ihmin(i)).lt.400.0 |
---|
| 278 | ! ) ) |
---|
| 279 | .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
| 280 | END DO |
---|
| 281 | ! ------------------------------------------------------------------- |
---|
| 282 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
| 283 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
| 284 | ! ------------------------------------------------------------------- |
---|
[879] | 285 | |
---|
[5141] | 286 | a = 1669.0 ! convect3 |
---|
| 287 | b = 122.0 ! convect3 |
---|
[879] | 288 | |
---|
[5141] | 289 | DO i = 1, len |
---|
[879] | 290 | |
---|
[5141] | 291 | IF (iflag(i)/=7) THEN ! modif sb Jun7th 2002 |
---|
[879] | 292 | |
---|
[5141] | 293 | tnk(i) = t(i, nk(i)) |
---|
| 294 | qnk(i) = q(i, nk(i)) |
---|
| 295 | gznk(i) = gz(i, nk(i)) |
---|
| 296 | pnk(i) = p(i, nk(i)) |
---|
| 297 | qsnk(i) = qs(i, nk(i)) |
---|
[879] | 298 | |
---|
[5141] | 299 | rh(i) = qnk(i) / qsnk(i) |
---|
| 300 | ! ori rh(i)=min(1.0,rh(i)) ! removed for convect3 |
---|
| 301 | ! ori chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
| 302 | chi(i) = tnk(i) / (a - b * rh(i) - tnk(i)) ! convect3 |
---|
| 303 | plcl(i) = pnk(i) * (rh(i)**chi(i)) |
---|
| 304 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag & |
---|
| 305 | (i) = 8 |
---|
[879] | 306 | |
---|
[5141] | 307 | END IF ! iflag=7 |
---|
[879] | 308 | |
---|
[5141] | 309 | END DO |
---|
[879] | 310 | |
---|
[5141] | 311 | ! ------------------------------------------------------------------- |
---|
| 312 | ! --- Calculate first level above lcl (=icb) |
---|
| 313 | ! ------------------------------------------------------------------- |
---|
[879] | 314 | |
---|
[5141] | 315 | ! @ do 270 i=1,len |
---|
| 316 | ! @ icb(i)=nlm |
---|
| 317 | ! @ 270 continue |
---|
| 318 | ! @c |
---|
| 319 | ! @ do 290 k=minorig,nl |
---|
| 320 | ! @ do 280 i=1,len |
---|
| 321 | ! @ if((k.ge.(nk(i)+1)).AND.(p(i,k).lt.plcl(i))) |
---|
| 322 | ! @ & icb(i)=min(icb(i),k) |
---|
| 323 | ! @ 280 continue |
---|
| 324 | ! @ 290 continue |
---|
| 325 | ! @c |
---|
| 326 | ! @ do 300 i=1,len |
---|
| 327 | ! @ if((icb(i).ge.nlm).AND.(iflag(i).EQ.0))iflag(i)=9 |
---|
| 328 | ! @ 300 continue |
---|
[879] | 329 | |
---|
[5141] | 330 | DO i = 1, len |
---|
| 331 | icb(i) = nlm |
---|
| 332 | END DO |
---|
[879] | 333 | |
---|
[5141] | 334 | ! la modification consiste a comparer plcl a ph et non a p: |
---|
| 335 | ! icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
| 336 | ! @ do 290 k=minorig,nl |
---|
| 337 | DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
---|
| 338 | DO i = 1, len |
---|
| 339 | IF (ph(i, k)<plcl(i)) icb(i) = min(icb(i), k) |
---|
| 340 | END DO |
---|
| 341 | END DO |
---|
| 342 | |
---|
[1992] | 343 | DO i = 1, len |
---|
[5141] | 344 | ! @ if((icb(i).ge.nlm).AND.(iflag(i).EQ.0))iflag(i)=9 |
---|
| 345 | IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
[1992] | 346 | END DO |
---|
[879] | 347 | |
---|
[5141] | 348 | DO i = 1, len |
---|
| 349 | icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
---|
| 350 | END DO |
---|
[879] | 351 | |
---|
[5141] | 352 | ! Compute icbmax. |
---|
[879] | 353 | |
---|
[5141] | 354 | icbmax = 2 |
---|
| 355 | DO i = 1, len |
---|
| 356 | ! icbmax=max(icbmax,icb(i)) |
---|
| 357 | IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
---|
| 358 | END DO |
---|
[879] | 359 | |
---|
[5141] | 360 | END SUBROUTINE cv30_feed |
---|
[879] | 361 | |
---|
[5141] | 362 | SUBROUTINE cv30_undilute1(len, nd, t, q, qs, gz, plcl, p, nk, icb, tp, tvp, & |
---|
| 363 | clw, icbs) |
---|
| 364 | USE lmdz_cvthermo |
---|
[879] | 365 | |
---|
[5141] | 366 | IMPLICIT NONE |
---|
[879] | 367 | |
---|
[5141] | 368 | ! ---------------------------------------------------------------- |
---|
| 369 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
[879] | 370 | |
---|
[5141] | 371 | ! Differences with convect4: |
---|
| 372 | ! - specify plcl in input |
---|
| 373 | ! - icbs is the first level above LCL (may differ from icb) |
---|
| 374 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
| 375 | ! - many minor differences in the iterations |
---|
| 376 | ! - tvp is computed in only one time |
---|
| 377 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
| 378 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
| 379 | ! ---------------------------------------------------------------- |
---|
[879] | 380 | |
---|
| 381 | |
---|
| 382 | |
---|
[5141] | 383 | ! inputs: |
---|
| 384 | INTEGER len, nd |
---|
| 385 | INTEGER nk(len), icb(len) |
---|
| 386 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
| 387 | REAL p(len, nd) |
---|
| 388 | REAL plcl(len) ! convect3 |
---|
[879] | 389 | |
---|
[5141] | 390 | ! outputs: |
---|
| 391 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
[879] | 392 | |
---|
[5141] | 393 | ! local variables: |
---|
| 394 | INTEGER i, k |
---|
| 395 | INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
| 396 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 397 | REAL ah0(len), cpp(len) |
---|
| 398 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
| 399 | REAL qsicb(len) ! convect3 |
---|
| 400 | REAL cpinv(len) ! convect3 |
---|
[879] | 401 | |
---|
[5141] | 402 | ! ------------------------------------------------------------------- |
---|
| 403 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 404 | ! --- the actual temperature, and the adiabatic |
---|
| 405 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 406 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 407 | ! ------------------------------------------------------------------- |
---|
[879] | 408 | |
---|
[5141] | 409 | DO i = 1, len |
---|
| 410 | tnk(i) = t(i, nk(i)) |
---|
| 411 | qnk(i) = q(i, nk(i)) |
---|
| 412 | gznk(i) = gz(i, nk(i)) |
---|
| 413 | ! ori ticb(i)=t(i,icb(i)) |
---|
| 414 | ! ori gzicb(i)=gz(i,icb(i)) |
---|
| 415 | END DO |
---|
[879] | 416 | |
---|
[5141] | 417 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
[879] | 418 | |
---|
[5141] | 419 | DO i = 1, len |
---|
| 420 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) + qnk(i) * (lv0 - clmcpv * (tnk(i) - & |
---|
| 421 | 273.15)) + gznk(i) |
---|
| 422 | cpp(i) = cpd * (1. - qnk(i)) + qnk(i) * cpv |
---|
| 423 | cpinv(i) = 1. / cpp(i) |
---|
| 424 | END DO |
---|
[879] | 425 | |
---|
[5141] | 426 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
[879] | 427 | |
---|
[5141] | 428 | DO i = 1, len !convect3 |
---|
| 429 | icb1(i) = min(max(icb(i), 2), nl) |
---|
| 430 | ! if icb is below LCL, start loop at ICB+1: |
---|
| 431 | ! (icbs est le premier niveau au-dessus du LCL) |
---|
| 432 | icbs(i) = icb1(i) !convect3 |
---|
| 433 | IF (plcl(i)<p(i, icb1(i))) THEN |
---|
| 434 | icbs(i) = min(icbs(i) + 1, nl) !convect3 |
---|
| 435 | END IF |
---|
| 436 | END DO !convect3 |
---|
[879] | 437 | |
---|
[5141] | 438 | DO i = 1, len !convect3 |
---|
| 439 | ticb(i) = t(i, icbs(i)) !convect3 |
---|
| 440 | gzicb(i) = gz(i, icbs(i)) !convect3 |
---|
| 441 | qsicb(i) = qs(i, icbs(i)) !convect3 |
---|
| 442 | END DO !convect3 |
---|
[879] | 443 | |
---|
| 444 | |
---|
[5141] | 445 | ! Re-compute icbsmax (icbsmax2): !convect3 |
---|
| 446 | !convect3 |
---|
| 447 | icbsmax2 = 2 !convect3 |
---|
| 448 | DO i = 1, len !convect3 |
---|
| 449 | icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
---|
| 450 | END DO !convect3 |
---|
[879] | 451 | |
---|
[5141] | 452 | ! initialization outputs: |
---|
| 453 | |
---|
| 454 | DO k = 1, icbsmax2 ! convect3 |
---|
| 455 | DO i = 1, len ! convect3 |
---|
| 456 | tp(i, k) = 0.0 ! convect3 |
---|
| 457 | tvp(i, k) = 0.0 ! convect3 |
---|
| 458 | clw(i, k) = 0.0 ! convect3 |
---|
| 459 | END DO ! convect3 |
---|
[1992] | 460 | END DO ! convect3 |
---|
[879] | 461 | |
---|
[5141] | 462 | ! tp and tvp below cloud base: |
---|
[879] | 463 | |
---|
[5141] | 464 | DO k = minorig, icbsmax2 - 1 |
---|
| 465 | DO i = 1, len |
---|
| 466 | tp(i, k) = tnk(i) - (gz(i, k) - gznk(i)) * cpinv(i) |
---|
| 467 | tvp(i, k) = tp(i, k) * (1. + qnk(i) / eps - qnk(i)) !whole thing (convect3) |
---|
| 468 | END DO |
---|
[1992] | 469 | END DO |
---|
[879] | 470 | |
---|
[5141] | 471 | ! *** Find lifted parcel quantities above cloud base *** |
---|
[879] | 472 | |
---|
[5141] | 473 | DO i = 1, len |
---|
| 474 | tg = ticb(i) |
---|
| 475 | ! ori qg=qs(i,icb(i)) |
---|
| 476 | qg = qsicb(i) ! convect3 |
---|
| 477 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 478 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
[879] | 479 | |
---|
[5141] | 480 | ! First iteration. |
---|
[879] | 481 | |
---|
[5141] | 482 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 483 | s = cpd * (1. - qnk(i)) + cl * qnk(i) & ! convect3 |
---|
| 484 | + alv * alv * qg / (rrv * ticb(i) * ticb(i)) ! convect3 |
---|
| 485 | s = 1. / s |
---|
| 486 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 487 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
| 488 | tg = tg + s * (ah0(i) - ahg) |
---|
| 489 | ! ori tg=max(tg,35.0) |
---|
| 490 | ! debug tc=tg-t0 |
---|
| 491 | tc = tg - 273.15 |
---|
| 492 | denom = 243.5 + tc |
---|
| 493 | denom = max(denom, 1.0) ! convect3 |
---|
| 494 | ! ori IF(tc.ge.0.0)THEN |
---|
| 495 | es = 6.112 * exp(17.67 * tc / denom) |
---|
| 496 | ! ori else |
---|
| 497 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 498 | ! ori endif |
---|
| 499 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 500 | qg = eps * es / (p(i, icbs(i)) - es * (1. - eps)) |
---|
[879] | 501 | |
---|
[5141] | 502 | ! Second iteration. |
---|
[879] | 503 | |
---|
| 504 | |
---|
[5141] | 505 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 506 | ! ori s=1./s |
---|
| 507 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 508 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
| 509 | tg = tg + s * (ah0(i) - ahg) |
---|
| 510 | ! ori tg=max(tg,35.0) |
---|
| 511 | ! debug tc=tg-t0 |
---|
| 512 | tc = tg - 273.15 |
---|
| 513 | denom = 243.5 + tc |
---|
| 514 | denom = max(denom, 1.0) ! convect3 |
---|
| 515 | ! ori IF(tc.ge.0.0)THEN |
---|
| 516 | es = 6.112 * exp(17.67 * tc / denom) |
---|
| 517 | ! ori else |
---|
| 518 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 519 | ! ori end if |
---|
| 520 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 521 | qg = eps * es / (p(i, icbs(i)) - es * (1. - eps)) |
---|
[879] | 522 | |
---|
[5141] | 523 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
[879] | 524 | |
---|
[5141] | 525 | ! ori c approximation here: |
---|
| 526 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 527 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
[879] | 528 | |
---|
[5141] | 529 | ! convect3: no approximation: |
---|
| 530 | tp(i, icbs(i)) = (ah0(i) - gz(i, icbs(i)) - alv * qg) / (cpd + (cl - cpd) * qnk(i)) |
---|
[879] | 531 | |
---|
[5141] | 532 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
| 533 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 534 | clw(i, icbs(i)) = qnk(i) - qg |
---|
| 535 | clw(i, icbs(i)) = max(0.0, clw(i, icbs(i))) |
---|
[879] | 536 | |
---|
[5141] | 537 | rg = qg / (1. - qnk(i)) |
---|
| 538 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 539 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 540 | tvp(i, icbs(i)) = tp(i, icbs(i)) * (1. + qg / eps - qnk(i)) !whole thing |
---|
[879] | 541 | |
---|
[5141] | 542 | END DO |
---|
[879] | 543 | |
---|
[5141] | 544 | ! ori do 380 k=minorig,icbsmax2 |
---|
| 545 | ! ori do 370 i=1,len |
---|
| 546 | ! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
| 547 | ! ori 370 continue |
---|
| 548 | ! ori 380 continue |
---|
[879] | 549 | |
---|
| 550 | |
---|
[5141] | 551 | ! -- The following is only for convect3: |
---|
[879] | 552 | |
---|
[5141] | 553 | ! * icbs is the first level above the LCL: |
---|
| 554 | ! if plcl<p(icb), then icbs=icb+1 |
---|
| 555 | ! if plcl>p(icb), then icbs=icb |
---|
[1403] | 556 | |
---|
[5141] | 557 | ! * the routine above computes tvp from minorig to icbs (included). |
---|
[879] | 558 | |
---|
[5141] | 559 | ! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
| 560 | ! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
[879] | 561 | |
---|
[5141] | 562 | ! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
| 563 | ! (tvp at other levels will be computed in cv3_undilute2.F) |
---|
[879] | 564 | |
---|
[5141] | 565 | DO i = 1, len |
---|
| 566 | ticb(i) = t(i, icb(i) + 1) |
---|
| 567 | gzicb(i) = gz(i, icb(i) + 1) |
---|
| 568 | qsicb(i) = qs(i, icb(i) + 1) |
---|
| 569 | END DO |
---|
[879] | 570 | |
---|
[5141] | 571 | DO i = 1, len |
---|
| 572 | tg = ticb(i) |
---|
| 573 | qg = qsicb(i) ! convect3 |
---|
| 574 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 575 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
[879] | 576 | |
---|
[5141] | 577 | ! First iteration. |
---|
[879] | 578 | |
---|
[5141] | 579 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 580 | s = cpd * (1. - qnk(i)) + cl * qnk(i) & ! convect3 |
---|
| 581 | + alv * alv * qg / (rrv * ticb(i) * ticb(i)) ! convect3 |
---|
| 582 | s = 1. / s |
---|
| 583 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 584 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
| 585 | tg = tg + s * (ah0(i) - ahg) |
---|
| 586 | ! ori tg=max(tg,35.0) |
---|
| 587 | ! debug tc=tg-t0 |
---|
| 588 | tc = tg - 273.15 |
---|
| 589 | denom = 243.5 + tc |
---|
| 590 | denom = max(denom, 1.0) ! convect3 |
---|
| 591 | ! ori IF(tc.ge.0.0)THEN |
---|
| 592 | es = 6.112 * exp(17.67 * tc / denom) |
---|
| 593 | ! ori else |
---|
| 594 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 595 | ! ori endif |
---|
| 596 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 597 | qg = eps * es / (p(i, icb(i) + 1) - es * (1. - eps)) |
---|
[879] | 598 | |
---|
[5141] | 599 | ! Second iteration. |
---|
[879] | 600 | |
---|
| 601 | |
---|
[5141] | 602 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 603 | ! ori s=1./s |
---|
| 604 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 605 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gzicb(i) ! convect3 |
---|
| 606 | tg = tg + s * (ah0(i) - ahg) |
---|
| 607 | ! ori tg=max(tg,35.0) |
---|
| 608 | ! debug tc=tg-t0 |
---|
| 609 | tc = tg - 273.15 |
---|
| 610 | denom = 243.5 + tc |
---|
| 611 | denom = max(denom, 1.0) ! convect3 |
---|
| 612 | ! ori IF(tc.ge.0.0)THEN |
---|
| 613 | es = 6.112 * exp(17.67 * tc / denom) |
---|
| 614 | ! ori else |
---|
| 615 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 616 | ! ori end if |
---|
| 617 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 618 | qg = eps * es / (p(i, icb(i) + 1) - es * (1. - eps)) |
---|
[879] | 619 | |
---|
[5141] | 620 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
[879] | 621 | |
---|
[5141] | 622 | ! ori c approximation here: |
---|
| 623 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 624 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
[879] | 625 | |
---|
[5141] | 626 | ! convect3: no approximation: |
---|
| 627 | tp(i, icb(i) + 1) = (ah0(i) - gz(i, icb(i) + 1) - alv * qg) / (cpd + (cl - cpd) * qnk(i)) |
---|
[879] | 628 | |
---|
[5141] | 629 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
| 630 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 631 | clw(i, icb(i) + 1) = qnk(i) - qg |
---|
| 632 | clw(i, icb(i) + 1) = max(0.0, clw(i, icb(i) + 1)) |
---|
[879] | 633 | |
---|
[5141] | 634 | rg = qg / (1. - qnk(i)) |
---|
| 635 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 636 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 637 | tvp(i, icb(i) + 1) = tp(i, icb(i) + 1) * (1. + qg / eps - qnk(i)) !whole thing |
---|
[879] | 638 | |
---|
[5141] | 639 | END DO |
---|
[879] | 640 | |
---|
[5141] | 641 | END SUBROUTINE cv30_undilute1 |
---|
[879] | 642 | |
---|
[5141] | 643 | SUBROUTINE cv30_trigger(len, nd, icb, plcl, p, th, tv, tvp, pbase, buoybase, & |
---|
| 644 | iflag, sig, w0) |
---|
| 645 | IMPLICIT NONE |
---|
[879] | 646 | |
---|
[5141] | 647 | ! ------------------------------------------------------------------- |
---|
| 648 | ! --- TRIGGERING |
---|
[879] | 649 | |
---|
[5141] | 650 | ! - computes the cloud base |
---|
| 651 | ! - triggering (crude in this version) |
---|
| 652 | ! - relaxation of sig and w0 when no convection |
---|
[879] | 653 | |
---|
[5141] | 654 | ! Caution1: if no convection, we set iflag=4 |
---|
| 655 | ! (it used to be 0 in convect3) |
---|
[879] | 656 | |
---|
[5141] | 657 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
| 658 | ! through icb only! |
---|
| 659 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
| 660 | ! ------------------------------------------------------------------- |
---|
[879] | 661 | |
---|
| 662 | |
---|
| 663 | |
---|
[5141] | 664 | ! input: |
---|
| 665 | INTEGER len, nd |
---|
| 666 | INTEGER icb(len) |
---|
| 667 | REAL plcl(len), p(len, nd) |
---|
| 668 | REAL th(len, nd), tv(len, nd), tvp(len, nd) |
---|
[879] | 669 | |
---|
[5141] | 670 | ! output: |
---|
| 671 | REAL pbase(len), buoybase(len) |
---|
[879] | 672 | |
---|
[5141] | 673 | ! input AND output: |
---|
| 674 | INTEGER iflag(len) |
---|
| 675 | REAL sig(len, nd), w0(len, nd) |
---|
[879] | 676 | |
---|
[5141] | 677 | ! local variables: |
---|
| 678 | INTEGER i, k |
---|
| 679 | REAL tvpbase, tvbase, tdif, ath, ath1 |
---|
[879] | 680 | |
---|
| 681 | |
---|
[5141] | 682 | ! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
[879] | 683 | |
---|
[5141] | 684 | DO i = 1, len |
---|
| 685 | pbase(i) = plcl(i) + dpbase |
---|
| 686 | tvpbase = tvp(i, icb(i)) * (pbase(i) - p(i, icb(i) + 1)) / & |
---|
| 687 | (p(i, icb(i)) - p(i, icb(i) + 1)) + tvp(i, icb(i) + 1) * (p(i, icb(i)) - pbase(i)) / (& |
---|
| 688 | p(i, icb(i)) - p(i, icb(i) + 1)) |
---|
| 689 | tvbase = tv(i, icb(i)) * (pbase(i) - p(i, icb(i) + 1)) / & |
---|
| 690 | (p(i, icb(i)) - p(i, icb(i) + 1)) + tv(i, icb(i) + 1) * (p(i, icb(i)) - pbase(i)) / (p & |
---|
| 691 | (i, icb(i)) - p(i, icb(i) + 1)) |
---|
| 692 | buoybase(i) = tvpbase - tvbase |
---|
| 693 | END DO |
---|
[879] | 694 | |
---|
| 695 | |
---|
[5141] | 696 | ! *** make sure that column is dry adiabatic between the surface *** |
---|
| 697 | ! *** and cloud base, and that lifted air is positively buoyant *** |
---|
| 698 | ! *** at cloud base *** |
---|
| 699 | ! *** if not, return to calling program after resetting *** |
---|
| 700 | ! *** sig(i) and w0(i) *** |
---|
[879] | 701 | |
---|
| 702 | |
---|
[5141] | 703 | ! oct3 do 200 i=1,len |
---|
| 704 | ! oct3 |
---|
| 705 | ! oct3 tdif = buoybase(i) |
---|
| 706 | ! oct3 ath1 = th(i,1) |
---|
| 707 | ! oct3 ath = th(i,icb(i)-1) - dttrig |
---|
| 708 | ! oct3 |
---|
| 709 | ! oct3 if (tdif.lt.dtcrit .OR. ath.gt.ath1) THEN |
---|
| 710 | ! oct3 do 60 k=1,nl |
---|
| 711 | ! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
| 712 | ! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
| 713 | ! oct3 w0(i,k) = beta*w0(i,k) |
---|
| 714 | ! oct3 60 continue |
---|
| 715 | ! oct3 iflag(i)=4 ! pour version vectorisee |
---|
| 716 | ! oct3c convect3 iflag(i)=0 |
---|
| 717 | ! oct3cccc RETURN |
---|
| 718 | ! oct3 endif |
---|
| 719 | ! oct3 |
---|
| 720 | ! oct3200 continue |
---|
[879] | 721 | |
---|
[5141] | 722 | ! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
[879] | 723 | |
---|
[5141] | 724 | DO k = 1, nl |
---|
| 725 | DO i = 1, len |
---|
[879] | 726 | |
---|
[5141] | 727 | tdif = buoybase(i) |
---|
| 728 | ath1 = th(i, 1) |
---|
| 729 | ath = th(i, icb(i) - 1) - dttrig |
---|
[879] | 730 | |
---|
[5141] | 731 | IF (tdif<dtcrit .OR. ath>ath1) THEN |
---|
| 732 | sig(i, k) = beta * sig(i, k) - 2. * alpha * tdif * tdif |
---|
| 733 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
| 734 | w0(i, k) = beta * w0(i, k) |
---|
| 735 | iflag(i) = 4 ! pour version vectorisee |
---|
| 736 | ! convect3 iflag(i)=0 |
---|
| 737 | END IF |
---|
| 738 | |
---|
| 739 | END DO |
---|
[1992] | 740 | END DO |
---|
[879] | 741 | |
---|
[5141] | 742 | ! fin oct3 -- |
---|
[879] | 743 | |
---|
[5141] | 744 | END SUBROUTINE cv30_trigger |
---|
[879] | 745 | |
---|
[5141] | 746 | SUBROUTINE cv30_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, icbs1, & |
---|
| 747 | plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, & |
---|
| 748 | th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, & |
---|
| 749 | iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, & |
---|
| 750 | v, gz, th, tra, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0) |
---|
| 751 | USE lmdz_print_control, ONLY: lunout |
---|
| 752 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
| 753 | IMPLICIT NONE |
---|
[879] | 754 | |
---|
| 755 | |
---|
| 756 | |
---|
[5141] | 757 | ! inputs: |
---|
| 758 | INTEGER len, ncum, nd, ntra, nloc |
---|
| 759 | INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
---|
| 760 | REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
| 761 | REAL pbase1(len), buoybase1(len) |
---|
| 762 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
| 763 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
| 764 | REAL p1(len, nd), ph1(len, nd + 1), tv1(len, nd), tp1(len, nd) |
---|
| 765 | REAL tvp1(len, nd), clw1(len, nd) |
---|
| 766 | REAL th1(len, nd) |
---|
| 767 | REAL sig1(len, nd), w01(len, nd) |
---|
| 768 | REAL tra1(len, nd, ntra) |
---|
[879] | 769 | |
---|
[5141] | 770 | ! outputs: |
---|
| 771 | ! en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
| 772 | INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
---|
| 773 | REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 774 | REAL pbase(nloc), buoybase(nloc) |
---|
| 775 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 776 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
| 777 | REAL p(nloc, nd), ph(nloc, nd + 1), tv(nloc, nd), tp(nloc, nd) |
---|
| 778 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
| 779 | REAL th(nloc, nd) |
---|
| 780 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
| 781 | REAL tra(nloc, nd, ntra) |
---|
[879] | 782 | |
---|
[5141] | 783 | ! local variables: |
---|
| 784 | INTEGER i, k, nn, j |
---|
[879] | 785 | |
---|
[5141] | 786 | CHARACTER (LEN = 20) :: modname = 'cv30_compress' |
---|
| 787 | CHARACTER (LEN = 80) :: abort_message |
---|
| 788 | |
---|
| 789 | DO k = 1, nl + 1 |
---|
| 790 | nn = 0 |
---|
| 791 | DO i = 1, len |
---|
| 792 | IF (iflag1(i)==0) THEN |
---|
| 793 | nn = nn + 1 |
---|
| 794 | sig(nn, k) = sig1(i, k) |
---|
| 795 | w0(nn, k) = w01(i, k) |
---|
| 796 | t(nn, k) = t1(i, k) |
---|
| 797 | q(nn, k) = q1(i, k) |
---|
| 798 | qs(nn, k) = qs1(i, k) |
---|
| 799 | u(nn, k) = u1(i, k) |
---|
| 800 | v(nn, k) = v1(i, k) |
---|
| 801 | gz(nn, k) = gz1(i, k) |
---|
| 802 | h(nn, k) = h1(i, k) |
---|
| 803 | lv(nn, k) = lv1(i, k) |
---|
| 804 | cpn(nn, k) = cpn1(i, k) |
---|
| 805 | p(nn, k) = p1(i, k) |
---|
| 806 | ph(nn, k) = ph1(i, k) |
---|
| 807 | tv(nn, k) = tv1(i, k) |
---|
| 808 | tp(nn, k) = tp1(i, k) |
---|
| 809 | tvp(nn, k) = tvp1(i, k) |
---|
| 810 | clw(nn, k) = clw1(i, k) |
---|
| 811 | th(nn, k) = th1(i, k) |
---|
| 812 | END IF |
---|
| 813 | END DO |
---|
| 814 | END DO |
---|
| 815 | |
---|
| 816 | ! do 121 j=1,ntra |
---|
| 817 | ! do 111 k=1,nd |
---|
| 818 | ! nn=0 |
---|
| 819 | ! do 101 i=1,len |
---|
| 820 | ! IF(iflag1(i).EQ.0)THEN |
---|
| 821 | ! nn=nn+1 |
---|
| 822 | ! tra(nn,k,j)=tra1(i,k,j) |
---|
| 823 | ! END IF |
---|
| 824 | ! 101 continue |
---|
| 825 | ! 111 continue |
---|
| 826 | ! 121 continue |
---|
| 827 | |
---|
| 828 | IF (nn/=ncum) THEN |
---|
| 829 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
| 830 | abort_message = '' |
---|
| 831 | CALL abort_physic(modname, abort_message, 1) |
---|
| 832 | END IF |
---|
| 833 | |
---|
[1992] | 834 | nn = 0 |
---|
| 835 | DO i = 1, len |
---|
| 836 | IF (iflag1(i)==0) THEN |
---|
| 837 | nn = nn + 1 |
---|
[5141] | 838 | pbase(nn) = pbase1(i) |
---|
| 839 | buoybase(nn) = buoybase1(i) |
---|
| 840 | plcl(nn) = plcl1(i) |
---|
| 841 | tnk(nn) = tnk1(i) |
---|
| 842 | qnk(nn) = qnk1(i) |
---|
| 843 | gznk(nn) = gznk1(i) |
---|
| 844 | nk(nn) = nk1(i) |
---|
| 845 | icb(nn) = icb1(i) |
---|
| 846 | icbs(nn) = icbs1(i) |
---|
| 847 | iflag(nn) = iflag1(i) |
---|
[1992] | 848 | END IF |
---|
| 849 | END DO |
---|
[879] | 850 | |
---|
[5141] | 851 | END SUBROUTINE cv30_compress |
---|
[879] | 852 | |
---|
[5141] | 853 | SUBROUTINE cv30_undilute2(nloc, ncum, nd, icb, icbs, nk, tnk, qnk, gznk, t, & |
---|
| 854 | q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, tvp, clw, hp, & |
---|
| 855 | ep, sigp, buoy) |
---|
| 856 | ! epmax_cape: ajout arguments |
---|
| 857 | USE lmdz_conema3 |
---|
| 858 | USE lmdz_cvthermo |
---|
[879] | 859 | |
---|
[5141] | 860 | IMPLICIT NONE |
---|
[879] | 861 | |
---|
[5141] | 862 | ! --------------------------------------------------------------------- |
---|
| 863 | ! Purpose: |
---|
| 864 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 865 | ! & |
---|
| 866 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 867 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 868 | ! & |
---|
| 869 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
[879] | 870 | |
---|
[5141] | 871 | ! Main differences convect3/convect4: |
---|
| 872 | ! - icbs (input) is the first level above LCL (may differ from icb) |
---|
| 873 | ! - many minor differences in the iterations |
---|
| 874 | ! - condensed water not removed from tvp in convect3 |
---|
| 875 | ! - vertical profile of buoyancy computed here (use of buoybase) |
---|
| 876 | ! - the determination of inb is different |
---|
| 877 | ! - no inb1, ONLY inb in output |
---|
| 878 | ! --------------------------------------------------------------------- |
---|
[5140] | 879 | |
---|
[879] | 880 | |
---|
| 881 | |
---|
[5141] | 882 | ! inputs: |
---|
| 883 | INTEGER ncum, nd, nloc |
---|
| 884 | INTEGER icb(nloc), icbs(nloc), nk(nloc) |
---|
| 885 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
| 886 | REAL p(nloc, nd) |
---|
| 887 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 888 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
| 889 | REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
[879] | 890 | |
---|
[5141] | 891 | ! outputs: |
---|
| 892 | INTEGER inb(nloc) |
---|
| 893 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
| 894 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
| 895 | REAL buoy(nloc, nd) |
---|
[879] | 896 | |
---|
[5141] | 897 | ! local variables: |
---|
| 898 | INTEGER i, k |
---|
| 899 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
| 900 | REAL by, defrac, pden |
---|
| 901 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 902 | LOGICAL lcape(nloc) |
---|
[879] | 903 | |
---|
[5141] | 904 | ! ===================================================================== |
---|
| 905 | ! --- SOME INITIALIZATIONS |
---|
| 906 | ! ===================================================================== |
---|
[879] | 907 | |
---|
[5141] | 908 | DO k = 1, nl |
---|
| 909 | DO i = 1, ncum |
---|
| 910 | ep(i, k) = 0.0 |
---|
| 911 | sigp(i, k) = spfac |
---|
| 912 | END DO |
---|
[1992] | 913 | END DO |
---|
[879] | 914 | |
---|
[5141] | 915 | ! ===================================================================== |
---|
| 916 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 917 | ! ===================================================================== |
---|
[879] | 918 | |
---|
[5141] | 919 | ! --- The procedure is to solve the equation. |
---|
| 920 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
[879] | 921 | |
---|
[5141] | 922 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
[879] | 923 | |
---|
[5141] | 924 | DO i = 1, ncum |
---|
| 925 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) & ! debug & |
---|
| 926 | ! +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
| 927 | + qnk(i) * (lv0 - clmcpv * (tnk(i) - 273.15)) + gznk(i) |
---|
| 928 | END DO |
---|
[879] | 929 | |
---|
| 930 | |
---|
[5141] | 931 | ! *** Find lifted parcel quantities above cloud base *** |
---|
[879] | 932 | |
---|
[5141] | 933 | DO k = minorig + 1, nl |
---|
| 934 | DO i = 1, ncum |
---|
[5158] | 935 | ! ori IF(k.ge.(icb(i)+1))THEN |
---|
[5141] | 936 | IF (k>=(icbs(i) + 1)) THEN ! convect3 |
---|
| 937 | tg = t(i, k) |
---|
| 938 | qg = qs(i, k) |
---|
[5158] | 939 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
[5141] | 940 | alv = lv0 - clmcpv * (t(i, k) - 273.15) |
---|
[879] | 941 | |
---|
[5141] | 942 | ! First iteration. |
---|
[879] | 943 | |
---|
[5158] | 944 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
[5141] | 945 | s = cpd * (1. - qnk(i)) + cl * qnk(i) & ! convect3 |
---|
| 946 | + alv * alv * qg / (rrv * t(i, k) * t(i, k)) ! convect3 |
---|
| 947 | s = 1. / s |
---|
[5158] | 948 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
[5141] | 949 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gz(i, k) ! convect3 |
---|
| 950 | tg = tg + s * (ah0(i) - ahg) |
---|
[5158] | 951 | ! ori tg=max(tg,35.0) |
---|
| 952 | ! debug tc=tg-t0 |
---|
[5141] | 953 | tc = tg - 273.15 |
---|
| 954 | denom = 243.5 + tc |
---|
| 955 | denom = max(denom, 1.0) ! convect3 |
---|
[5158] | 956 | ! ori IF(tc.ge.0.0)THEN |
---|
[5141] | 957 | es = 6.112 * exp(17.67 * tc / denom) |
---|
[5158] | 958 | ! ori else |
---|
| 959 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 960 | ! ori endif |
---|
[5141] | 961 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
[879] | 962 | |
---|
[5141] | 963 | ! Second iteration. |
---|
[879] | 964 | |
---|
[5158] | 965 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 966 | ! ori s=1./s |
---|
| 967 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
[5141] | 968 | ahg = cpd * tg + (cl - cpd) * qnk(i) * tg + alv * qg + gz(i, k) ! convect3 |
---|
| 969 | tg = tg + s * (ah0(i) - ahg) |
---|
[5158] | 970 | ! ori tg=max(tg,35.0) |
---|
| 971 | ! debug tc=tg-t0 |
---|
[5141] | 972 | tc = tg - 273.15 |
---|
| 973 | denom = 243.5 + tc |
---|
| 974 | denom = max(denom, 1.0) ! convect3 |
---|
[5158] | 975 | ! ori IF(tc.ge.0.0)THEN |
---|
[5141] | 976 | es = 6.112 * exp(17.67 * tc / denom) |
---|
[5158] | 977 | ! ori else |
---|
| 978 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 979 | ! ori endif |
---|
[5141] | 980 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
[879] | 981 | |
---|
[5158] | 982 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
[5141] | 983 | alv = lv0 - clmcpv * (t(i, k) - 273.15) |
---|
| 984 | ! PRINT*,'cpd dans convect2 ',cpd |
---|
| 985 | ! PRINT*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 986 | ! PRINT*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
[879] | 987 | |
---|
[5141] | 988 | ! ori c approximation here: |
---|
| 989 | ! ori |
---|
| 990 | ! tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
[879] | 991 | |
---|
[5141] | 992 | ! convect3: no approximation: |
---|
| 993 | tp(i, k) = (ah0(i) - gz(i, k) - alv * qg) / (cpd + (cl - cpd) * qnk(i)) |
---|
[879] | 994 | |
---|
[5141] | 995 | clw(i, k) = qnk(i) - qg |
---|
| 996 | clw(i, k) = max(0.0, clw(i, k)) |
---|
| 997 | rg = qg / (1. - qnk(i)) |
---|
| 998 | ! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
| 999 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
| 1000 | tvp(i, k) = tp(i, k) * (1. + qg / eps - qnk(i)) ! whole thing |
---|
| 1001 | END IF |
---|
| 1002 | END DO |
---|
[1992] | 1003 | END DO |
---|
[879] | 1004 | |
---|
[5141] | 1005 | ! ===================================================================== |
---|
| 1006 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 1007 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 1008 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 1009 | ! ===================================================================== |
---|
[879] | 1010 | |
---|
[5141] | 1011 | ! ori do 320 k=minorig+1,nl |
---|
| 1012 | DO k = 1, nl ! convect3 |
---|
| 1013 | DO i = 1, ncum |
---|
| 1014 | pden = ptcrit - pbcrit |
---|
| 1015 | ep(i, k) = (plcl(i) - p(i, k) - pbcrit) / pden * epmax |
---|
| 1016 | ep(i, k) = amax1(ep(i, k), 0.0) |
---|
| 1017 | ep(i, k) = amin1(ep(i, k), epmax) |
---|
| 1018 | sigp(i, k) = spfac |
---|
| 1019 | ! ori IF(k.ge.(nk(i)+1))THEN |
---|
| 1020 | ! ori tca=tp(i,k)-t0 |
---|
| 1021 | ! ori IF(tca.ge.0.0)THEN |
---|
| 1022 | ! ori elacrit=elcrit |
---|
| 1023 | ! ori else |
---|
| 1024 | ! ori elacrit=elcrit*(1.0-tca/tlcrit) |
---|
| 1025 | ! ori endif |
---|
| 1026 | ! ori elacrit=max(elacrit,0.0) |
---|
| 1027 | ! ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
| 1028 | ! ori ep(i,k)=max(ep(i,k),0.0 ) |
---|
| 1029 | ! ori ep(i,k)=min(ep(i,k),1.0 ) |
---|
| 1030 | ! ori sigp(i,k)=sigs |
---|
| 1031 | ! ori endif |
---|
| 1032 | END DO |
---|
[1992] | 1033 | END DO |
---|
[879] | 1034 | |
---|
[5141] | 1035 | ! ===================================================================== |
---|
| 1036 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 1037 | ! --- VIRTUAL TEMPERATURE |
---|
| 1038 | ! ===================================================================== |
---|
[879] | 1039 | |
---|
[5141] | 1040 | ! dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
| 1041 | ! l'eau condensee (~> reversible CAPE) |
---|
[879] | 1042 | |
---|
[5141] | 1043 | ! ori do 340 k=minorig+1,nl |
---|
| 1044 | ! ori do 330 i=1,ncum |
---|
| 1045 | ! ori IF(k.ge.(icb(i)+1))THEN |
---|
| 1046 | ! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 1047 | ! oric PRINT*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 1048 | ! oric PRINT*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 1049 | ! ori endif |
---|
| 1050 | ! ori 330 continue |
---|
| 1051 | ! ori 340 continue |
---|
[879] | 1052 | |
---|
[5141] | 1053 | ! ori do 350 i=1,ncum |
---|
| 1054 | ! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
| 1055 | ! ori 350 continue |
---|
[879] | 1056 | |
---|
[5141] | 1057 | DO i = 1, ncum ! convect3 |
---|
| 1058 | tp(i, nlp) = tp(i, nl) ! convect3 |
---|
| 1059 | END DO ! convect3 |
---|
[879] | 1060 | |
---|
[5141] | 1061 | ! ===================================================================== |
---|
| 1062 | ! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
| 1063 | ! ===================================================================== |
---|
[879] | 1064 | |
---|
[5141] | 1065 | ! -- this is for convect3 only: |
---|
[879] | 1066 | |
---|
[5141] | 1067 | ! first estimate of buoyancy: |
---|
[879] | 1068 | |
---|
[5141] | 1069 | DO i = 1, ncum |
---|
| 1070 | DO k = 1, nl |
---|
| 1071 | buoy(i, k) = tvp(i, k) - tv(i, k) |
---|
| 1072 | END DO |
---|
[1992] | 1073 | END DO |
---|
[879] | 1074 | |
---|
[5141] | 1075 | ! set buoyancy=buoybase for all levels below base |
---|
| 1076 | ! for safety, set buoy(icb)=buoybase |
---|
[879] | 1077 | |
---|
[5141] | 1078 | DO i = 1, ncum |
---|
| 1079 | DO k = 1, nl |
---|
| 1080 | IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i, k)>=pbase(i))) THEN |
---|
| 1081 | buoy(i, k) = buoybase(i) |
---|
| 1082 | END IF |
---|
| 1083 | END DO |
---|
| 1084 | ! IM cf. CRio/JYG 270807 buoy(icb(i),k)=buoybase(i) |
---|
| 1085 | buoy(i, icb(i)) = buoybase(i) |
---|
[1992] | 1086 | END DO |
---|
[879] | 1087 | |
---|
[5141] | 1088 | ! -- end convect3 |
---|
[879] | 1089 | |
---|
[5141] | 1090 | ! ===================================================================== |
---|
| 1091 | ! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
| 1092 | ! --- LEVEL OF NEUTRAL BUOYANCY |
---|
| 1093 | ! ===================================================================== |
---|
[879] | 1094 | |
---|
[5141] | 1095 | ! -- this is for convect3 only: |
---|
[879] | 1096 | |
---|
[5141] | 1097 | DO i = 1, ncum |
---|
| 1098 | inb(i) = nl - 1 |
---|
| 1099 | END DO |
---|
[879] | 1100 | |
---|
[5141] | 1101 | DO i = 1, ncum |
---|
| 1102 | DO k = 1, nl - 1 |
---|
| 1103 | IF ((k>=icb(i)) .AND. (buoy(i, k)<dtovsh)) THEN |
---|
| 1104 | inb(i) = min(inb(i), k) |
---|
| 1105 | END IF |
---|
| 1106 | END DO |
---|
[1992] | 1107 | END DO |
---|
[879] | 1108 | |
---|
[5141] | 1109 | ! -- end convect3 |
---|
[879] | 1110 | |
---|
[5141] | 1111 | ! ori do 510 i=1,ncum |
---|
| 1112 | ! ori cape(i)=0.0 |
---|
| 1113 | ! ori capem(i)=0.0 |
---|
| 1114 | ! ori inb(i)=icb(i)+1 |
---|
| 1115 | ! ori inb1(i)=inb(i) |
---|
| 1116 | ! ori 510 continue |
---|
[879] | 1117 | |
---|
[5141] | 1118 | ! Originial Code |
---|
[879] | 1119 | |
---|
[5141] | 1120 | ! do 530 k=minorig+1,nl-1 |
---|
| 1121 | ! do 520 i=1,ncum |
---|
| 1122 | ! IF(k.ge.(icb(i)+1))THEN |
---|
| 1123 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1124 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1125 | ! cape(i)=cape(i)+by |
---|
| 1126 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
| 1127 | ! IF(cape(i).gt.0.0)THEN |
---|
| 1128 | ! inb(i)=k+1 |
---|
| 1129 | ! capem(i)=cape(i) |
---|
| 1130 | ! END IF |
---|
| 1131 | ! END IF |
---|
| 1132 | ! 520 continue |
---|
| 1133 | ! 530 continue |
---|
| 1134 | ! do 540 i=1,ncum |
---|
| 1135 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 1136 | ! cape(i)=capem(i)+byp |
---|
| 1137 | ! defrac=capem(i)-cape(i) |
---|
| 1138 | ! defrac=max(defrac,0.001) |
---|
| 1139 | ! frac(i)=-cape(i)/defrac |
---|
| 1140 | ! frac(i)=min(frac(i),1.0) |
---|
| 1141 | ! frac(i)=max(frac(i),0.0) |
---|
| 1142 | ! 540 continue |
---|
[879] | 1143 | |
---|
[5141] | 1144 | ! K Emanuel fix |
---|
[879] | 1145 | |
---|
[5141] | 1146 | ! CALL zilch(byp,ncum) |
---|
| 1147 | ! do 530 k=minorig+1,nl-1 |
---|
| 1148 | ! do 520 i=1,ncum |
---|
| 1149 | ! IF(k.ge.(icb(i)+1))THEN |
---|
| 1150 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1151 | ! cape(i)=cape(i)+by |
---|
| 1152 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
| 1153 | ! IF(cape(i).gt.0.0)THEN |
---|
| 1154 | ! inb(i)=k+1 |
---|
| 1155 | ! capem(i)=cape(i) |
---|
| 1156 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1157 | ! END IF |
---|
| 1158 | ! END IF |
---|
| 1159 | ! 520 continue |
---|
| 1160 | ! 530 continue |
---|
| 1161 | ! do 540 i=1,ncum |
---|
| 1162 | ! inb(i)=max(inb(i),inb1(i)) |
---|
| 1163 | ! cape(i)=capem(i)+byp(i) |
---|
| 1164 | ! defrac=capem(i)-cape(i) |
---|
| 1165 | ! defrac=max(defrac,0.001) |
---|
| 1166 | ! frac(i)=-cape(i)/defrac |
---|
| 1167 | ! frac(i)=min(frac(i),1.0) |
---|
| 1168 | ! frac(i)=max(frac(i),0.0) |
---|
| 1169 | ! 540 continue |
---|
[879] | 1170 | |
---|
[5141] | 1171 | ! J Teixeira fix |
---|
[879] | 1172 | |
---|
[5141] | 1173 | ! ori CALL zilch(byp,ncum) |
---|
| 1174 | ! ori do 515 i=1,ncum |
---|
| 1175 | ! ori lcape(i)=.TRUE. |
---|
| 1176 | ! ori 515 continue |
---|
| 1177 | ! ori do 530 k=minorig+1,nl-1 |
---|
| 1178 | ! ori do 520 i=1,ncum |
---|
| 1179 | ! ori IF(cape(i).lt.0.0)lcape(i)=.FALSE. |
---|
| 1180 | ! ori if((k.ge.(icb(i)+1)).AND.lcape(i))THEN |
---|
| 1181 | ! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1182 | ! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1183 | ! ori cape(i)=cape(i)+by |
---|
| 1184 | ! ori IF(by.ge.0.0)inb1(i)=k+1 |
---|
| 1185 | ! ori IF(cape(i).gt.0.0)THEN |
---|
| 1186 | ! ori inb(i)=k+1 |
---|
| 1187 | ! ori capem(i)=cape(i) |
---|
| 1188 | ! ori endif |
---|
| 1189 | ! ori endif |
---|
| 1190 | ! ori 520 continue |
---|
| 1191 | ! ori 530 continue |
---|
| 1192 | ! ori do 540 i=1,ncum |
---|
| 1193 | ! ori cape(i)=capem(i)+byp(i) |
---|
| 1194 | ! ori defrac=capem(i)-cape(i) |
---|
| 1195 | ! ori defrac=max(defrac,0.001) |
---|
| 1196 | ! ori frac(i)=-cape(i)/defrac |
---|
| 1197 | ! ori frac(i)=min(frac(i),1.0) |
---|
| 1198 | ! ori frac(i)=max(frac(i),0.0) |
---|
| 1199 | ! ori 540 continue |
---|
[879] | 1200 | |
---|
[5141] | 1201 | ! ===================================================================== |
---|
| 1202 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 1203 | ! ===================================================================== |
---|
[879] | 1204 | |
---|
[5141] | 1205 | ! ym do i=1,ncum*nlp |
---|
| 1206 | ! ym hp(i,1)=h(i,1) |
---|
| 1207 | ! ym enddo |
---|
[879] | 1208 | |
---|
[5141] | 1209 | DO k = 1, nlp |
---|
| 1210 | DO i = 1, ncum |
---|
| 1211 | hp(i, k) = h(i, k) |
---|
| 1212 | END DO |
---|
[1992] | 1213 | END DO |
---|
[879] | 1214 | |
---|
[5141] | 1215 | DO k = minorig + 1, nl |
---|
| 1216 | DO i = 1, ncum |
---|
| 1217 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
| 1218 | hp(i, k) = h(i, nk(i)) + (lv(i, k) + (cpd - cpv) * t(i, k)) * ep(i, k) * clw(i, k & |
---|
| 1219 | ) |
---|
| 1220 | END IF |
---|
| 1221 | END DO |
---|
[1992] | 1222 | END DO |
---|
[879] | 1223 | |
---|
[5141] | 1224 | END SUBROUTINE cv30_undilute2 |
---|
[879] | 1225 | |
---|
[5141] | 1226 | SUBROUTINE cv30_closure(nloc, ncum, nd, icb, inb, pbase, p, ph, tv, buoy, & |
---|
| 1227 | sig, w0, cape, m) |
---|
| 1228 | USE lmdz_cvthermo |
---|
[879] | 1229 | |
---|
[5141] | 1230 | IMPLICIT NONE |
---|
[879] | 1231 | |
---|
[5141] | 1232 | ! =================================================================== |
---|
| 1233 | ! --- CLOSURE OF CONVECT3 |
---|
[879] | 1234 | |
---|
[5141] | 1235 | ! vectorization: S. Bony |
---|
| 1236 | ! =================================================================== |
---|
[879] | 1237 | |
---|
| 1238 | |
---|
| 1239 | |
---|
[5141] | 1240 | ! input: |
---|
| 1241 | INTEGER ncum, nd, nloc |
---|
| 1242 | INTEGER icb(nloc), inb(nloc) |
---|
| 1243 | REAL pbase(nloc) |
---|
| 1244 | REAL p(nloc, nd), ph(nloc, nd + 1) |
---|
| 1245 | REAL tv(nloc, nd), buoy(nloc, nd) |
---|
[879] | 1246 | |
---|
[5141] | 1247 | ! input/output: |
---|
| 1248 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
[879] | 1249 | |
---|
[5141] | 1250 | ! output: |
---|
| 1251 | REAL cape(nloc) |
---|
| 1252 | REAL m(nloc, nd) |
---|
[879] | 1253 | |
---|
[5141] | 1254 | ! local variables: |
---|
| 1255 | INTEGER i, j, k, icbmax |
---|
| 1256 | REAL deltap, fac, w, amu |
---|
| 1257 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
| 1258 | |
---|
| 1259 | ! ------------------------------------------------------- |
---|
| 1260 | ! -- Initialization |
---|
| 1261 | ! ------------------------------------------------------- |
---|
| 1262 | |
---|
| 1263 | DO k = 1, nl |
---|
| 1264 | DO i = 1, ncum |
---|
| 1265 | m(i, k) = 0.0 |
---|
| 1266 | END DO |
---|
[1992] | 1267 | END DO |
---|
[879] | 1268 | |
---|
[5141] | 1269 | ! ------------------------------------------------------- |
---|
| 1270 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 1271 | ! ------------------------------------------------------- |
---|
[879] | 1272 | |
---|
[5141] | 1273 | ! update sig and w0 above LNB: |
---|
[879] | 1274 | |
---|
[5141] | 1275 | DO k = 1, nl - 1 |
---|
| 1276 | DO i = 1, ncum |
---|
| 1277 | IF ((inb(i)<(nl - 1)) .AND. (k>=(inb(i) + 1))) THEN |
---|
| 1278 | sig(i, k) = beta * sig(i, k) + 2. * alpha * buoy(i, inb(i)) * abs(buoy(i, inb(& |
---|
| 1279 | i))) |
---|
| 1280 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
| 1281 | w0(i, k) = beta * w0(i, k) |
---|
| 1282 | END IF |
---|
| 1283 | END DO |
---|
[1992] | 1284 | END DO |
---|
[879] | 1285 | |
---|
[5141] | 1286 | ! compute icbmax: |
---|
[879] | 1287 | |
---|
[5141] | 1288 | icbmax = 2 |
---|
| 1289 | DO i = 1, ncum |
---|
| 1290 | icbmax = max(icbmax, icb(i)) |
---|
| 1291 | END DO |
---|
[879] | 1292 | |
---|
[5141] | 1293 | ! update sig and w0 below cloud base: |
---|
[879] | 1294 | |
---|
[5141] | 1295 | DO k = 1, icbmax |
---|
| 1296 | DO i = 1, ncum |
---|
| 1297 | IF (k<=icb(i)) THEN |
---|
| 1298 | sig(i, k) = beta * sig(i, k) - 2. * alpha * buoy(i, icb(i)) * buoy(i, icb(i)) |
---|
| 1299 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
| 1300 | w0(i, k) = beta * w0(i, k) |
---|
| 1301 | END IF |
---|
| 1302 | END DO |
---|
[1992] | 1303 | END DO |
---|
[879] | 1304 | |
---|
[5141] | 1305 | ! IF(inb.lt.(nl-1))THEN |
---|
| 1306 | ! do 85 i=inb+1,nl-1 |
---|
| 1307 | ! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
| 1308 | ! 1 abs(buoy(inb)) |
---|
| 1309 | ! sig(i)=amax1(sig(i),0.0) |
---|
| 1310 | ! w0(i)=beta*w0(i) |
---|
| 1311 | ! 85 continue |
---|
| 1312 | ! end if |
---|
[879] | 1313 | |
---|
[5141] | 1314 | ! do 87 i=1,icb |
---|
| 1315 | ! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
| 1316 | ! sig(i)=amax1(sig(i),0.0) |
---|
| 1317 | ! w0(i)=beta*w0(i) |
---|
| 1318 | ! 87 continue |
---|
[1742] | 1319 | |
---|
[5141] | 1320 | ! ------------------------------------------------------------- |
---|
| 1321 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 1322 | ! -- and after 10 time steps of no convection |
---|
| 1323 | ! ------------------------------------------------------------- |
---|
[1742] | 1324 | |
---|
[5141] | 1325 | DO k = 1, nl - 1 |
---|
| 1326 | DO i = 1, ncum |
---|
| 1327 | IF (sig(i, nd)<1.5 .OR. sig(i, nd)>12.0) THEN |
---|
| 1328 | sig(i, k) = 0.0 |
---|
| 1329 | w0(i, k) = 0.0 |
---|
| 1330 | END IF |
---|
| 1331 | END DO |
---|
[1992] | 1332 | END DO |
---|
[879] | 1333 | |
---|
[5141] | 1334 | ! ------------------------------------------------------------- |
---|
| 1335 | ! -- Calculate convective available potential energy (cape), |
---|
| 1336 | ! -- vertical velocity (w), fractional area covered by |
---|
| 1337 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 1338 | ! ------------------------------------------------------------- |
---|
[879] | 1339 | |
---|
[5141] | 1340 | DO i = 1, ncum |
---|
| 1341 | cape(i) = 0.0 |
---|
| 1342 | END DO |
---|
[879] | 1343 | |
---|
[5141] | 1344 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
[879] | 1345 | |
---|
[5141] | 1346 | DO i = 1, ncum |
---|
| 1347 | DO k = 1, nl |
---|
| 1348 | dtmin(i, k) = 100.0 |
---|
| 1349 | END DO |
---|
[1992] | 1350 | END DO |
---|
[879] | 1351 | |
---|
[5141] | 1352 | DO i = 1, ncum |
---|
| 1353 | DO k = 1, nl |
---|
| 1354 | DO j = minorig, nl |
---|
| 1355 | IF ((k>=(icb(i) + 1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k - & |
---|
| 1356 | 1))) THEN |
---|
| 1357 | dtmin(i, k) = amin1(dtmin(i, k), buoy(i, j)) |
---|
| 1358 | END IF |
---|
| 1359 | END DO |
---|
[1992] | 1360 | END DO |
---|
| 1361 | END DO |
---|
[879] | 1362 | |
---|
[5141] | 1363 | ! the interval on which cape is computed starts at pbase : |
---|
| 1364 | DO k = 1, nl |
---|
| 1365 | DO i = 1, ncum |
---|
[879] | 1366 | |
---|
[5141] | 1367 | IF ((k>=(icb(i) + 1)) .AND. (k<=inb(i))) THEN |
---|
[879] | 1368 | |
---|
[5141] | 1369 | deltap = min(pbase(i), ph(i, k - 1)) - min(pbase(i), ph(i, k)) |
---|
| 1370 | cape(i) = cape(i) + rrd * buoy(i, k - 1) * deltap / p(i, k - 1) |
---|
| 1371 | cape(i) = amax1(0.0, cape(i)) |
---|
| 1372 | sigold(i, k) = sig(i, k) |
---|
[879] | 1373 | |
---|
[5141] | 1374 | ! dtmin(i,k)=100.0 |
---|
| 1375 | ! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
| 1376 | ! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
| 1377 | ! 97 continue |
---|
[879] | 1378 | |
---|
[5141] | 1379 | sig(i, k) = beta * sig(i, k) + alpha * dtmin(i, k) * abs(dtmin(i, k)) |
---|
| 1380 | sig(i, k) = amax1(sig(i, k), 0.0) |
---|
| 1381 | sig(i, k) = amin1(sig(i, k), 0.01) |
---|
| 1382 | fac = amin1(((dtcrit - dtmin(i, k)) / dtcrit), 1.0) |
---|
| 1383 | w = (1. - beta) * fac * sqrt(cape(i)) + beta * w0(i, k) |
---|
| 1384 | amu = 0.5 * (sig(i, k) + sigold(i, k)) * w |
---|
| 1385 | m(i, k) = amu * 0.007 * p(i, k) * (ph(i, k) - ph(i, k + 1)) / tv(i, k) |
---|
| 1386 | w0(i, k) = w |
---|
| 1387 | END IF |
---|
[879] | 1388 | |
---|
[5141] | 1389 | END DO |
---|
[1992] | 1390 | END DO |
---|
[879] | 1391 | |
---|
[5141] | 1392 | DO i = 1, ncum |
---|
| 1393 | w0(i, icb(i)) = 0.5 * w0(i, icb(i) + 1) |
---|
| 1394 | m(i, icb(i)) = 0.5 * m(i, icb(i) + 1) * (ph(i, icb(i)) - ph(i, icb(i) + 1)) / & |
---|
| 1395 | (ph(i, icb(i) + 1) - ph(i, icb(i) + 2)) |
---|
| 1396 | sig(i, icb(i)) = sig(i, icb(i) + 1) |
---|
| 1397 | sig(i, icb(i) - 1) = sig(i, icb(i)) |
---|
| 1398 | END DO |
---|
[879] | 1399 | |
---|
| 1400 | |
---|
[5141] | 1401 | ! cape=0.0 |
---|
| 1402 | ! do 98 i=icb+1,inb |
---|
| 1403 | ! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
| 1404 | ! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1405 | ! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1406 | ! dlnp=deltap/p(i-1) |
---|
| 1407 | ! cape=amax1(0.0,cape) |
---|
| 1408 | ! sigold=sig(i) |
---|
[879] | 1409 | |
---|
[5141] | 1410 | ! dtmin=100.0 |
---|
| 1411 | ! do 97 j=icb,i-1 |
---|
| 1412 | ! dtmin=amin1(dtmin,buoy(j)) |
---|
| 1413 | ! 97 continue |
---|
[879] | 1414 | |
---|
[5141] | 1415 | ! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
| 1416 | ! sig(i)=amax1(sig(i),0.0) |
---|
| 1417 | ! sig(i)=amin1(sig(i),0.01) |
---|
| 1418 | ! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
| 1419 | ! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
| 1420 | ! amu=0.5*(sig(i)+sigold)*w |
---|
| 1421 | ! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
| 1422 | ! w0(i)=w |
---|
| 1423 | ! 98 continue |
---|
| 1424 | ! w0(icb)=0.5*w0(icb+1) |
---|
| 1425 | ! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
| 1426 | ! sig(icb)=sig(icb+1) |
---|
| 1427 | ! sig(icb-1)=sig(icb) |
---|
[879] | 1428 | |
---|
[5141] | 1429 | END SUBROUTINE cv30_closure |
---|
[879] | 1430 | |
---|
[5141] | 1431 | SUBROUTINE cv30_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, ph, t, rr, rs, & |
---|
| 1432 | u, v, tra, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, qent, uent, & |
---|
| 1433 | vent, sij, elij, ments, qents, traent) |
---|
| 1434 | USE lmdz_cvthermo |
---|
[879] | 1435 | |
---|
[5141] | 1436 | IMPLICIT NONE |
---|
[879] | 1437 | |
---|
[5141] | 1438 | ! --------------------------------------------------------------------- |
---|
| 1439 | ! a faire: |
---|
| 1440 | ! - changer rr(il,1) -> qnk(il) |
---|
| 1441 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
| 1442 | ! --------------------------------------------------------------------- |
---|
[879] | 1443 | |
---|
| 1444 | |
---|
| 1445 | |
---|
[5141] | 1446 | ! inputs: |
---|
| 1447 | INTEGER ncum, nd, na, ntra, nloc |
---|
| 1448 | INTEGER icb(nloc), inb(nloc), nk(nloc) |
---|
| 1449 | REAL sig(nloc, nd) |
---|
| 1450 | REAL qnk(nloc) |
---|
| 1451 | REAL ph(nloc, nd + 1) |
---|
| 1452 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
| 1453 | REAL u(nloc, nd), v(nloc, nd) |
---|
| 1454 | REAL tra(nloc, nd, ntra) ! input of convect3 |
---|
| 1455 | REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
---|
| 1456 | REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
| 1457 | REAL m(nloc, na) ! input of convect3 |
---|
[879] | 1458 | |
---|
[5141] | 1459 | ! outputs: |
---|
| 1460 | REAL ment(nloc, na, na), qent(nloc, na, na) |
---|
| 1461 | REAL uent(nloc, na, na), vent(nloc, na, na) |
---|
| 1462 | REAL sij(nloc, na, na), elij(nloc, na, na) |
---|
| 1463 | REAL traent(nloc, nd, nd, ntra) |
---|
| 1464 | REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
---|
| 1465 | REAL sigij(nloc, nd, nd) |
---|
[879] | 1466 | |
---|
[5141] | 1467 | ! local variables: |
---|
| 1468 | INTEGER i, j, k, il, im, jm |
---|
| 1469 | INTEGER num1, num2 |
---|
| 1470 | INTEGER nent(nloc, na) |
---|
| 1471 | REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
| 1472 | REAL alt, smid, sjmin, sjmax, delp, delm |
---|
| 1473 | REAL asij(nloc), smax(nloc), scrit(nloc) |
---|
| 1474 | REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
---|
| 1475 | REAL wgh |
---|
| 1476 | REAL zm(nloc, na) |
---|
| 1477 | LOGICAL lwork(nloc) |
---|
[879] | 1478 | |
---|
[5141] | 1479 | ! ===================================================================== |
---|
| 1480 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 1481 | ! ===================================================================== |
---|
| 1482 | |
---|
| 1483 | ! ori do 360 i=1,ncum*nlp |
---|
| 1484 | DO j = 1, nl |
---|
[1992] | 1485 | DO i = 1, ncum |
---|
[5141] | 1486 | nent(i, j) = 0 |
---|
| 1487 | ! in convect3, m is computed in cv3_closure |
---|
| 1488 | ! ori m(i,1)=0.0 |
---|
[1992] | 1489 | END DO |
---|
| 1490 | END DO |
---|
[879] | 1491 | |
---|
[5141] | 1492 | ! ori do 400 k=1,nlp |
---|
| 1493 | ! ori do 390 j=1,nlp |
---|
| 1494 | DO j = 1, nl |
---|
| 1495 | DO k = 1, nl |
---|
| 1496 | DO i = 1, ncum |
---|
| 1497 | qent(i, k, j) = rr(i, j) |
---|
| 1498 | uent(i, k, j) = u(i, j) |
---|
| 1499 | vent(i, k, j) = v(i, j) |
---|
| 1500 | elij(i, k, j) = 0.0 |
---|
| 1501 | ! ym ment(i,k,j)=0.0 |
---|
| 1502 | ! ym sij(i,k,j)=0.0 |
---|
| 1503 | END DO |
---|
[1992] | 1504 | END DO |
---|
| 1505 | END DO |
---|
[879] | 1506 | |
---|
[5141] | 1507 | ! ym |
---|
| 1508 | ment(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
| 1509 | sij(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
| 1510 | |
---|
[1992] | 1511 | ! do k=1,ntra |
---|
[5141] | 1512 | ! do j=1,nd ! instead nlp |
---|
| 1513 | ! do i=1,nd ! instead nlp |
---|
[1992] | 1514 | ! do il=1,ncum |
---|
[5141] | 1515 | ! traent(il,i,j,k)=tra(il,j,k) |
---|
[1992] | 1516 | ! enddo |
---|
| 1517 | ! enddo |
---|
| 1518 | ! enddo |
---|
[5141] | 1519 | ! enddo |
---|
| 1520 | zm(:, :) = 0. |
---|
[879] | 1521 | |
---|
[5141] | 1522 | ! ===================================================================== |
---|
| 1523 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 1524 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 1525 | ! --- FRACTION (sij) |
---|
| 1526 | ! ===================================================================== |
---|
[879] | 1527 | |
---|
[5141] | 1528 | DO i = minorig + 1, nl |
---|
[879] | 1529 | |
---|
[5141] | 1530 | DO j = minorig, nl |
---|
| 1531 | DO il = 1, ncum |
---|
| 1532 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il) - & |
---|
| 1533 | 1)) .AND. (j<=inb(il))) THEN |
---|
[879] | 1534 | |
---|
[5141] | 1535 | rti = rr(il, 1) - ep(il, i) * clw(il, i) |
---|
| 1536 | bf2 = 1. + lv(il, j) * lv(il, j) * rs(il, j) / (rrv * t(il, j) * t(il, j) * cpd) |
---|
| 1537 | anum = h(il, j) - hp(il, i) + (cpv - cpd) * t(il, j) * (rti - rr(il, j)) |
---|
| 1538 | denom = h(il, i) - hp(il, i) + (cpd - cpv) * (rr(il, i) - rti) * t(il, j) |
---|
| 1539 | dei = denom |
---|
| 1540 | IF (abs(dei)<0.01) dei = 0.01 |
---|
| 1541 | sij(il, i, j) = anum / dei |
---|
| 1542 | sij(il, i, i) = 1.0 |
---|
| 1543 | altem = sij(il, i, j) * rr(il, i) + (1. - sij(il, i, j)) * rti - rs(il, j) |
---|
| 1544 | altem = altem / bf2 |
---|
| 1545 | cwat = clw(il, j) * (1. - ep(il, j)) |
---|
| 1546 | stemp = sij(il, i, j) |
---|
| 1547 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
| 1548 | anum = anum - lv(il, j) * (rti - rs(il, j) - cwat * bf2) |
---|
| 1549 | denom = denom + lv(il, j) * (rr(il, i) - rti) |
---|
| 1550 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 1551 | sij(il, i, j) = anum / denom |
---|
| 1552 | altem = sij(il, i, j) * rr(il, i) + (1. - sij(il, i, j)) * rti - & |
---|
| 1553 | rs(il, j) |
---|
| 1554 | altem = altem - (bf2 - 1.) * cwat |
---|
| 1555 | END IF |
---|
| 1556 | IF (sij(il, i, j)>0.0 .AND. sij(il, i, j)<0.95) THEN |
---|
| 1557 | qent(il, i, j) = sij(il, i, j) * rr(il, i) + (1. - sij(il, i, j)) * rti |
---|
| 1558 | uent(il, i, j) = sij(il, i, j) * u(il, i) + & |
---|
| 1559 | (1. - sij(il, i, j)) * u(il, nk(il)) |
---|
| 1560 | vent(il, i, j) = sij(il, i, j) * v(il, i) + & |
---|
| 1561 | (1. - sij(il, i, j)) * v(il, nk(il)) |
---|
| 1562 | ! !!! do k=1,ntra |
---|
| 1563 | ! !!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1564 | ! !!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1565 | ! !!! END DO |
---|
| 1566 | elij(il, i, j) = altem |
---|
| 1567 | elij(il, i, j) = amax1(0.0, elij(il, i, j)) |
---|
| 1568 | ment(il, i, j) = m(il, i) / (1. - sij(il, i, j)) |
---|
| 1569 | nent(il, i) = nent(il, i) + 1 |
---|
| 1570 | END IF |
---|
| 1571 | sij(il, i, j) = amax1(0.0, sij(il, i, j)) |
---|
| 1572 | sij(il, i, j) = amin1(1.0, sij(il, i, j)) |
---|
| 1573 | END IF ! new |
---|
| 1574 | END DO |
---|
| 1575 | END DO |
---|
[879] | 1576 | |
---|
[5141] | 1577 | ! do k=1,ntra |
---|
| 1578 | ! do j=minorig,nl |
---|
| 1579 | ! do il=1,ncum |
---|
| 1580 | ! IF( (i.ge.icb(il)).AND.(i.le.inb(il)).AND. |
---|
| 1581 | ! : (j.ge.(icb(il)-1)).AND.(j.le.inb(il)))THEN |
---|
| 1582 | ! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1583 | ! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1584 | ! END IF |
---|
| 1585 | ! enddo |
---|
| 1586 | ! enddo |
---|
| 1587 | ! enddo |
---|
[879] | 1588 | |
---|
| 1589 | |
---|
[5141] | 1590 | ! *** if no air can entrain at level i assume that updraft detrains |
---|
| 1591 | ! *** |
---|
| 1592 | ! *** at that level and calculate detrained air flux and properties |
---|
| 1593 | ! *** |
---|
| 1594 | |
---|
| 1595 | |
---|
| 1596 | ! @ do 170 i=icb(il),inb(il) |
---|
| 1597 | |
---|
[1992] | 1598 | DO il = 1, ncum |
---|
[5141] | 1599 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il, i)==0)) THEN |
---|
| 1600 | ! @ IF(nent(il,i).EQ.0)THEN |
---|
| 1601 | ment(il, i, i) = m(il, i) |
---|
| 1602 | qent(il, i, i) = rr(il, nk(il)) - ep(il, i) * clw(il, i) |
---|
| 1603 | uent(il, i, i) = u(il, nk(il)) |
---|
| 1604 | vent(il, i, i) = v(il, nk(il)) |
---|
| 1605 | elij(il, i, i) = clw(il, i) |
---|
| 1606 | ! MAF sij(il,i,i)=1.0 |
---|
| 1607 | sij(il, i, i) = 0.0 |
---|
[1992] | 1608 | END IF |
---|
| 1609 | END DO |
---|
| 1610 | END DO |
---|
[879] | 1611 | |
---|
[5141] | 1612 | ! do j=1,ntra |
---|
| 1613 | ! do i=minorig+1,nl |
---|
| 1614 | ! do il=1,ncum |
---|
| 1615 | ! if (i.ge.icb(il) .AND. i.le.inb(il) .AND. nent(il,i).EQ.0) THEN |
---|
| 1616 | ! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1617 | ! END IF |
---|
| 1618 | ! enddo |
---|
| 1619 | ! enddo |
---|
| 1620 | ! enddo |
---|
[879] | 1621 | |
---|
[5141] | 1622 | DO j = minorig, nl |
---|
| 1623 | DO i = minorig, nl |
---|
| 1624 | DO il = 1, ncum |
---|
| 1625 | IF ((j>=(icb(il) - 1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<= & |
---|
| 1626 | inb(il))) THEN |
---|
| 1627 | sigij(il, i, j) = sij(il, i, j) |
---|
| 1628 | END IF |
---|
| 1629 | END DO |
---|
| 1630 | END DO |
---|
| 1631 | END DO |
---|
| 1632 | ! @ enddo |
---|
[879] | 1633 | |
---|
[5141] | 1634 | ! @170 continue |
---|
[879] | 1635 | |
---|
[5141] | 1636 | ! ===================================================================== |
---|
| 1637 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 1638 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 1639 | ! ===================================================================== |
---|
[879] | 1640 | |
---|
[5141] | 1641 | ! ym CALL zilch(asum,ncum*nd) |
---|
| 1642 | ! ym CALL zilch(bsum,ncum*nd) |
---|
| 1643 | ! ym CALL zilch(csum,ncum*nd) |
---|
| 1644 | CALL zilch(asum, nloc * nd) |
---|
| 1645 | CALL zilch(csum, nloc * nd) |
---|
| 1646 | CALL zilch(csum, nloc * nd) |
---|
[879] | 1647 | |
---|
[1992] | 1648 | DO il = 1, ncum |
---|
[5141] | 1649 | lwork(il) = .FALSE. |
---|
[1992] | 1650 | END DO |
---|
[879] | 1651 | |
---|
[5141] | 1652 | DO i = minorig + 1, nl |
---|
[879] | 1653 | |
---|
[5141] | 1654 | num1 = 0 |
---|
[1992] | 1655 | DO il = 1, ncum |
---|
[5141] | 1656 | IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
---|
[1992] | 1657 | END DO |
---|
[5141] | 1658 | IF (num1<=0) GO TO 789 |
---|
[879] | 1659 | |
---|
[1992] | 1660 | DO il = 1, ncum |
---|
[5141] | 1661 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
| 1662 | lwork(il) = (nent(il, i)/=0) |
---|
| 1663 | qp = rr(il, 1) - ep(il, i) * clw(il, i) |
---|
| 1664 | anum = h(il, i) - hp(il, i) - lv(il, i) * (qp - rs(il, i)) + & |
---|
| 1665 | (cpv - cpd) * t(il, i) * (qp - rr(il, i)) |
---|
| 1666 | denom = h(il, i) - hp(il, i) + lv(il, i) * (rr(il, i) - qp) + & |
---|
| 1667 | (cpd - cpv) * t(il, i) * (rr(il, i) - qp) |
---|
| 1668 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 1669 | scrit(il) = anum / denom |
---|
| 1670 | alt = qp - rs(il, i) + scrit(il) * (rr(il, i) - qp) |
---|
| 1671 | IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
---|
| 1672 | smax(il) = 0.0 |
---|
| 1673 | asij(il) = 0.0 |
---|
| 1674 | END IF |
---|
| 1675 | END DO |
---|
[879] | 1676 | |
---|
[5141] | 1677 | DO j = nl, minorig, -1 |
---|
| 1678 | |
---|
| 1679 | num2 = 0 |
---|
| 1680 | DO il = 1, ncum |
---|
| 1681 | IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb(& |
---|
| 1682 | il) - 1) .AND. j<=inb(il) .AND. lwork(il)) num2 = num2 + 1 |
---|
| 1683 | END DO |
---|
| 1684 | IF (num2<=0) GO TO 175 |
---|
| 1685 | |
---|
| 1686 | DO il = 1, ncum |
---|
| 1687 | IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb(& |
---|
| 1688 | il) - 1) .AND. j<=inb(il) .AND. lwork(il)) THEN |
---|
| 1689 | |
---|
| 1690 | IF (sij(il, i, j)>1.0E-16 .AND. sij(il, i, j)<0.95) THEN |
---|
| 1691 | wgh = 1.0 |
---|
| 1692 | IF (j>i) THEN |
---|
| 1693 | sjmax = amax1(sij(il, i, j + 1), smax(il)) |
---|
| 1694 | sjmax = amin1(sjmax, scrit(il)) |
---|
| 1695 | smax(il) = amax1(sij(il, i, j), smax(il)) |
---|
| 1696 | sjmin = amax1(sij(il, i, j - 1), smax(il)) |
---|
| 1697 | sjmin = amin1(sjmin, scrit(il)) |
---|
| 1698 | IF (sij(il, i, j)<(smax(il) - 1.0E-16)) wgh = 0.0 |
---|
| 1699 | smid = amin1(sij(il, i, j), scrit(il)) |
---|
| 1700 | ELSE |
---|
| 1701 | sjmax = amax1(sij(il, i, j + 1), scrit(il)) |
---|
| 1702 | smid = amax1(sij(il, i, j), scrit(il)) |
---|
| 1703 | sjmin = 0.0 |
---|
| 1704 | IF (j>1) sjmin = sij(il, i, j - 1) |
---|
| 1705 | sjmin = amax1(sjmin, scrit(il)) |
---|
| 1706 | END IF |
---|
| 1707 | delp = abs(sjmax - smid) |
---|
| 1708 | delm = abs(sjmin - smid) |
---|
| 1709 | asij(il) = asij(il) + wgh * (delp + delm) |
---|
| 1710 | ment(il, i, j) = ment(il, i, j) * (delp + delm) * wgh |
---|
[1992] | 1711 | END IF |
---|
| 1712 | END IF |
---|
[5141] | 1713 | END DO |
---|
[879] | 1714 | |
---|
[5141] | 1715 | 175 END DO |
---|
[879] | 1716 | |
---|
[1992] | 1717 | DO il = 1, ncum |
---|
[5141] | 1718 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1719 | asij(il) = amax1(1.0E-16, asij(il)) |
---|
| 1720 | asij(il) = 1.0 / asij(il) |
---|
| 1721 | asum(il, i) = 0.0 |
---|
| 1722 | bsum(il, i) = 0.0 |
---|
| 1723 | csum(il, i) = 0.0 |
---|
[1992] | 1724 | END IF |
---|
| 1725 | END DO |
---|
[879] | 1726 | |
---|
[5141] | 1727 | DO j = minorig, nl |
---|
| 1728 | DO il = 1, ncum |
---|
| 1729 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
| 1730 | il) - 1) .AND. j<=inb(il)) THEN |
---|
| 1731 | ment(il, i, j) = ment(il, i, j) * asij(il) |
---|
| 1732 | END IF |
---|
| 1733 | END DO |
---|
[1992] | 1734 | END DO |
---|
[879] | 1735 | |
---|
[5141] | 1736 | DO j = minorig, nl |
---|
| 1737 | DO il = 1, ncum |
---|
| 1738 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
| 1739 | il) - 1) .AND. j<=inb(il)) THEN |
---|
| 1740 | asum(il, i) = asum(il, i) + ment(il, i, j) |
---|
| 1741 | ment(il, i, j) = ment(il, i, j) * sig(il, j) |
---|
| 1742 | bsum(il, i) = bsum(il, i) + ment(il, i, j) |
---|
| 1743 | END IF |
---|
| 1744 | END DO |
---|
| 1745 | END DO |
---|
[879] | 1746 | |
---|
[1992] | 1747 | DO il = 1, ncum |
---|
[5141] | 1748 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1749 | bsum(il, i) = amax1(bsum(il, i), 1.0E-16) |
---|
| 1750 | bsum(il, i) = 1.0 / bsum(il, i) |
---|
[1992] | 1751 | END IF |
---|
| 1752 | END DO |
---|
[879] | 1753 | |
---|
[5141] | 1754 | DO j = minorig, nl |
---|
| 1755 | DO il = 1, ncum |
---|
| 1756 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
| 1757 | il) - 1) .AND. j<=inb(il)) THEN |
---|
| 1758 | ment(il, i, j) = ment(il, i, j) * asum(il, i) * bsum(il, i) |
---|
| 1759 | END IF |
---|
| 1760 | END DO |
---|
| 1761 | END DO |
---|
| 1762 | |
---|
| 1763 | DO j = minorig, nl |
---|
| 1764 | DO il = 1, ncum |
---|
| 1765 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb(& |
---|
| 1766 | il) - 1) .AND. j<=inb(il)) THEN |
---|
| 1767 | csum(il, i) = csum(il, i) + ment(il, i, j) |
---|
| 1768 | END IF |
---|
| 1769 | END DO |
---|
| 1770 | END DO |
---|
| 1771 | |
---|
[1992] | 1772 | DO il = 1, ncum |
---|
[5141] | 1773 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
| 1774 | csum(il, i)<m(il, i)) THEN |
---|
| 1775 | nent(il, i) = 0 |
---|
| 1776 | ment(il, i, i) = m(il, i) |
---|
| 1777 | qent(il, i, i) = rr(il, 1) - ep(il, i) * clw(il, i) |
---|
| 1778 | uent(il, i, i) = u(il, nk(il)) |
---|
| 1779 | vent(il, i, i) = v(il, nk(il)) |
---|
| 1780 | elij(il, i, i) = clw(il, i) |
---|
| 1781 | ! MAF sij(il,i,i)=1.0 |
---|
| 1782 | sij(il, i, i) = 0.0 |
---|
[1992] | 1783 | END IF |
---|
[5141] | 1784 | END DO ! il |
---|
[879] | 1785 | |
---|
[5141] | 1786 | ! do j=1,ntra |
---|
| 1787 | ! do il=1,ncum |
---|
| 1788 | ! if ( i.ge.icb(il) .AND. i.le.inb(il) .AND. lwork(il) |
---|
| 1789 | ! : .AND. csum(il,i).lt.m(il,i) ) THEN |
---|
| 1790 | ! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1791 | ! END IF |
---|
| 1792 | ! enddo |
---|
| 1793 | ! enddo |
---|
| 1794 | 789 END DO |
---|
[879] | 1795 | |
---|
[5141] | 1796 | ! MAF: renormalisation de MENT |
---|
| 1797 | DO jm = 1, nd |
---|
| 1798 | DO im = 1, nd |
---|
| 1799 | DO il = 1, ncum |
---|
| 1800 | zm(il, im) = zm(il, im) + (1. - sij(il, im, jm)) * ment(il, im, jm) |
---|
| 1801 | END DO |
---|
[1992] | 1802 | END DO |
---|
| 1803 | END DO |
---|
[879] | 1804 | |
---|
[5141] | 1805 | DO jm = 1, nd |
---|
| 1806 | DO im = 1, nd |
---|
| 1807 | DO il = 1, ncum |
---|
| 1808 | IF (zm(il, im)/=0.) THEN |
---|
| 1809 | ment(il, im, jm) = ment(il, im, jm) * m(il, im) / zm(il, im) |
---|
| 1810 | END IF |
---|
| 1811 | END DO |
---|
[1992] | 1812 | END DO |
---|
| 1813 | END DO |
---|
[879] | 1814 | |
---|
[5141] | 1815 | DO jm = 1, nd |
---|
| 1816 | DO im = 1, nd |
---|
| 1817 | DO il = 1, ncum |
---|
| 1818 | qents(il, im, jm) = qent(il, im, jm) |
---|
| 1819 | ments(il, im, jm) = ment(il, im, jm) |
---|
| 1820 | END DO |
---|
[1992] | 1821 | END DO |
---|
| 1822 | END DO |
---|
[879] | 1823 | |
---|
[5141] | 1824 | END SUBROUTINE cv30_mixing |
---|
[879] | 1825 | |
---|
| 1826 | |
---|
[5141] | 1827 | SUBROUTINE cv30_unsat(nloc, ncum, nd, na, ntra, icb, inb, t, rr, rs, gz, u, & |
---|
| 1828 | v, tra, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, & |
---|
| 1829 | mp, rp, up, vp, trap, wt, water, evap, b & ! RomP-jyg |
---|
| 1830 | , wdtraina, wdtrainm) ! 26/08/10 RomP-jyg |
---|
| 1831 | USE lmdz_cvflag |
---|
| 1832 | USE lmdz_cvthermo |
---|
[5140] | 1833 | |
---|
[5141] | 1834 | IMPLICIT NONE |
---|
[879] | 1835 | |
---|
| 1836 | |
---|
| 1837 | |
---|
[5141] | 1838 | ! inputs: |
---|
| 1839 | INTEGER ncum, nd, na, ntra, nloc |
---|
| 1840 | INTEGER icb(nloc), inb(nloc) |
---|
| 1841 | REAL delt, plcl(nloc) |
---|
| 1842 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
| 1843 | REAL u(nloc, nd), v(nloc, nd) |
---|
| 1844 | REAL tra(nloc, nd, ntra) |
---|
| 1845 | REAL p(nloc, nd), ph(nloc, nd + 1) |
---|
| 1846 | REAL th(nloc, na), gz(nloc, na) |
---|
| 1847 | REAL lv(nloc, na), ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
---|
| 1848 | REAL cpn(nloc, na), tv(nloc, na) |
---|
| 1849 | REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
---|
[879] | 1850 | |
---|
[5141] | 1851 | ! outputs: |
---|
| 1852 | REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
---|
| 1853 | REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
---|
| 1854 | REAL trap(nloc, na, ntra) |
---|
| 1855 | REAL b(nloc, na) |
---|
| 1856 | ! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
---|
| 1857 | ! lascendance adiabatique et des flux melanges Pa et Pm. |
---|
| 1858 | ! Distinction des wdtrain |
---|
| 1859 | ! Pa = wdtrainA Pm = wdtrainM |
---|
| 1860 | REAL wdtraina(nloc, na), wdtrainm(nloc, na) |
---|
[879] | 1861 | |
---|
[5141] | 1862 | ! local variables |
---|
| 1863 | INTEGER i, j, k, il, num1 |
---|
| 1864 | REAL tinv, delti |
---|
| 1865 | REAL awat, afac, afac1, afac2, bfac |
---|
| 1866 | REAL pr1, pr2, sigt, b6, c6, revap, tevap, delth |
---|
| 1867 | REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
| 1868 | REAL ampmax |
---|
| 1869 | REAL lvcp(nloc, na) |
---|
| 1870 | REAL wdtrain(nloc) |
---|
| 1871 | LOGICAL lwork(nloc) |
---|
[879] | 1872 | |
---|
| 1873 | |
---|
[5141] | 1874 | ! ------------------------------------------------------ |
---|
[879] | 1875 | |
---|
[5141] | 1876 | delti = 1. / delt |
---|
| 1877 | tinv = 1. / 3. |
---|
[879] | 1878 | |
---|
[5141] | 1879 | mp(:, :) = 0. |
---|
| 1880 | |
---|
| 1881 | DO i = 1, nl |
---|
| 1882 | DO il = 1, ncum |
---|
| 1883 | mp(il, i) = 0.0 |
---|
| 1884 | rp(il, i) = rr(il, i) |
---|
| 1885 | up(il, i) = u(il, i) |
---|
| 1886 | vp(il, i) = v(il, i) |
---|
| 1887 | wt(il, i) = 0.001 |
---|
| 1888 | water(il, i) = 0.0 |
---|
| 1889 | evap(il, i) = 0.0 |
---|
| 1890 | b(il, i) = 0.0 |
---|
| 1891 | lvcp(il, i) = lv(il, i) / cpn(il, i) |
---|
| 1892 | END DO |
---|
[1992] | 1893 | END DO |
---|
[879] | 1894 | |
---|
[5141] | 1895 | ! do k=1,ntra |
---|
| 1896 | ! do i=1,nd |
---|
| 1897 | ! do il=1,ncum |
---|
| 1898 | ! trap(il,i,k)=tra(il,i,k) |
---|
| 1899 | ! enddo |
---|
| 1900 | ! enddo |
---|
| 1901 | ! enddo |
---|
| 1902 | ! RomP >>> |
---|
| 1903 | DO i = 1, nd |
---|
| 1904 | DO il = 1, ncum |
---|
| 1905 | wdtraina(il, i) = 0.0 |
---|
| 1906 | wdtrainm(il, i) = 0.0 |
---|
| 1907 | END DO |
---|
[1992] | 1908 | END DO |
---|
[5141] | 1909 | ! RomP <<< |
---|
[879] | 1910 | |
---|
[5141] | 1911 | ! *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1912 | ! *** downdraft calculation *** |
---|
[879] | 1913 | |
---|
[5141] | 1914 | DO il = 1, ncum |
---|
| 1915 | lwork(il) = .TRUE. |
---|
| 1916 | IF (ep(il, inb(il))<0.0001) lwork(il) = .FALSE. |
---|
| 1917 | END DO |
---|
[879] | 1918 | |
---|
[5141] | 1919 | CALL zilch(wdtrain, ncum) |
---|
[879] | 1920 | |
---|
[5141] | 1921 | DO i = nl + 1, 1, -1 |
---|
[879] | 1922 | |
---|
[5141] | 1923 | num1 = 0 |
---|
| 1924 | DO il = 1, ncum |
---|
| 1925 | IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
---|
| 1926 | END DO |
---|
| 1927 | IF (num1<=0) GO TO 400 |
---|
[879] | 1928 | |
---|
| 1929 | |
---|
[5141] | 1930 | ! *** integrate liquid water equation to find condensed water *** |
---|
| 1931 | ! *** and condensed water flux *** |
---|
[879] | 1932 | |
---|
| 1933 | |
---|
| 1934 | |
---|
[5141] | 1935 | ! *** begin downdraft loop *** |
---|
[879] | 1936 | |
---|
| 1937 | |
---|
| 1938 | |
---|
[5141] | 1939 | ! *** calculate detrained precipitation *** |
---|
[879] | 1940 | |
---|
[5141] | 1941 | DO il = 1, ncum |
---|
| 1942 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1943 | IF (cvflag_grav) THEN |
---|
| 1944 | wdtrain(il) = grav * ep(il, i) * m(il, i) * clw(il, i) |
---|
| 1945 | wdtraina(il, i) = wdtrain(il) / grav ! Pa 26/08/10 RomP |
---|
| 1946 | ELSE |
---|
| 1947 | wdtrain(il) = 10.0 * ep(il, i) * m(il, i) * clw(il, i) |
---|
| 1948 | wdtraina(il, i) = wdtrain(il) / 10. ! Pa 26/08/10 RomP |
---|
| 1949 | END IF |
---|
[1992] | 1950 | END IF |
---|
[5141] | 1951 | END DO |
---|
[879] | 1952 | |
---|
[5141] | 1953 | IF (i>1) THEN |
---|
[879] | 1954 | |
---|
[5141] | 1955 | DO j = 1, i - 1 |
---|
| 1956 | DO il = 1, ncum |
---|
| 1957 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1958 | awat = elij(il, j, i) - (1. - ep(il, i)) * clw(il, i) |
---|
| 1959 | awat = amax1(awat, 0.0) |
---|
| 1960 | IF (cvflag_grav) THEN |
---|
| 1961 | wdtrain(il) = wdtrain(il) + grav * awat * ment(il, j, i) |
---|
| 1962 | ELSE |
---|
| 1963 | wdtrain(il) = wdtrain(il) + 10.0 * awat * ment(il, j, i) |
---|
| 1964 | END IF |
---|
| 1965 | END IF |
---|
| 1966 | END DO |
---|
| 1967 | END DO |
---|
[1992] | 1968 | DO il = 1, ncum |
---|
[5141] | 1969 | IF (cvflag_grav) THEN |
---|
| 1970 | wdtrainm(il, i) = wdtrain(il) / grav - wdtraina(il, i) ! Pm 26/08/10 RomP |
---|
| 1971 | ELSE |
---|
| 1972 | wdtrainm(il, i) = wdtrain(il) / 10. - wdtraina(il, i) ! Pm 26/08/10 RomP |
---|
[1992] | 1973 | END IF |
---|
| 1974 | END DO |
---|
[879] | 1975 | |
---|
[5141] | 1976 | END IF |
---|
[879] | 1977 | |
---|
| 1978 | |
---|
[5141] | 1979 | ! *** find rain water and evaporation using provisional *** |
---|
| 1980 | ! *** estimates of rp(i)and rp(i-1) *** |
---|
[879] | 1981 | |
---|
[5141] | 1982 | DO il = 1, ncum |
---|
[879] | 1983 | |
---|
[5141] | 1984 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
[879] | 1985 | |
---|
[5141] | 1986 | wt(il, i) = 45.0 |
---|
[879] | 1987 | |
---|
[5141] | 1988 | IF (i<inb(il)) THEN |
---|
| 1989 | rp(il, i) = rp(il, i + 1) + (cpd * (t(il, i + 1) - t(il, & |
---|
| 1990 | i)) + gz(il, i + 1) - gz(il, i)) / lv(il, i) |
---|
| 1991 | rp(il, i) = 0.5 * (rp(il, i) + rr(il, i)) |
---|
| 1992 | END IF |
---|
| 1993 | rp(il, i) = amax1(rp(il, i), 0.0) |
---|
| 1994 | rp(il, i) = amin1(rp(il, i), rs(il, i)) |
---|
| 1995 | rp(il, inb(il)) = rr(il, inb(il)) |
---|
[879] | 1996 | |
---|
[5141] | 1997 | IF (i==1) THEN |
---|
| 1998 | afac = p(il, 1) * (rs(il, 1) - rp(il, 1)) / (1.0E4 + 2000.0 * p(il, 1) * rs(il, 1)) |
---|
| 1999 | ELSE |
---|
| 2000 | rp(il, i - 1) = rp(il, i) + (cpd * (t(il, i) - t(il, & |
---|
| 2001 | i - 1)) + gz(il, i) - gz(il, i - 1)) / lv(il, i) |
---|
| 2002 | rp(il, i - 1) = 0.5 * (rp(il, i - 1) + rr(il, i - 1)) |
---|
| 2003 | rp(il, i - 1) = amin1(rp(il, i - 1), rs(il, i - 1)) |
---|
| 2004 | rp(il, i - 1) = amax1(rp(il, i - 1), 0.0) |
---|
| 2005 | afac1 = p(il, i) * (rs(il, i) - rp(il, i)) / (1.0E4 + 2000.0 * p(il, i) * rs(il, i) & |
---|
| 2006 | ) |
---|
| 2007 | afac2 = p(il, i - 1) * (rs(il, i - 1) - rp(il, i - 1)) / & |
---|
| 2008 | (1.0E4 + 2000.0 * p(il, i - 1) * rs(il, i - 1)) |
---|
| 2009 | afac = 0.5 * (afac1 + afac2) |
---|
| 2010 | END IF |
---|
| 2011 | IF (i==inb(il)) afac = 0.0 |
---|
| 2012 | afac = amax1(afac, 0.0) |
---|
| 2013 | bfac = 1. / (sigd * wt(il, i)) |
---|
[879] | 2014 | |
---|
[5141] | 2015 | ! jyg1 |
---|
| 2016 | ! cc sigt=1.0 |
---|
| 2017 | ! cc IF(i.ge.icb)sigt=sigp(i) |
---|
| 2018 | ! prise en compte de la variation progressive de sigt dans |
---|
| 2019 | ! les couches icb et icb-1: |
---|
| 2020 | ! pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
| 2021 | ! pour plcl>ph(i), pr1=1 & pr2=0 |
---|
| 2022 | ! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
| 2023 | ! sur le nuage, et pr2 est la proportion sous la base du |
---|
| 2024 | ! nuage. |
---|
| 2025 | pr1 = (plcl(il) - ph(il, i + 1)) / (ph(il, i) - ph(il, i + 1)) |
---|
| 2026 | pr1 = max(0., min(1., pr1)) |
---|
| 2027 | pr2 = (ph(il, i) - plcl(il)) / (ph(il, i) - ph(il, i + 1)) |
---|
| 2028 | pr2 = max(0., min(1., pr2)) |
---|
| 2029 | sigt = sigp(il, i) * pr1 + pr2 |
---|
| 2030 | ! jyg2 |
---|
[879] | 2031 | |
---|
[5141] | 2032 | b6 = bfac * 50. * sigd * (ph(il, i) - ph(il, i + 1)) * sigt * afac |
---|
| 2033 | c6 = water(il, i + 1) + bfac * wdtrain(il) - 50. * sigd * bfac * (ph(il, i) - ph(& |
---|
| 2034 | il, i + 1)) * evap(il, i + 1) |
---|
| 2035 | IF (c6>0.0) THEN |
---|
| 2036 | revap = 0.5 * (-b6 + sqrt(b6 * b6 + 4. * c6)) |
---|
| 2037 | evap(il, i) = sigt * afac * revap |
---|
| 2038 | water(il, i) = revap * revap |
---|
[1992] | 2039 | ELSE |
---|
[5141] | 2040 | evap(il, i) = -evap(il, i + 1) + 0.02 * (wdtrain(il) + sigd * wt(il, i) * & |
---|
| 2041 | water(il, i + 1)) / (sigd * (ph(il, i) - ph(il, i + 1))) |
---|
[1992] | 2042 | END IF |
---|
[879] | 2043 | |
---|
[5141] | 2044 | ! *** calculate precipitating downdraft mass flux under *** |
---|
| 2045 | ! *** hydrostatic approximation *** |
---|
[879] | 2046 | |
---|
[5141] | 2047 | IF (i/=1) THEN |
---|
[879] | 2048 | |
---|
[5141] | 2049 | tevap = amax1(0.0, evap(il, i)) |
---|
| 2050 | delth = amax1(0.001, (th(il, i) - th(il, i - 1))) |
---|
[1992] | 2051 | IF (cvflag_grav) THEN |
---|
[5141] | 2052 | mp(il, i) = 100. * ginv * lvcp(il, i) * sigd * tevap * (p(il, i - 1) - p(il, i)) / & |
---|
| 2053 | delth |
---|
[1992] | 2054 | ELSE |
---|
[5141] | 2055 | mp(il, i) = 10. * lvcp(il, i) * sigd * tevap * (p(il, i - 1) - p(il, i)) / delth |
---|
[1992] | 2056 | END IF |
---|
[879] | 2057 | |
---|
[5141] | 2058 | ! *** if hydrostatic assumption fails, *** |
---|
| 2059 | ! *** solve cubic difference equation for downdraft theta *** |
---|
| 2060 | ! *** and mass flux from two simultaneous differential eqns *** |
---|
[879] | 2061 | |
---|
[5141] | 2062 | amfac = sigd * sigd * 70.0 * ph(il, i) * (p(il, i - 1) - p(il, i)) * & |
---|
| 2063 | (th(il, i) - th(il, i - 1)) / (tv(il, i) * th(il, i)) |
---|
| 2064 | amp2 = abs(mp(il, i + 1) * mp(il, i + 1) - mp(il, i) * mp(il, i)) |
---|
| 2065 | IF (amp2>(0.1 * amfac)) THEN |
---|
| 2066 | xf = 100.0 * sigd * sigd * sigd * (ph(il, i) - ph(il, i + 1)) |
---|
| 2067 | tf = b(il, i) - 5.0 * (th(il, i) - th(il, i - 1)) * t(il, i) / (lvcp(il, i) * & |
---|
| 2068 | sigd * th(il, i)) |
---|
| 2069 | af = xf * tf + mp(il, i + 1) * mp(il, i + 1) * tinv |
---|
| 2070 | bf = 2. * (tinv * mp(il, i + 1))**3 + tinv * mp(il, i + 1) * xf * tf + & |
---|
| 2071 | 50. * (p(il, i - 1) - p(il, i)) * xf * tevap |
---|
| 2072 | fac2 = 1.0 |
---|
| 2073 | IF (bf<0.0) fac2 = -1.0 |
---|
| 2074 | bf = abs(bf) |
---|
| 2075 | ur = 0.25 * bf * bf - af * af * af * tinv * tinv * tinv |
---|
| 2076 | IF (ur>=0.0) THEN |
---|
| 2077 | sru = sqrt(ur) |
---|
| 2078 | fac = 1.0 |
---|
| 2079 | IF ((0.5 * bf - sru)<0.0) fac = -1.0 |
---|
| 2080 | mp(il, i) = mp(il, i + 1) * tinv + (0.5 * bf + sru)**tinv + & |
---|
| 2081 | fac * (abs(0.5 * bf - sru))**tinv |
---|
| 2082 | ELSE |
---|
| 2083 | d = atan(2. * sqrt(-ur) / (bf + 1.0E-28)) |
---|
| 2084 | IF (fac2<0.0) d = 3.14159 - d |
---|
| 2085 | mp(il, i) = mp(il, i + 1) * tinv + 2. * sqrt(af * tinv) * cos(d * tinv) |
---|
| 2086 | END IF |
---|
| 2087 | mp(il, i) = amax1(0.0, mp(il, i)) |
---|
[879] | 2088 | |
---|
[5141] | 2089 | IF (cvflag_grav) THEN |
---|
| 2090 | ! jyg : il y a vraisemblablement une erreur dans la ligne 2 |
---|
| 2091 | ! suivante: |
---|
| 2092 | ! il faut diviser par (mp(il,i)*sigd*grav) et non par |
---|
| 2093 | ! (mp(il,i)+sigd*0.1). |
---|
| 2094 | ! Et il faut bien revoir les facteurs 100. |
---|
| 2095 | b(il, i - 1) = b(il, i) + 100.0 * (p(il, i - 1) - p(il, i)) * tevap / (mp(il, & |
---|
| 2096 | i) + sigd * 0.1) - 10.0 * (th(il, i) - th(il, i - 1)) * t(il, i) / (lvcp(il, i & |
---|
| 2097 | ) * sigd * th(il, i)) |
---|
| 2098 | ELSE |
---|
| 2099 | b(il, i - 1) = b(il, i) + 100.0 * (p(il, i - 1) - p(il, i)) * tevap / (mp(il, & |
---|
| 2100 | i) + sigd * 0.1) - 10.0 * (th(il, i) - th(il, i - 1)) * t(il, i) / (lvcp(il, i & |
---|
| 2101 | ) * sigd * th(il, i)) |
---|
| 2102 | END IF |
---|
| 2103 | b(il, i - 1) = amax1(b(il, i - 1), 0.0) |
---|
| 2104 | END IF |
---|
[879] | 2105 | |
---|
[5141] | 2106 | ! *** limit magnitude of mp(i) to meet cfl condition |
---|
| 2107 | ! *** |
---|
[879] | 2108 | |
---|
[5141] | 2109 | ampmax = 2.0 * (ph(il, i) - ph(il, i + 1)) * delti |
---|
| 2110 | amp2 = 2.0 * (ph(il, i - 1) - ph(il, i)) * delti |
---|
| 2111 | ampmax = amin1(ampmax, amp2) |
---|
| 2112 | mp(il, i) = amin1(mp(il, i), ampmax) |
---|
[879] | 2113 | |
---|
[5141] | 2114 | ! *** force mp to decrease linearly to zero |
---|
| 2115 | ! *** |
---|
| 2116 | ! *** between cloud base and the surface |
---|
| 2117 | ! *** |
---|
[879] | 2118 | |
---|
[5141] | 2119 | IF (p(il, i)>p(il, icb(il))) THEN |
---|
| 2120 | mp(il, i) = mp(il, icb(il)) * (p(il, 1) - p(il, i)) / & |
---|
| 2121 | (p(il, 1) - p(il, icb(il))) |
---|
| 2122 | END IF |
---|
[879] | 2123 | |
---|
[5141] | 2124 | END IF ! i.EQ.1 |
---|
[879] | 2125 | |
---|
[5141] | 2126 | ! *** find mixing ratio of precipitating downdraft *** |
---|
[879] | 2127 | |
---|
[5141] | 2128 | IF (i/=inb(il)) THEN |
---|
[879] | 2129 | |
---|
[5141] | 2130 | rp(il, i) = rr(il, i) |
---|
[879] | 2131 | |
---|
[5141] | 2132 | IF (mp(il, i)>mp(il, i + 1)) THEN |
---|
[1742] | 2133 | |
---|
[1992] | 2134 | IF (cvflag_grav) THEN |
---|
[5141] | 2135 | rp(il, i) = rp(il, i + 1) * mp(il, i + 1) + & |
---|
| 2136 | rr(il, i) * (mp(il, i) - mp(il, i + 1)) + 100. * ginv * 0.5 * sigd * (ph(il, i & |
---|
| 2137 | ) - ph(il, i + 1)) * (evap(il, i + 1) + evap(il, i)) |
---|
[1992] | 2138 | ELSE |
---|
[5141] | 2139 | rp(il, i) = rp(il, i + 1) * mp(il, i + 1) + & |
---|
| 2140 | rr(il, i) * (mp(il, i) - mp(il, i + 1)) + 5. * sigd * (ph(il, i) - ph(il, i + 1 & |
---|
| 2141 | )) * (evap(il, i + 1) + evap(il, i)) |
---|
[1992] | 2142 | END IF |
---|
[5141] | 2143 | rp(il, i) = rp(il, i) / mp(il, i) |
---|
| 2144 | up(il, i) = up(il, i + 1) * mp(il, i + 1) + u(il, i) * (mp(il, i) - mp(il, i + & |
---|
| 2145 | 1)) |
---|
| 2146 | up(il, i) = up(il, i) / mp(il, i) |
---|
| 2147 | vp(il, i) = vp(il, i + 1) * mp(il, i + 1) + v(il, i) * (mp(il, i) - mp(il, i + & |
---|
| 2148 | 1)) |
---|
| 2149 | vp(il, i) = vp(il, i) / mp(il, i) |
---|
[1742] | 2150 | |
---|
[1992] | 2151 | ! do j=1,ntra |
---|
[5141] | 2152 | ! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
| 2153 | ! testmaf : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2154 | ! : +tra(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2155 | ! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
[5086] | 2156 | ! END DO |
---|
[1742] | 2157 | |
---|
[5141] | 2158 | ELSE |
---|
| 2159 | |
---|
| 2160 | IF (mp(il, i + 1)>1.0E-16) THEN |
---|
| 2161 | IF (cvflag_grav) THEN |
---|
| 2162 | rp(il, i) = rp(il, i + 1) + 100. * ginv * 0.5 * sigd * (ph(il, i) - ph(il, & |
---|
| 2163 | i + 1)) * (evap(il, i + 1) + evap(il, i)) / mp(il, i + 1) |
---|
| 2164 | ELSE |
---|
| 2165 | rp(il, i) = rp(il, i + 1) + 5. * sigd * (ph(il, i) - ph(il, i + 1)) * (evap & |
---|
| 2166 | (il, i + 1) + evap(il, i)) / mp(il, i + 1) |
---|
| 2167 | END IF |
---|
| 2168 | up(il, i) = up(il, i + 1) |
---|
| 2169 | vp(il, i) = vp(il, i + 1) |
---|
| 2170 | |
---|
| 2171 | ! do j=1,ntra |
---|
| 2172 | ! trap(il,i,j)=trap(il,i+1,j) |
---|
| 2173 | ! END DO |
---|
| 2174 | |
---|
| 2175 | END IF |
---|
[1992] | 2176 | END IF |
---|
[5141] | 2177 | rp(il, i) = amin1(rp(il, i), rs(il, i)) |
---|
| 2178 | rp(il, i) = amax1(rp(il, i), 0.0) |
---|
| 2179 | |
---|
[1992] | 2180 | END IF |
---|
| 2181 | END IF |
---|
[5141] | 2182 | END DO |
---|
[1742] | 2183 | |
---|
[5141] | 2184 | 400 END DO |
---|
[879] | 2185 | |
---|
[5141] | 2186 | END SUBROUTINE cv30_unsat |
---|
[879] | 2187 | |
---|
[5141] | 2188 | SUBROUTINE cv30_yield(nloc, ncum, nd, na, ntra, icb, inb, delt, t, rr, u, v, & |
---|
| 2189 | tra, gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, rp, up, vp, trap, & |
---|
| 2190 | wt, water, evap, b, ment, qent, uent, vent, nent, elij, traent, sig, tv, & |
---|
| 2191 | tvp, iflag, precip, vprecip, ft, fr, fu, fv, ftra, upwd, dnwd, dnwd0, ma, & |
---|
| 2192 | mike, tls, tps, qcondc, wd) |
---|
| 2193 | USE lmdz_conema3 |
---|
| 2194 | USE lmdz_cvflag |
---|
| 2195 | USE lmdz_cvthermo |
---|
[5140] | 2196 | |
---|
[5141] | 2197 | IMPLICIT NONE |
---|
[879] | 2198 | |
---|
[5141] | 2199 | ! inputs: |
---|
| 2200 | INTEGER ncum, nd, na, ntra, nloc |
---|
| 2201 | INTEGER icb(nloc), inb(nloc) |
---|
| 2202 | REAL delt |
---|
| 2203 | REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 2204 | REAL tra(nloc, nd, ntra), sig(nloc, nd) |
---|
| 2205 | REAL gz(nloc, na), ph(nloc, nd + 1), h(nloc, na), hp(nloc, na) |
---|
| 2206 | REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
---|
| 2207 | REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
| 2208 | REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
---|
| 2209 | REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
---|
| 2210 | REAL water(nloc, na), evap(nloc, na), b(nloc, na) |
---|
| 2211 | REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
---|
| 2212 | ! ym real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
| 2213 | REAL vent(nloc, na, na), elij(nloc, na, na) |
---|
| 2214 | INTEGER nent(nloc, na) |
---|
| 2215 | REAL traent(nloc, na, na, ntra) |
---|
| 2216 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
[879] | 2217 | |
---|
[5141] | 2218 | ! input/output: |
---|
| 2219 | INTEGER iflag(nloc) |
---|
[879] | 2220 | |
---|
[5141] | 2221 | ! outputs: |
---|
| 2222 | REAL precip(nloc) |
---|
| 2223 | REAL vprecip(nloc, nd + 1) |
---|
| 2224 | REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 2225 | REAL ftra(nloc, nd, ntra) |
---|
| 2226 | REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
---|
| 2227 | REAL dnwd0(nloc, nd), mike(nloc, nd) |
---|
| 2228 | REAL tls(nloc, nd), tps(nloc, nd) |
---|
| 2229 | REAL qcondc(nloc, nd) ! cld |
---|
| 2230 | REAL wd(nloc) ! gust |
---|
[879] | 2231 | |
---|
[5141] | 2232 | ! local variables: |
---|
| 2233 | INTEGER i, k, il, n, j, num1 |
---|
| 2234 | REAL rat, awat, delti |
---|
| 2235 | REAL ax, bx, cx, dx, ex |
---|
| 2236 | REAL cpinv, rdcp, dpinv |
---|
| 2237 | REAL lvcp(nloc, na), mke(nloc, na) |
---|
| 2238 | REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
| 2239 | ! !! real up1(nloc), dn1(nloc) |
---|
| 2240 | REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
---|
| 2241 | REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
| 2242 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
| 2243 | REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
---|
[879] | 2244 | |
---|
| 2245 | |
---|
[5141] | 2246 | ! ------------------------------------------------------------- |
---|
[879] | 2247 | |
---|
[5141] | 2248 | ! initialization: |
---|
[879] | 2249 | |
---|
[5141] | 2250 | delti = 1.0 / delt |
---|
[879] | 2251 | |
---|
[1992] | 2252 | DO il = 1, ncum |
---|
[5141] | 2253 | precip(il) = 0.0 |
---|
| 2254 | wd(il) = 0.0 ! gust |
---|
| 2255 | vprecip(il, nd + 1) = 0. |
---|
[1992] | 2256 | END DO |
---|
| 2257 | |
---|
[5141] | 2258 | DO i = 1, nd |
---|
| 2259 | DO il = 1, ncum |
---|
| 2260 | vprecip(il, i) = 0.0 |
---|
| 2261 | ft(il, i) = 0.0 |
---|
| 2262 | fr(il, i) = 0.0 |
---|
| 2263 | fu(il, i) = 0.0 |
---|
| 2264 | fv(il, i) = 0.0 |
---|
| 2265 | qcondc(il, i) = 0.0 ! cld |
---|
| 2266 | qcond(il, i) = 0.0 ! cld |
---|
| 2267 | nqcond(il, i) = 0.0 ! cld |
---|
| 2268 | END DO |
---|
[1992] | 2269 | END DO |
---|
| 2270 | |
---|
[5141] | 2271 | ! do j=1,ntra |
---|
| 2272 | ! do i=1,nd |
---|
| 2273 | ! do il=1,ncum |
---|
| 2274 | ! ftra(il,i,j)=0.0 |
---|
| 2275 | ! enddo |
---|
| 2276 | ! enddo |
---|
| 2277 | ! enddo |
---|
[1992] | 2278 | |
---|
[5141] | 2279 | DO i = 1, nl |
---|
| 2280 | DO il = 1, ncum |
---|
| 2281 | lvcp(il, i) = lv(il, i) / cpn(il, i) |
---|
| 2282 | END DO |
---|
| 2283 | END DO |
---|
[1992] | 2284 | |
---|
| 2285 | |
---|
| 2286 | |
---|
[5141] | 2287 | ! *** calculate surface precipitation in mm/day *** |
---|
[1992] | 2288 | |
---|
| 2289 | DO il = 1, ncum |
---|
[5141] | 2290 | IF (ep(il, inb(il))>=0.0001) THEN |
---|
[1992] | 2291 | IF (cvflag_grav) THEN |
---|
[5141] | 2292 | precip(il) = wt(il, 1) * sigd * water(il, 1) * 86400. * 1000. / (rowl * grav) |
---|
[1992] | 2293 | ELSE |
---|
[5141] | 2294 | precip(il) = wt(il, 1) * sigd * water(il, 1) * 8640. |
---|
[1992] | 2295 | END IF |
---|
| 2296 | END IF |
---|
| 2297 | END DO |
---|
| 2298 | |
---|
[5141] | 2299 | ! *** CALCULATE VERTICAL PROFILE OF PRECIPITATIONs IN kg/m2/s === |
---|
[1992] | 2300 | |
---|
[5141] | 2301 | ! MAF rajout pour lessivage |
---|
| 2302 | DO k = 1, nl |
---|
| 2303 | DO il = 1, ncum |
---|
| 2304 | IF (k<=inb(il)) THEN |
---|
| 2305 | IF (cvflag_grav) THEN |
---|
| 2306 | vprecip(il, k) = wt(il, k) * sigd * water(il, k) / grav |
---|
| 2307 | ELSE |
---|
| 2308 | vprecip(il, k) = wt(il, k) * sigd * water(il, k) / 10. |
---|
| 2309 | END IF |
---|
| 2310 | END IF |
---|
| 2311 | END DO |
---|
| 2312 | END DO |
---|
[1992] | 2313 | |
---|
| 2314 | |
---|
[5141] | 2315 | ! *** Calculate downdraft velocity scale *** |
---|
| 2316 | ! *** NE PAS UTILISER POUR L'INSTANT *** |
---|
[1992] | 2317 | |
---|
[5141] | 2318 | ! do il=1,ncum |
---|
| 2319 | ! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
---|
| 2320 | ! : /(sigd*p(il,icb(il))) |
---|
| 2321 | ! enddo |
---|
[1992] | 2322 | |
---|
| 2323 | |
---|
[5141] | 2324 | ! *** calculate tendencies of lowest level potential temperature *** |
---|
| 2325 | ! *** and mixing ratio *** |
---|
| 2326 | |
---|
[1992] | 2327 | DO il = 1, ncum |
---|
[5141] | 2328 | work(il) = 1.0 / (ph(il, 1) - ph(il, 2)) |
---|
| 2329 | am(il) = 0.0 |
---|
[1992] | 2330 | END DO |
---|
| 2331 | |
---|
[5141] | 2332 | DO k = 2, nl |
---|
| 2333 | DO il = 1, ncum |
---|
| 2334 | IF (k<=inb(il)) THEN |
---|
| 2335 | am(il) = am(il) + m(il, k) |
---|
| 2336 | END IF |
---|
| 2337 | END DO |
---|
| 2338 | END DO |
---|
[1992] | 2339 | |
---|
[5141] | 2340 | DO il = 1, ncum |
---|
[1992] | 2341 | |
---|
[5141] | 2342 | ! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
| 2343 | IF (cvflag_grav) THEN |
---|
| 2344 | IF ((0.01 * grav * work(il) * am(il))>=delti) iflag(il) = 1 !consist vect |
---|
| 2345 | ft(il, 1) = 0.01 * grav * work(il) * am(il) * (t(il, 2) - t(il, 1) + (gz(il, 2) - gz(il, & |
---|
| 2346 | 1)) / cpn(il, 1)) |
---|
| 2347 | ELSE |
---|
| 2348 | IF ((0.1 * work(il) * am(il))>=delti) iflag(il) = 1 !consistency vect |
---|
| 2349 | ft(il, 1) = 0.1 * work(il) * am(il) * (t(il, 2) - t(il, 1) + (gz(il, 2) - gz(il, & |
---|
| 2350 | 1)) / cpn(il, 1)) |
---|
| 2351 | END IF |
---|
[1992] | 2352 | |
---|
[5141] | 2353 | ft(il, 1) = ft(il, 1) - 0.5 * lvcp(il, 1) * sigd * (evap(il, 1) + evap(il, 2)) |
---|
[1992] | 2354 | |
---|
[5141] | 2355 | IF (cvflag_grav) THEN |
---|
| 2356 | ft(il, 1) = ft(il, 1) - 0.009 * grav * sigd * mp(il, 2) * t(il, 1) * b(il, 1) * & |
---|
| 2357 | work(il) |
---|
| 2358 | ELSE |
---|
| 2359 | ft(il, 1) = ft(il, 1) - 0.09 * sigd * mp(il, 2) * t(il, 1) * b(il, 1) * work(il) |
---|
| 2360 | END IF |
---|
[1992] | 2361 | |
---|
[5141] | 2362 | ft(il, 1) = ft(il, 1) + 0.01 * sigd * wt(il, 1) * (cl - cpd) * water(il, 2) * (t(il, 2 & |
---|
| 2363 | ) - t(il, 1)) * work(il) / cpn(il, 1) |
---|
[1992] | 2364 | |
---|
[5141] | 2365 | IF (cvflag_grav) THEN |
---|
| 2366 | ! jyg1 Correction pour mieux conserver l'eau (conformite avec |
---|
| 2367 | ! CONVECT4.3) |
---|
| 2368 | ! (sb: pour l'instant, on ne fait que le chgt concernant grav, pas |
---|
| 2369 | ! evap) |
---|
| 2370 | fr(il, 1) = 0.01 * grav * mp(il, 2) * (rp(il, 2) - rr(il, 1)) * work(il) + & |
---|
| 2371 | sigd * 0.5 * (evap(il, 1) + evap(il, 2)) |
---|
| 2372 | ! +tard : +sigd*evap(il,1) |
---|
[1992] | 2373 | |
---|
[5141] | 2374 | fr(il, 1) = fr(il, 1) + 0.01 * grav * am(il) * (rr(il, 2) - rr(il, 1)) * work(il) |
---|
[1992] | 2375 | |
---|
[5141] | 2376 | fu(il, 1) = fu(il, 1) + 0.01 * grav * work(il) * (mp(il, 2) * (up(il, 2) - u(il, & |
---|
| 2377 | 1)) + am(il) * (u(il, 2) - u(il, 1))) |
---|
| 2378 | fv(il, 1) = fv(il, 1) + 0.01 * grav * work(il) * (mp(il, 2) * (vp(il, 2) - v(il, & |
---|
| 2379 | 1)) + am(il) * (v(il, 2) - v(il, 1))) |
---|
| 2380 | ELSE ! cvflag_grav |
---|
| 2381 | fr(il, 1) = 0.1 * mp(il, 2) * (rp(il, 2) - rr(il, 1)) * work(il) + & |
---|
| 2382 | sigd * 0.5 * (evap(il, 1) + evap(il, 2)) |
---|
| 2383 | fr(il, 1) = fr(il, 1) + 0.1 * am(il) * (rr(il, 2) - rr(il, 1)) * work(il) |
---|
| 2384 | fu(il, 1) = fu(il, 1) + 0.1 * work(il) * (mp(il, 2) * (up(il, 2) - u(il, & |
---|
| 2385 | 1)) + am(il) * (u(il, 2) - u(il, 1))) |
---|
| 2386 | fv(il, 1) = fv(il, 1) + 0.1 * work(il) * (mp(il, 2) * (vp(il, 2) - v(il, & |
---|
| 2387 | 1)) + am(il) * (v(il, 2) - v(il, 1))) |
---|
| 2388 | END IF ! cvflag_grav |
---|
[1992] | 2389 | |
---|
[5141] | 2390 | END DO ! il |
---|
[1992] | 2391 | |
---|
[5141] | 2392 | ! do j=1,ntra |
---|
| 2393 | ! do il=1,ncum |
---|
| 2394 | ! if (cvflag_grav) THEN |
---|
| 2395 | ! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
| 2396 | ! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2397 | ! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2398 | ! else |
---|
| 2399 | ! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
| 2400 | ! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2401 | ! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2402 | ! END IF |
---|
| 2403 | ! enddo |
---|
| 2404 | ! enddo |
---|
| 2405 | |
---|
| 2406 | DO j = 2, nl |
---|
| 2407 | DO il = 1, ncum |
---|
| 2408 | IF (j<=inb(il)) THEN |
---|
| 2409 | IF (cvflag_grav) THEN |
---|
| 2410 | fr(il, 1) = fr(il, 1) + 0.01 * grav * work(il) * ment(il, j, 1) * (qent(il, & |
---|
| 2411 | j, 1) - rr(il, 1)) |
---|
| 2412 | fu(il, 1) = fu(il, 1) + 0.01 * grav * work(il) * ment(il, j, 1) * (uent(il, & |
---|
| 2413 | j, 1) - u(il, 1)) |
---|
| 2414 | fv(il, 1) = fv(il, 1) + 0.01 * grav * work(il) * ment(il, j, 1) * (vent(il, & |
---|
| 2415 | j, 1) - v(il, 1)) |
---|
| 2416 | ELSE ! cvflag_grav |
---|
| 2417 | fr(il, 1) = fr(il, 1) + 0.1 * work(il) * ment(il, j, 1) * (qent(il, j, 1) - & |
---|
| 2418 | rr(il, 1)) |
---|
| 2419 | fu(il, 1) = fu(il, 1) + 0.1 * work(il) * ment(il, j, 1) * (uent(il, j, 1) - u & |
---|
| 2420 | (il, 1)) |
---|
| 2421 | fv(il, 1) = fv(il, 1) + 0.1 * work(il) * ment(il, j, 1) * (vent(il, j, 1) - v & |
---|
| 2422 | (il, 1)) |
---|
| 2423 | END IF ! cvflag_grav |
---|
| 2424 | END IF ! j |
---|
| 2425 | END DO |
---|
[1992] | 2426 | END DO |
---|
| 2427 | |
---|
[5141] | 2428 | ! do k=1,ntra |
---|
| 2429 | ! do j=2,nl |
---|
| 2430 | ! do il=1,ncum |
---|
| 2431 | ! if (j.le.inb(il)) THEN |
---|
| 2432 | ! if (cvflag_grav) THEN |
---|
| 2433 | ! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
| 2434 | ! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2435 | ! else |
---|
| 2436 | ! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
| 2437 | ! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2438 | ! END IF |
---|
[1992] | 2439 | |
---|
[5141] | 2440 | ! END IF |
---|
| 2441 | ! enddo |
---|
| 2442 | ! enddo |
---|
| 2443 | ! enddo |
---|
[1992] | 2444 | |
---|
| 2445 | |
---|
[5141] | 2446 | ! *** calculate tendencies of potential temperature and mixing ratio *** |
---|
| 2447 | ! *** at levels above the lowest level *** |
---|
[1992] | 2448 | |
---|
[5141] | 2449 | ! *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
| 2450 | ! *** through each level *** |
---|
[1992] | 2451 | |
---|
[5141] | 2452 | DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
---|
[1992] | 2453 | |
---|
[5141] | 2454 | num1 = 0 |
---|
[1992] | 2455 | DO il = 1, ncum |
---|
[5141] | 2456 | IF (i<=inb(il)) num1 = num1 + 1 |
---|
[1992] | 2457 | END DO |
---|
[5141] | 2458 | IF (num1<=0) GO TO 500 |
---|
[1992] | 2459 | |
---|
[5141] | 2460 | CALL zilch(amp1, ncum) |
---|
| 2461 | CALL zilch(ad, ncum) |
---|
| 2462 | |
---|
| 2463 | DO k = i + 1, nl + 1 |
---|
[1992] | 2464 | DO il = 1, ncum |
---|
[5141] | 2465 | IF (i<=inb(il) .AND. k<=(inb(il) + 1)) THEN |
---|
| 2466 | amp1(il) = amp1(il) + m(il, k) |
---|
[1992] | 2467 | END IF |
---|
| 2468 | END DO |
---|
| 2469 | END DO |
---|
| 2470 | |
---|
[5141] | 2471 | DO k = 1, i |
---|
| 2472 | DO j = i + 1, nl + 1 |
---|
| 2473 | DO il = 1, ncum |
---|
| 2474 | IF (i<=inb(il) .AND. j<=(inb(il) + 1)) THEN |
---|
| 2475 | amp1(il) = amp1(il) + ment(il, k, j) |
---|
| 2476 | END IF |
---|
| 2477 | END DO |
---|
[1992] | 2478 | END DO |
---|
| 2479 | END DO |
---|
| 2480 | |
---|
[5141] | 2481 | DO k = 1, i - 1 |
---|
| 2482 | DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
---|
| 2483 | DO il = 1, ncum |
---|
| 2484 | IF (i<=inb(il) .AND. j<=inb(il)) THEN |
---|
| 2485 | ad(il) = ad(il) + ment(il, j, k) |
---|
| 2486 | END IF |
---|
| 2487 | END DO |
---|
| 2488 | END DO |
---|
| 2489 | END DO |
---|
[1992] | 2490 | |
---|
| 2491 | DO il = 1, ncum |
---|
| 2492 | IF (i<=inb(il)) THEN |
---|
[5111] | 2493 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
| 2494 | cpinv = 1.0 / cpn(il, i) |
---|
[1992] | 2495 | |
---|
[5141] | 2496 | ! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
| 2497 | IF (cvflag_grav) THEN |
---|
| 2498 | IF ((0.01 * grav * dpinv * amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
| 2499 | ELSE |
---|
| 2500 | IF ((0.1 * dpinv * amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
| 2501 | END IF |
---|
[1992] | 2502 | |
---|
| 2503 | IF (cvflag_grav) THEN |
---|
[5141] | 2504 | ft(il, i) = 0.01 * grav * dpinv * (amp1(il) * (t(il, i + 1) - t(il, & |
---|
| 2505 | i) + (gz(il, i + 1) - gz(il, i)) * cpinv) - ad(il) * (t(il, i) - t(il, & |
---|
| 2506 | i - 1) + (gz(il, i) - gz(il, i - 1)) * cpinv)) - 0.5 * sigd * lvcp(il, i) * (evap(& |
---|
| 2507 | il, i) + evap(il, i + 1)) |
---|
| 2508 | rat = cpn(il, i - 1) * cpinv |
---|
| 2509 | ft(il, i) = ft(il, i) - 0.009 * grav * sigd * (mp(il, i + 1) * t(il, i) * b(il, i) & |
---|
| 2510 | - mp(il, i) * t(il, i - 1) * rat * b(il, i - 1)) * dpinv |
---|
| 2511 | ft(il, i) = ft(il, i) + 0.01 * grav * dpinv * ment(il, i, i) * (hp(il, i) - h(& |
---|
| 2512 | il, i) + t(il, i) * (cpv - cpd) * (rr(il, i) - qent(il, i, i))) * cpinv |
---|
[1992] | 2513 | ELSE ! cvflag_grav |
---|
[5141] | 2514 | ft(il, i) = 0.1 * dpinv * (amp1(il) * (t(il, i + 1) - t(il, & |
---|
| 2515 | i) + (gz(il, i + 1) - gz(il, i)) * cpinv) - ad(il) * (t(il, i) - t(il, & |
---|
| 2516 | i - 1) + (gz(il, i) - gz(il, i - 1)) * cpinv)) - 0.5 * sigd * lvcp(il, i) * (evap(& |
---|
| 2517 | il, i) + evap(il, i + 1)) |
---|
| 2518 | rat = cpn(il, i - 1) * cpinv |
---|
| 2519 | ft(il, i) = ft(il, i) - 0.09 * sigd * (mp(il, i + 1) * t(il, i) * b(il, i) - mp(il & |
---|
| 2520 | , i) * t(il, i - 1) * rat * b(il, i - 1)) * dpinv |
---|
| 2521 | ft(il, i) = ft(il, i) + 0.1 * dpinv * ment(il, i, i) * (hp(il, i) - h(il, i) + & |
---|
| 2522 | t(il, i) * (cpv - cpd) * (rr(il, i) - qent(il, i, i))) * cpinv |
---|
[1992] | 2523 | END IF ! cvflag_grav |
---|
| 2524 | |
---|
[5141] | 2525 | ft(il, i) = ft(il, i) + 0.01 * sigd * wt(il, i) * (cl - cpd) * water(il, i + 1) * (& |
---|
| 2526 | t(il, i + 1) - t(il, i)) * dpinv * cpinv |
---|
| 2527 | |
---|
| 2528 | IF (cvflag_grav) THEN |
---|
| 2529 | fr(il, i) = 0.01 * grav * dpinv * (amp1(il) * (rr(il, i + 1) - rr(il, & |
---|
| 2530 | i)) - ad(il) * (rr(il, i) - rr(il, i - 1))) |
---|
| 2531 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * (amp1(il) * (u(il, i + 1) - u(il, & |
---|
| 2532 | i)) - ad(il) * (u(il, i) - u(il, i - 1))) |
---|
| 2533 | fv(il, i) = fv(il, i) + 0.01 * grav * dpinv * (amp1(il) * (v(il, i + 1) - v(il, & |
---|
| 2534 | i)) - ad(il) * (v(il, i) - v(il, i - 1))) |
---|
| 2535 | ELSE ! cvflag_grav |
---|
| 2536 | fr(il, i) = 0.1 * dpinv * (amp1(il) * (rr(il, i + 1) - rr(il, & |
---|
| 2537 | i)) - ad(il) * (rr(il, i) - rr(il, i - 1))) |
---|
| 2538 | fu(il, i) = fu(il, i) + 0.1 * dpinv * (amp1(il) * (u(il, i + 1) - u(il, & |
---|
| 2539 | i)) - ad(il) * (u(il, i) - u(il, i - 1))) |
---|
| 2540 | fv(il, i) = fv(il, i) + 0.1 * dpinv * (amp1(il) * (v(il, i + 1) - v(il, & |
---|
| 2541 | i)) - ad(il) * (v(il, i) - v(il, i - 1))) |
---|
| 2542 | END IF ! cvflag_grav |
---|
| 2543 | |
---|
[1992] | 2544 | END IF ! i |
---|
| 2545 | END DO |
---|
| 2546 | |
---|
[5141] | 2547 | ! do k=1,ntra |
---|
| 2548 | ! do il=1,ncum |
---|
| 2549 | ! if (i.le.inb(il)) THEN |
---|
| 2550 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2551 | ! cpinv=1.0/cpn(il,i) |
---|
| 2552 | ! if (cvflag_grav) THEN |
---|
| 2553 | ! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
| 2554 | ! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2555 | ! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2556 | ! else |
---|
| 2557 | ! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
| 2558 | ! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2559 | ! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2560 | ! END IF |
---|
| 2561 | ! END IF |
---|
| 2562 | ! enddo |
---|
| 2563 | ! enddo |
---|
[1992] | 2564 | |
---|
[5141] | 2565 | DO k = 1, i - 1 |
---|
| 2566 | DO il = 1, ncum |
---|
| 2567 | IF (i<=inb(il)) THEN |
---|
| 2568 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
| 2569 | cpinv = 1.0 / cpn(il, i) |
---|
| 2570 | |
---|
| 2571 | awat = elij(il, k, i) - (1. - ep(il, i)) * clw(il, i) |
---|
| 2572 | awat = amax1(awat, 0.0) |
---|
| 2573 | |
---|
| 2574 | IF (cvflag_grav) THEN |
---|
| 2575 | fr(il, i) = fr(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (qent(il, k & |
---|
| 2576 | , i) - awat - rr(il, i)) |
---|
| 2577 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (uent(il, k & |
---|
| 2578 | , i) - u(il, i)) |
---|
| 2579 | fv(il, i) = fv(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (vent(il, k & |
---|
| 2580 | , i) - v(il, i)) |
---|
| 2581 | ELSE ! cvflag_grav |
---|
| 2582 | fr(il, i) = fr(il, i) + 0.1 * dpinv * ment(il, k, i) * (qent(il, k, i) - & |
---|
| 2583 | awat - rr(il, i)) |
---|
| 2584 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (uent(il, k & |
---|
| 2585 | , i) - u(il, i)) |
---|
| 2586 | fv(il, i) = fv(il, i) + 0.1 * dpinv * ment(il, k, i) * (vent(il, k, i) - v(& |
---|
| 2587 | il, i)) |
---|
| 2588 | END IF ! cvflag_grav |
---|
| 2589 | |
---|
| 2590 | ! (saturated updrafts resulting from mixing) ! cld |
---|
| 2591 | qcond(il, i) = qcond(il, i) + (elij(il, k, i) - awat) ! cld |
---|
| 2592 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
| 2593 | END IF ! i |
---|
| 2594 | END DO |
---|
| 2595 | END DO |
---|
| 2596 | |
---|
| 2597 | ! do j=1,ntra |
---|
| 2598 | ! do k=1,i-1 |
---|
| 2599 | ! do il=1,ncum |
---|
| 2600 | ! if (i.le.inb(il)) THEN |
---|
| 2601 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2602 | ! cpinv=1.0/cpn(il,i) |
---|
| 2603 | ! if (cvflag_grav) THEN |
---|
| 2604 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2605 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2606 | ! else |
---|
| 2607 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2608 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2609 | ! END IF |
---|
| 2610 | ! END IF |
---|
| 2611 | ! enddo |
---|
| 2612 | ! enddo |
---|
| 2613 | ! enddo |
---|
| 2614 | |
---|
| 2615 | DO k = i, nl + 1 |
---|
| 2616 | DO il = 1, ncum |
---|
| 2617 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
| 2618 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
| 2619 | cpinv = 1.0 / cpn(il, i) |
---|
| 2620 | |
---|
| 2621 | IF (cvflag_grav) THEN |
---|
| 2622 | fr(il, i) = fr(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (qent(il, k & |
---|
| 2623 | , i) - rr(il, i)) |
---|
| 2624 | fu(il, i) = fu(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (uent(il, k & |
---|
| 2625 | , i) - u(il, i)) |
---|
| 2626 | fv(il, i) = fv(il, i) + 0.01 * grav * dpinv * ment(il, k, i) * (vent(il, k & |
---|
| 2627 | , i) - v(il, i)) |
---|
| 2628 | ELSE ! cvflag_grav |
---|
| 2629 | fr(il, i) = fr(il, i) + 0.1 * dpinv * ment(il, k, i) * (qent(il, k, i) - rr & |
---|
| 2630 | (il, i)) |
---|
| 2631 | fu(il, i) = fu(il, i) + 0.1 * dpinv * ment(il, k, i) * (uent(il, k, i) - u(& |
---|
| 2632 | il, i)) |
---|
| 2633 | fv(il, i) = fv(il, i) + 0.1 * dpinv * ment(il, k, i) * (vent(il, k, i) - v(& |
---|
| 2634 | il, i)) |
---|
| 2635 | END IF ! cvflag_grav |
---|
| 2636 | END IF ! i and k |
---|
| 2637 | END DO |
---|
| 2638 | END DO |
---|
| 2639 | |
---|
| 2640 | ! do j=1,ntra |
---|
| 2641 | ! do k=i,nl+1 |
---|
| 2642 | ! do il=1,ncum |
---|
| 2643 | ! if (i.le.inb(il) .AND. k.le.inb(il)) THEN |
---|
| 2644 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2645 | ! cpinv=1.0/cpn(il,i) |
---|
| 2646 | ! if (cvflag_grav) THEN |
---|
| 2647 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2648 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2649 | ! else |
---|
| 2650 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2651 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2652 | ! END IF |
---|
| 2653 | ! END IF ! i and k |
---|
| 2654 | ! enddo |
---|
| 2655 | ! enddo |
---|
| 2656 | ! enddo |
---|
| 2657 | |
---|
[1992] | 2658 | DO il = 1, ncum |
---|
[5141] | 2659 | IF (i<=inb(il)) THEN |
---|
[5111] | 2660 | dpinv = 1.0 / (ph(il, i) - ph(il, i + 1)) |
---|
| 2661 | cpinv = 1.0 / cpn(il, i) |
---|
[1992] | 2662 | |
---|
| 2663 | IF (cvflag_grav) THEN |
---|
[5141] | 2664 | ! sb: on ne fait pas encore la correction permettant de mieux |
---|
| 2665 | ! conserver l'eau: |
---|
| 2666 | fr(il, i) = fr(il, i) + 0.5 * sigd * (evap(il, i) + evap(il, i + 1)) + & |
---|
| 2667 | 0.01 * grav * (mp(il, i + 1) * (rp(il, i + 1) - rr(il, i)) - mp(il, i) * (rp(il, & |
---|
| 2668 | i) - rr(il, i - 1))) * dpinv |
---|
| 2669 | |
---|
| 2670 | fu(il, i) = fu(il, i) + 0.01 * grav * (mp(il, i + 1) * (up(il, i + 1) - u(il, & |
---|
| 2671 | i)) - mp(il, i) * (up(il, i) - u(il, i - 1))) * dpinv |
---|
| 2672 | fv(il, i) = fv(il, i) + 0.01 * grav * (mp(il, i + 1) * (vp(il, i + 1) - v(il, & |
---|
| 2673 | i)) - mp(il, i) * (vp(il, i) - v(il, i - 1))) * dpinv |
---|
[1992] | 2674 | ELSE ! cvflag_grav |
---|
[5141] | 2675 | fr(il, i) = fr(il, i) + 0.5 * sigd * (evap(il, i) + evap(il, i + 1)) + & |
---|
| 2676 | 0.1 * (mp(il, i + 1) * (rp(il, i + 1) - rr(il, i)) - mp(il, i) * (rp(il, i) - rr(il, & |
---|
| 2677 | i - 1))) * dpinv |
---|
| 2678 | fu(il, i) = fu(il, i) + 0.1 * (mp(il, i + 1) * (up(il, i + 1) - u(il, & |
---|
| 2679 | i)) - mp(il, i) * (up(il, i) - u(il, i - 1))) * dpinv |
---|
| 2680 | fv(il, i) = fv(il, i) + 0.1 * (mp(il, i + 1) * (vp(il, i + 1) - v(il, & |
---|
| 2681 | i)) - mp(il, i) * (vp(il, i) - v(il, i - 1))) * dpinv |
---|
[1992] | 2682 | END IF ! cvflag_grav |
---|
[5141] | 2683 | |
---|
| 2684 | END IF ! i |
---|
[1992] | 2685 | END DO |
---|
| 2686 | |
---|
[5141] | 2687 | ! sb: interface with the cloud parameterization: ! cld |
---|
[1992] | 2688 | |
---|
[5141] | 2689 | DO k = i + 1, nl |
---|
| 2690 | DO il = 1, ncum |
---|
| 2691 | IF (k<=inb(il) .AND. i<=inb(il)) THEN ! cld |
---|
| 2692 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
| 2693 | qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
---|
| 2694 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
| 2695 | END IF ! cld |
---|
| 2696 | END DO ! cld |
---|
| 2697 | END DO ! cld |
---|
[1992] | 2698 | |
---|
[5141] | 2699 | ! (particular case: no detraining level is found) ! cld |
---|
| 2700 | DO il = 1, ncum ! cld |
---|
| 2701 | IF (i<=inb(il) .AND. nent(il, i)==0) THEN ! cld |
---|
| 2702 | qcond(il, i) = qcond(il, i) + (1. - ep(il, i)) * clw(il, i) ! cld |
---|
[1992] | 2703 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
| 2704 | END IF ! cld |
---|
| 2705 | END DO ! cld |
---|
| 2706 | |
---|
[5141] | 2707 | DO il = 1, ncum ! cld |
---|
| 2708 | IF (i<=inb(il) .AND. nqcond(il, i)/=0.) THEN ! cld |
---|
| 2709 | qcond(il, i) = qcond(il, i) / nqcond(il, i) ! cld |
---|
| 2710 | END IF ! cld |
---|
| 2711 | END DO |
---|
[1992] | 2712 | |
---|
[5141] | 2713 | ! do j=1,ntra |
---|
| 2714 | ! do il=1,ncum |
---|
| 2715 | ! if (i.le.inb(il)) THEN |
---|
| 2716 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2717 | ! cpinv=1.0/cpn(il,i) |
---|
[1992] | 2718 | |
---|
[5141] | 2719 | ! if (cvflag_grav) THEN |
---|
| 2720 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
| 2721 | ! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2722 | ! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
| 2723 | ! else |
---|
| 2724 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
| 2725 | ! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2726 | ! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
| 2727 | ! END IF |
---|
| 2728 | ! END IF ! i |
---|
| 2729 | ! enddo |
---|
| 2730 | ! enddo |
---|
[1992] | 2731 | |
---|
[5141] | 2732 | 500 END DO |
---|
[1992] | 2733 | |
---|
| 2734 | |
---|
[5141] | 2735 | ! *** move the detrainment at level inb down to level inb-1 *** |
---|
| 2736 | ! *** in such a way as to preserve the vertically *** |
---|
| 2737 | ! *** integrated enthalpy and water tendencies *** |
---|
[1992] | 2738 | |
---|
[5141] | 2739 | DO il = 1, ncum |
---|
[1992] | 2740 | |
---|
[5141] | 2741 | ax = 0.1 * ment(il, inb(il), inb(il)) * (hp(il, inb(il)) - h(il, inb(il)) + t(il, & |
---|
| 2742 | inb(il)) * (cpv - cpd) * (rr(il, inb(il)) - qent(il, inb(il), & |
---|
| 2743 | inb(il)))) / (cpn(il, inb(il)) * (ph(il, inb(il)) - ph(il, inb(il) + 1))) |
---|
| 2744 | ft(il, inb(il)) = ft(il, inb(il)) - ax |
---|
| 2745 | ft(il, inb(il) - 1) = ft(il, inb(il) - 1) + ax * cpn(il, inb(il)) * (ph(il, inb(il & |
---|
| 2746 | )) - ph(il, inb(il) + 1)) / (cpn(il, inb(il) - 1) * (ph(il, inb(il) - 1) - ph(il, & |
---|
| 2747 | inb(il)))) |
---|
[1992] | 2748 | |
---|
[5141] | 2749 | bx = 0.1 * ment(il, inb(il), inb(il)) * (qent(il, inb(il), inb(il)) - rr(il, inb(& |
---|
| 2750 | il))) / (ph(il, inb(il)) - ph(il, inb(il) + 1)) |
---|
| 2751 | fr(il, inb(il)) = fr(il, inb(il)) - bx |
---|
| 2752 | fr(il, inb(il) - 1) = fr(il, inb(il) - 1) + bx * (ph(il, inb(il)) - ph(il, inb(il) + & |
---|
| 2753 | 1)) / (ph(il, inb(il) - 1) - ph(il, inb(il))) |
---|
[1992] | 2754 | |
---|
[5141] | 2755 | cx = 0.1 * ment(il, inb(il), inb(il)) * (uent(il, inb(il), inb(il)) - u(il, inb(il & |
---|
| 2756 | ))) / (ph(il, inb(il)) - ph(il, inb(il) + 1)) |
---|
| 2757 | fu(il, inb(il)) = fu(il, inb(il)) - cx |
---|
| 2758 | fu(il, inb(il) - 1) = fu(il, inb(il) - 1) + cx * (ph(il, inb(il)) - ph(il, inb(il) + & |
---|
| 2759 | 1)) / (ph(il, inb(il) - 1) - ph(il, inb(il))) |
---|
[1992] | 2760 | |
---|
[5141] | 2761 | dx = 0.1 * ment(il, inb(il), inb(il)) * (vent(il, inb(il), inb(il)) - v(il, inb(il & |
---|
| 2762 | ))) / (ph(il, inb(il)) - ph(il, inb(il) + 1)) |
---|
| 2763 | fv(il, inb(il)) = fv(il, inb(il)) - dx |
---|
| 2764 | fv(il, inb(il) - 1) = fv(il, inb(il) - 1) + dx * (ph(il, inb(il)) - ph(il, inb(il) + & |
---|
| 2765 | 1)) / (ph(il, inb(il) - 1) - ph(il, inb(il))) |
---|
[1992] | 2766 | |
---|
[5141] | 2767 | END DO |
---|
[1992] | 2768 | |
---|
[5141] | 2769 | ! do j=1,ntra |
---|
| 2770 | ! do il=1,ncum |
---|
| 2771 | ! ex=0.1*ment(il,inb(il),inb(il)) |
---|
| 2772 | ! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
| 2773 | ! : /(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2774 | ! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
| 2775 | ! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
| 2776 | ! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2777 | ! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2778 | ! enddo |
---|
| 2779 | ! enddo |
---|
[1992] | 2780 | |
---|
| 2781 | |
---|
[5141] | 2782 | ! *** homoginize tendencies below cloud base *** |
---|
[1992] | 2783 | |
---|
| 2784 | DO il = 1, ncum |
---|
[5141] | 2785 | asum(il) = 0.0 |
---|
| 2786 | bsum(il) = 0.0 |
---|
| 2787 | csum(il) = 0.0 |
---|
| 2788 | dsum(il) = 0.0 |
---|
[1992] | 2789 | END DO |
---|
| 2790 | |
---|
[5141] | 2791 | DO i = 1, nl |
---|
| 2792 | DO il = 1, ncum |
---|
| 2793 | IF (i<=(icb(il) - 1)) THEN |
---|
| 2794 | asum(il) = asum(il) + ft(il, i) * (ph(il, i) - ph(il, i + 1)) |
---|
| 2795 | bsum(il) = bsum(il) + fr(il, i) * (lv(il, i) + (cl - cpd) * (t(il, i) - t(il, & |
---|
| 2796 | 1))) * (ph(il, i) - ph(il, i + 1)) |
---|
| 2797 | csum(il) = csum(il) + (lv(il, i) + (cl - cpd) * (t(il, i) - t(il, & |
---|
| 2798 | 1))) * (ph(il, i) - ph(il, i + 1)) |
---|
| 2799 | dsum(il) = dsum(il) + t(il, i) * (ph(il, i) - ph(il, i + 1)) / th(il, i) |
---|
| 2800 | END IF |
---|
| 2801 | END DO |
---|
[1992] | 2802 | END DO |
---|
| 2803 | |
---|
[5141] | 2804 | ! !!! do 700 i=1,icb(il)-1 |
---|
| 2805 | DO i = 1, nl |
---|
| 2806 | DO il = 1, ncum |
---|
| 2807 | IF (i<=(icb(il) - 1)) THEN |
---|
| 2808 | ft(il, i) = asum(il) * t(il, i) / (th(il, i) * dsum(il)) |
---|
| 2809 | fr(il, i) = bsum(il) / csum(il) |
---|
| 2810 | END IF |
---|
| 2811 | END DO |
---|
| 2812 | END DO |
---|
[1992] | 2813 | |
---|
| 2814 | |
---|
[5141] | 2815 | ! *** reset counter and return *** |
---|
[1992] | 2816 | |
---|
| 2817 | DO il = 1, ncum |
---|
[5141] | 2818 | sig(il, nd) = 2.0 |
---|
[1992] | 2819 | END DO |
---|
| 2820 | |
---|
[5141] | 2821 | DO i = 1, nd |
---|
| 2822 | DO il = 1, ncum |
---|
[1992] | 2823 | upwd(il, i) = 0.0 |
---|
| 2824 | dnwd(il, i) = 0.0 |
---|
[5141] | 2825 | END DO |
---|
[1992] | 2826 | END DO |
---|
| 2827 | |
---|
[5141] | 2828 | DO i = 1, nl |
---|
[1992] | 2829 | DO il = 1, ncum |
---|
[5141] | 2830 | dnwd0(il, i) = -mp(il, i) |
---|
[1992] | 2831 | END DO |
---|
| 2832 | END DO |
---|
[5141] | 2833 | DO i = nl + 1, nd |
---|
| 2834 | DO il = 1, ncum |
---|
| 2835 | dnwd0(il, i) = 0. |
---|
| 2836 | END DO |
---|
| 2837 | END DO |
---|
[1992] | 2838 | |
---|
[5141] | 2839 | DO i = 1, nl |
---|
| 2840 | DO il = 1, ncum |
---|
| 2841 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
| 2842 | upwd(il, i) = 0.0 |
---|
| 2843 | dnwd(il, i) = 0.0 |
---|
| 2844 | END IF |
---|
| 2845 | END DO |
---|
| 2846 | END DO |
---|
| 2847 | |
---|
| 2848 | DO i = 1, nl |
---|
| 2849 | DO k = 1, nl |
---|
[1992] | 2850 | DO il = 1, ncum |
---|
[5141] | 2851 | up1(il, k, i) = 0.0 |
---|
| 2852 | dn1(il, k, i) = 0.0 |
---|
[1992] | 2853 | END DO |
---|
| 2854 | END DO |
---|
| 2855 | END DO |
---|
| 2856 | |
---|
[5141] | 2857 | DO i = 1, nl |
---|
| 2858 | DO k = i, nl |
---|
| 2859 | DO n = 1, i - 1 |
---|
| 2860 | DO il = 1, ncum |
---|
| 2861 | IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
---|
| 2862 | up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
---|
| 2863 | dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
---|
| 2864 | END IF |
---|
| 2865 | END DO |
---|
| 2866 | END DO |
---|
[1992] | 2867 | END DO |
---|
| 2868 | END DO |
---|
| 2869 | |
---|
[5141] | 2870 | DO i = 2, nl |
---|
| 2871 | DO k = i, nl |
---|
| 2872 | DO il = 1, ncum |
---|
| 2873 | ! test if (i.ge.icb(il).AND.i.le.inb(il).AND.k.le.inb(il)) |
---|
| 2874 | ! THEN |
---|
| 2875 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
| 2876 | upwd(il, i) = upwd(il, i) + m(il, k) + up1(il, k, i) |
---|
| 2877 | dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
---|
| 2878 | END IF |
---|
| 2879 | END DO |
---|
| 2880 | END DO |
---|
| 2881 | END DO |
---|
[1992] | 2882 | |
---|
| 2883 | |
---|
[5141] | 2884 | ! !!! DO il=1,ncum |
---|
| 2885 | ! !!! do i=icb(il),inb(il) |
---|
| 2886 | ! !!! |
---|
| 2887 | ! !!! upwd(il,i)=0.0 |
---|
| 2888 | ! !!! dnwd(il,i)=0.0 |
---|
| 2889 | ! !!! do k=i,inb(il) |
---|
| 2890 | ! !!! up1=0.0 |
---|
| 2891 | ! !!! dn1=0.0 |
---|
| 2892 | ! !!! do n=1,i-1 |
---|
| 2893 | ! !!! up1=up1+ment(il,n,k) |
---|
| 2894 | ! !!! dn1=dn1-ment(il,k,n) |
---|
| 2895 | ! !!! enddo |
---|
| 2896 | ! !!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
| 2897 | ! !!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
| 2898 | ! !!! enddo |
---|
| 2899 | ! !!! enddo |
---|
| 2900 | ! !!! |
---|
| 2901 | ! !!! ENDDO |
---|
[1992] | 2902 | |
---|
[5141] | 2903 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2904 | ! determination de la variation de flux ascendant entre |
---|
| 2905 | ! deux niveau non dilue mike |
---|
| 2906 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[1992] | 2907 | |
---|
[5141] | 2908 | DO i = 1, nl |
---|
| 2909 | DO il = 1, ncum |
---|
| 2910 | mike(il, i) = m(il, i) |
---|
| 2911 | END DO |
---|
[1992] | 2912 | END DO |
---|
| 2913 | |
---|
[5141] | 2914 | DO i = nl + 1, nd |
---|
| 2915 | DO il = 1, ncum |
---|
| 2916 | mike(il, i) = 0. |
---|
| 2917 | END DO |
---|
[1992] | 2918 | END DO |
---|
| 2919 | |
---|
[5141] | 2920 | DO i = 1, nd |
---|
[1992] | 2921 | DO il = 1, ncum |
---|
[5141] | 2922 | ma(il, i) = 0 |
---|
[1992] | 2923 | END DO |
---|
| 2924 | END DO |
---|
| 2925 | |
---|
[5141] | 2926 | DO i = 1, nl |
---|
| 2927 | DO j = i, nl |
---|
| 2928 | DO il = 1, ncum |
---|
| 2929 | ma(il, i) = ma(il, i) + m(il, j) |
---|
| 2930 | END DO |
---|
| 2931 | END DO |
---|
[1992] | 2932 | END DO |
---|
| 2933 | |
---|
[5141] | 2934 | DO i = nl + 1, nd |
---|
| 2935 | DO il = 1, ncum |
---|
| 2936 | ma(il, i) = 0. |
---|
| 2937 | END DO |
---|
[1992] | 2938 | END DO |
---|
| 2939 | |
---|
[5141] | 2940 | DO i = 1, nl |
---|
| 2941 | DO il = 1, ncum |
---|
| 2942 | IF (i<=(icb(il) - 1)) THEN |
---|
| 2943 | ma(il, i) = 0 |
---|
| 2944 | END IF |
---|
| 2945 | END DO |
---|
| 2946 | END DO |
---|
[1992] | 2947 | |
---|
[5141] | 2948 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2949 | ! icb represente de niveau ou se trouve la |
---|
| 2950 | ! base du nuage , et inb le top du nuage |
---|
| 2951 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2952 | |
---|
| 2953 | DO i = 1, nd |
---|
| 2954 | DO il = 1, ncum |
---|
| 2955 | mke(il, i) = upwd(il, i) + dnwd(il, i) |
---|
| 2956 | END DO |
---|
[1992] | 2957 | END DO |
---|
| 2958 | |
---|
[5141] | 2959 | DO i = 1, nd |
---|
| 2960 | DO il = 1, ncum |
---|
| 2961 | rdcp = (rrd * (1. - rr(il, i)) - rr(il, i) * rrv) / (cpd * (1. - rr(il, & |
---|
| 2962 | i)) + rr(il, i) * cpv) |
---|
| 2963 | tls(il, i) = t(il, i) * (1000.0 / p(il, i))**rdcp |
---|
| 2964 | tps(il, i) = tp(il, i) |
---|
| 2965 | END DO |
---|
[1992] | 2966 | END DO |
---|
| 2967 | |
---|
| 2968 | |
---|
[5141] | 2969 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 2970 | ! *** of condensed water *** ! cld |
---|
| 2971 | ! cld |
---|
[1992] | 2972 | |
---|
[5141] | 2973 | DO i = 1, nd ! cld |
---|
| 2974 | DO il = 1, ncum ! cld |
---|
| 2975 | mac(il, i) = 0.0 ! cld |
---|
| 2976 | wa(il, i) = 0.0 ! cld |
---|
| 2977 | siga(il, i) = 0.0 ! cld |
---|
| 2978 | sax(il, i) = 0.0 ! cld |
---|
| 2979 | END DO ! cld |
---|
[1992] | 2980 | END DO ! cld |
---|
| 2981 | |
---|
[5141] | 2982 | DO i = minorig, nl ! cld |
---|
| 2983 | DO k = i + 1, nl + 1 ! cld |
---|
| 2984 | DO il = 1, ncum ! cld |
---|
| 2985 | IF (i<=inb(il) .AND. k<=(inb(il) + 1)) THEN ! cld |
---|
| 2986 | mac(il, i) = mac(il, i) + m(il, k) ! cld |
---|
| 2987 | END IF ! cld |
---|
| 2988 | END DO ! cld |
---|
[1992] | 2989 | END DO ! cld |
---|
| 2990 | END DO ! cld |
---|
| 2991 | |
---|
[5141] | 2992 | DO i = 1, nl ! cld |
---|
| 2993 | DO j = 1, i ! cld |
---|
| 2994 | DO il = 1, ncum ! cld |
---|
| 2995 | IF (i>=icb(il) .AND. i<=(inb(il) - 1) & ! cld |
---|
| 2996 | .AND. j>=icb(il)) THEN ! cld |
---|
| 2997 | sax(il, i) = sax(il, i) + rrd * (tvp(il, j) - tv(il, j)) & ! cld |
---|
| 2998 | * (ph(il, j) - ph(il, j + 1)) / p(il, j) ! cld |
---|
| 2999 | END IF ! cld |
---|
| 3000 | END DO ! cld |
---|
| 3001 | END DO ! cld |
---|
| 3002 | END DO ! cld |
---|
| 3003 | |
---|
| 3004 | DO i = 1, nl ! cld |
---|
[1992] | 3005 | DO il = 1, ncum ! cld |
---|
[5111] | 3006 | IF (i>=icb(il) .AND. i<=(inb(il) - 1) & ! cld |
---|
[5141] | 3007 | .AND. sax(il, i)>0.0) THEN ! cld |
---|
| 3008 | wa(il, i) = sqrt(2. * sax(il, i)) ! cld |
---|
[1992] | 3009 | END IF ! cld |
---|
| 3010 | END DO ! cld |
---|
| 3011 | END DO ! cld |
---|
| 3012 | |
---|
[5141] | 3013 | DO i = 1, nl ! cld |
---|
| 3014 | DO il = 1, ncum ! cld |
---|
| 3015 | IF (wa(il, i)>0.0) & ! cld |
---|
| 3016 | siga(il, i) = mac(il, i) / wa(il, i) & ! cld |
---|
| 3017 | * rrd * tvp(il, i) / p(il, i) / 100. / delta ! cld |
---|
| 3018 | siga(il, i) = min(siga(il, i), 1.0) ! cld |
---|
| 3019 | ! IM cf. FH |
---|
| 3020 | IF (iflag_clw==0) THEN |
---|
| 3021 | qcondc(il, i) = siga(il, i) * clw(il, i) * (1. - ep(il, i)) & ! cld |
---|
| 3022 | + (1. - siga(il, i)) * qcond(il, i) ! cld |
---|
| 3023 | ELSE IF (iflag_clw==1) THEN |
---|
| 3024 | qcondc(il, i) = qcond(il, i) ! cld |
---|
| 3025 | END IF |
---|
| 3026 | |
---|
| 3027 | END DO ! cld |
---|
[1992] | 3028 | END DO ! cld |
---|
| 3029 | |
---|
[5141] | 3030 | END SUBROUTINE cv30_yield |
---|
[1992] | 3031 | |
---|
[5141] | 3032 | !RomP >>> |
---|
| 3033 | SUBROUTINE cv30_tracer(nloc, len, ncum, nd, na, ment, sij, da, phi, phi2, & |
---|
| 3034 | d1a, dam, ep, vprecip, elij, clw, epmlmmm, eplamm, icb, inb) |
---|
| 3035 | IMPLICIT NONE |
---|
[1992] | 3036 | |
---|
| 3037 | |
---|
| 3038 | |
---|
[5141] | 3039 | ! inputs: |
---|
| 3040 | INTEGER ncum, nd, na, nloc, len |
---|
| 3041 | REAL ment(nloc, na, na), sij(nloc, na, na) |
---|
| 3042 | REAL clw(nloc, nd), elij(nloc, na, na) |
---|
| 3043 | REAL ep(nloc, na) |
---|
| 3044 | INTEGER icb(nloc), inb(nloc) |
---|
| 3045 | REAL vprecip(nloc, nd + 1) |
---|
| 3046 | ! ouputs: |
---|
| 3047 | REAL da(nloc, na), phi(nloc, na, na) |
---|
| 3048 | REAL phi2(nloc, na, na) |
---|
| 3049 | REAL d1a(nloc, na), dam(nloc, na) |
---|
| 3050 | REAL epmlmmm(nloc, na, na), eplamm(nloc, na) |
---|
| 3051 | ! variables pour tracer dans precip de l'AA et des mel |
---|
| 3052 | ! local variables: |
---|
| 3053 | INTEGER i, j, k, nam1 |
---|
| 3054 | REAL epm(nloc, na, na) |
---|
[1992] | 3055 | |
---|
[5141] | 3056 | nam1 = na - 1 ! Introduced because ep is not defined for j=na |
---|
| 3057 | ! variables d'Emanuel : du second indice au troisieme |
---|
| 3058 | ! ---> tab(i,k,j) -> de l origine k a l arrivee j |
---|
| 3059 | ! ment, sij, elij |
---|
| 3060 | ! variables personnelles : du troisieme au second indice |
---|
| 3061 | ! ---> tab(i,j,k) -> de k a j |
---|
| 3062 | ! phi, phi2 |
---|
[1992] | 3063 | |
---|
[5141] | 3064 | ! initialisations |
---|
[1992] | 3065 | DO j = 1, na |
---|
| 3066 | DO i = 1, ncum |
---|
[5141] | 3067 | da(i, j) = 0. |
---|
| 3068 | d1a(i, j) = 0. |
---|
| 3069 | dam(i, j) = 0. |
---|
| 3070 | eplamm(i, j) = 0. |
---|
[1992] | 3071 | END DO |
---|
| 3072 | END DO |
---|
[5141] | 3073 | DO k = 1, na |
---|
| 3074 | DO j = 1, na |
---|
| 3075 | DO i = 1, ncum |
---|
| 3076 | epm(i, j, k) = 0. |
---|
| 3077 | epmlmmm(i, j, k) = 0. |
---|
| 3078 | phi(i, j, k) = 0. |
---|
| 3079 | phi2(i, j, k) = 0. |
---|
| 3080 | END DO |
---|
| 3081 | END DO |
---|
| 3082 | END DO |
---|
[1992] | 3083 | |
---|
[5141] | 3084 | ! fraction deau condensee dans les melanges convertie en precip : epm |
---|
| 3085 | ! et eau condensée précipitée dans masse d'air saturé : l_m*dM_m/dzdz.dzdz |
---|
| 3086 | DO j = 1, nam1 |
---|
| 3087 | DO k = 1, j - 1 |
---|
| 3088 | DO i = 1, ncum |
---|
| 3089 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
| 3090 | !jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
---|
| 3091 | epm(i, j, k) = 1. - (1. - ep(i, j)) * clw(i, j) / max(elij(i, k, j), 1.E-16) |
---|
[5159] | 3092 | |
---|
[5141] | 3093 | epm(i, j, k) = max(epm(i, j, k), 0.0) |
---|
| 3094 | END IF |
---|
| 3095 | END DO |
---|
[1992] | 3096 | END DO |
---|
| 3097 | END DO |
---|
| 3098 | |
---|
[5141] | 3099 | DO j = 1, nam1 |
---|
| 3100 | DO k = 1, nam1 |
---|
| 3101 | DO i = 1, ncum |
---|
| 3102 | IF (k>=icb(i) .AND. k<=inb(i)) THEN |
---|
| 3103 | eplamm(i, j) = eplamm(i, j) + ep(i, j) * clw(i, j) * ment(i, j, k) * (1. - & |
---|
| 3104 | sij(i, j, k)) |
---|
| 3105 | END IF |
---|
| 3106 | END DO |
---|
[1992] | 3107 | END DO |
---|
| 3108 | END DO |
---|
| 3109 | |
---|
[5141] | 3110 | DO j = 1, nam1 |
---|
| 3111 | DO k = 1, j - 1 |
---|
| 3112 | DO i = 1, ncum |
---|
| 3113 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
| 3114 | epmlmmm(i, j, k) = epm(i, j, k) * elij(i, k, j) * ment(i, k, j) |
---|
| 3115 | END IF |
---|
| 3116 | END DO |
---|
[1992] | 3117 | END DO |
---|
| 3118 | END DO |
---|
| 3119 | |
---|
[5141] | 3120 | ! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
---|
| 3121 | DO j = 1, nam1 |
---|
| 3122 | DO k = 1, nam1 |
---|
| 3123 | DO i = 1, ncum |
---|
| 3124 | da(i, j) = da(i, j) + (1. - sij(i, k, j)) * ment(i, k, j) |
---|
| 3125 | phi(i, j, k) = sij(i, k, j) * ment(i, k, j) |
---|
| 3126 | d1a(i, j) = d1a(i, j) + ment(i, k, j) * ep(i, k) * (1. - sij(i, k, j)) |
---|
| 3127 | END DO |
---|
[1992] | 3128 | END DO |
---|
| 3129 | END DO |
---|
| 3130 | |
---|
[5141] | 3131 | DO j = 1, nam1 |
---|
| 3132 | DO k = 1, j - 1 |
---|
| 3133 | DO i = 1, ncum |
---|
| 3134 | dam(i, j) = dam(i, j) + ment(i, k, j) * epm(i, j, k) * (1. - ep(i, k)) * (1. - & |
---|
| 3135 | sij(i, k, j)) |
---|
| 3136 | phi2(i, j, k) = phi(i, j, k) * epm(i, j, k) |
---|
| 3137 | END DO |
---|
[1992] | 3138 | END DO |
---|
| 3139 | END DO |
---|
| 3140 | |
---|
[5141] | 3141 | END SUBROUTINE cv30_tracer |
---|
| 3142 | ! RomP <<< |
---|
[1992] | 3143 | |
---|
[5141] | 3144 | SUBROUTINE cv30_uncompress(nloc, len, ncum, nd, ntra, idcum, iflag, precip, & |
---|
| 3145 | vprecip, evap, ep, sig, w0, ft, fq, fu, fv, ftra, inb, ma, upwd, dnwd, & |
---|
| 3146 | dnwd0, qcondc, wd, cape, da, phi, mp, phi2, d1a, dam, sij, elij, clw, & |
---|
| 3147 | epmlmmm, eplamm, wdtraina, wdtrainm, epmax_diag, iflag1, precip1, vprecip1, evap1, & |
---|
| 3148 | ep1, sig1, w01, ft1, fq1, fu1, fv1, ftra1, inb1, ma1, upwd1, dnwd1, & |
---|
| 3149 | dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1, & |
---|
| 3150 | elij1, clw1, epmlmmm1, eplamm1, wdtraina1, wdtrainm1, epmax_diag1) ! epmax_cape |
---|
| 3151 | IMPLICIT NONE |
---|
[1992] | 3152 | |
---|
| 3153 | |
---|
| 3154 | |
---|
[5141] | 3155 | ! inputs: |
---|
| 3156 | INTEGER len, ncum, nd, ntra, nloc |
---|
| 3157 | INTEGER idcum(nloc) |
---|
| 3158 | INTEGER iflag(nloc) |
---|
| 3159 | INTEGER inb(nloc) |
---|
| 3160 | REAL precip(nloc) |
---|
| 3161 | REAL vprecip(nloc, nd + 1), evap(nloc, nd) |
---|
| 3162 | REAL ep(nloc, nd) |
---|
| 3163 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
| 3164 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 3165 | REAL ftra(nloc, nd, ntra) |
---|
| 3166 | REAL ma(nloc, nd) |
---|
| 3167 | REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
---|
| 3168 | REAL qcondc(nloc, nd) |
---|
| 3169 | REAL wd(nloc), cape(nloc) |
---|
| 3170 | REAL da(nloc, nd), phi(nloc, nd, nd), mp(nloc, nd) |
---|
| 3171 | REAL epmax_diag(nloc) ! epmax_cape |
---|
| 3172 | ! RomP >>> |
---|
| 3173 | REAL phi2(nloc, nd, nd) |
---|
| 3174 | REAL d1a(nloc, nd), dam(nloc, nd) |
---|
| 3175 | REAL wdtraina(nloc, nd), wdtrainm(nloc, nd) |
---|
| 3176 | REAL sij(nloc, nd, nd) |
---|
| 3177 | REAL elij(nloc, nd, nd), clw(nloc, nd) |
---|
| 3178 | REAL epmlmmm(nloc, nd, nd), eplamm(nloc, nd) |
---|
| 3179 | ! RomP <<< |
---|
[1992] | 3180 | |
---|
[5141] | 3181 | ! outputs: |
---|
| 3182 | INTEGER iflag1(len) |
---|
| 3183 | INTEGER inb1(len) |
---|
| 3184 | REAL precip1(len) |
---|
| 3185 | REAL vprecip1(len, nd + 1), evap1(len, nd) !<<< RomP |
---|
| 3186 | REAL ep1(len, nd) !<<< RomP |
---|
| 3187 | REAL sig1(len, nd), w01(len, nd) |
---|
| 3188 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
| 3189 | REAL ftra1(len, nd, ntra) |
---|
| 3190 | REAL ma1(len, nd) |
---|
| 3191 | REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
---|
| 3192 | REAL qcondc1(nloc, nd) |
---|
| 3193 | REAL wd1(nloc), cape1(nloc) |
---|
| 3194 | REAL da1(nloc, nd), phi1(nloc, nd, nd), mp1(nloc, nd) |
---|
| 3195 | REAL epmax_diag1(len) ! epmax_cape |
---|
| 3196 | ! RomP >>> |
---|
| 3197 | REAL phi21(len, nd, nd) |
---|
| 3198 | REAL d1a1(len, nd), dam1(len, nd) |
---|
| 3199 | REAL wdtraina1(len, nd), wdtrainm1(len, nd) |
---|
| 3200 | REAL sij1(len, nd, nd) |
---|
| 3201 | REAL elij1(len, nd, nd), clw1(len, nd) |
---|
| 3202 | REAL epmlmmm1(len, nd, nd), eplamm1(len, nd) |
---|
| 3203 | ! RomP <<< |
---|
[1992] | 3204 | |
---|
[5141] | 3205 | ! local variables: |
---|
| 3206 | INTEGER i, k, j |
---|
[1992] | 3207 | |
---|
| 3208 | DO i = 1, ncum |
---|
[5141] | 3209 | precip1(idcum(i)) = precip(i) |
---|
| 3210 | iflag1(idcum(i)) = iflag(i) |
---|
| 3211 | wd1(idcum(i)) = wd(i) |
---|
| 3212 | inb1(idcum(i)) = inb(i) |
---|
| 3213 | cape1(idcum(i)) = cape(i) |
---|
| 3214 | epmax_diag1(idcum(i)) = epmax_diag(i) ! epmax_cape |
---|
[1992] | 3215 | END DO |
---|
| 3216 | |
---|
[5141] | 3217 | DO k = 1, nl |
---|
| 3218 | DO i = 1, ncum |
---|
| 3219 | vprecip1(idcum(i), k) = vprecip(i, k) |
---|
| 3220 | evap1(idcum(i), k) = evap(i, k) !<<< RomP |
---|
| 3221 | sig1(idcum(i), k) = sig(i, k) |
---|
| 3222 | w01(idcum(i), k) = w0(i, k) |
---|
| 3223 | ft1(idcum(i), k) = ft(i, k) |
---|
| 3224 | fq1(idcum(i), k) = fq(i, k) |
---|
| 3225 | fu1(idcum(i), k) = fu(i, k) |
---|
| 3226 | fv1(idcum(i), k) = fv(i, k) |
---|
| 3227 | ma1(idcum(i), k) = ma(i, k) |
---|
| 3228 | upwd1(idcum(i), k) = upwd(i, k) |
---|
| 3229 | dnwd1(idcum(i), k) = dnwd(i, k) |
---|
| 3230 | dnwd01(idcum(i), k) = dnwd0(i, k) |
---|
| 3231 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
| 3232 | da1(idcum(i), k) = da(i, k) |
---|
| 3233 | mp1(idcum(i), k) = mp(i, k) |
---|
| 3234 | ! RomP >>> |
---|
| 3235 | ep1(idcum(i), k) = ep(i, k) |
---|
| 3236 | d1a1(idcum(i), k) = d1a(i, k) |
---|
| 3237 | dam1(idcum(i), k) = dam(i, k) |
---|
| 3238 | clw1(idcum(i), k) = clw(i, k) |
---|
| 3239 | eplamm1(idcum(i), k) = eplamm(i, k) |
---|
| 3240 | wdtraina1(idcum(i), k) = wdtraina(i, k) |
---|
| 3241 | wdtrainm1(idcum(i), k) = wdtrainm(i, k) |
---|
| 3242 | ! RomP <<< |
---|
| 3243 | END DO |
---|
| 3244 | END DO |
---|
[1992] | 3245 | |
---|
[5141] | 3246 | DO i = 1, ncum |
---|
| 3247 | sig1(idcum(i), nd) = sig(i, nd) |
---|
| 3248 | END DO |
---|
[1992] | 3249 | |
---|
[5141] | 3250 | |
---|
| 3251 | ! do 2100 j=1,ntra |
---|
| 3252 | ! do 2110 k=1,nd ! oct3 |
---|
| 3253 | ! do 2120 i=1,ncum |
---|
| 3254 | ! ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
| 3255 | ! 2120 continue |
---|
| 3256 | ! 2110 continue |
---|
| 3257 | ! 2100 continue |
---|
| 3258 | DO j = 1, nd |
---|
| 3259 | DO k = 1, nd |
---|
| 3260 | DO i = 1, ncum |
---|
| 3261 | sij1(idcum(i), k, j) = sij(i, k, j) |
---|
| 3262 | phi1(idcum(i), k, j) = phi(i, k, j) |
---|
| 3263 | phi21(idcum(i), k, j) = phi2(i, k, j) |
---|
| 3264 | elij1(idcum(i), k, j) = elij(i, k, j) |
---|
| 3265 | epmlmmm1(idcum(i), k, j) = epmlmmm(i, k, j) |
---|
| 3266 | END DO |
---|
[1992] | 3267 | END DO |
---|
| 3268 | END DO |
---|
| 3269 | |
---|
[5141] | 3270 | END SUBROUTINE cv30_uncompress |
---|
[1992] | 3271 | |
---|
[5141] | 3272 | SUBROUTINE cv30_epmax_fn_cape(nloc, ncum, nd & |
---|
| 3273 | , cape, ep, hp, icb, inb, clw, nk, t, h, lv & |
---|
| 3274 | , epmax_diag) |
---|
| 3275 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
| 3276 | USE lmdz_conema3 |
---|
| 3277 | USE lmdz_cvthermo |
---|
[5140] | 3278 | |
---|
[5141] | 3279 | IMPLICIT NONE |
---|
[2481] | 3280 | |
---|
[5141] | 3281 | ! On fait varier epmax en fn de la cape |
---|
| 3282 | ! Il faut donc recalculer ep, et hp qui a déjà été calculé et |
---|
| 3283 | ! qui en dépend |
---|
| 3284 | ! Toutes les autres variables fn de ep sont calculées plus bas. |
---|
[2481] | 3285 | |
---|
| 3286 | |
---|
| 3287 | |
---|
[5141] | 3288 | ! inputs: |
---|
| 3289 | INTEGER ncum, nd, nloc |
---|
| 3290 | INTEGER icb(nloc), inb(nloc) |
---|
| 3291 | REAL cape(nloc) |
---|
| 3292 | REAL clw(nloc, nd), lv(nloc, nd), t(nloc, nd), h(nloc, nd) |
---|
| 3293 | INTEGER nk(nloc) |
---|
| 3294 | ! inouts: |
---|
| 3295 | REAL ep(nloc, nd) |
---|
| 3296 | REAL hp(nloc, nd) |
---|
| 3297 | ! outputs ou local |
---|
| 3298 | REAL epmax_diag(nloc) |
---|
| 3299 | ! locals |
---|
| 3300 | INTEGER i, k |
---|
| 3301 | REAL hp_bak(nloc, nd) |
---|
| 3302 | CHARACTER (LEN = 20) :: modname = 'cv30_epmax_fn_cape' |
---|
| 3303 | CHARACTER (LEN = 80) :: abort_message |
---|
[2481] | 3304 | |
---|
[5141] | 3305 | ! on recalcule ep et hp |
---|
[5111] | 3306 | |
---|
[5141] | 3307 | IF (coef_epmax_cape>1e-12) THEN |
---|
[5158] | 3308 | DO i = 1, ncum |
---|
[5141] | 3309 | epmax_diag(i) = epmax - coef_epmax_cape * sqrt(cape(i)) |
---|
[5158] | 3310 | DO k = 1, nl |
---|
[5141] | 3311 | ep(i, k) = ep(i, k) / epmax * epmax_diag(i) |
---|
| 3312 | ep(i, k) = amax1(ep(i, k), 0.0) |
---|
| 3313 | ep(i, k) = amin1(ep(i, k), epmax_diag(i)) |
---|
| 3314 | enddo |
---|
[2481] | 3315 | enddo |
---|
[5141] | 3316 | |
---|
| 3317 | ! On recalcule hp: |
---|
[5158] | 3318 | DO k = 1, nl |
---|
| 3319 | DO i = 1, ncum |
---|
[5141] | 3320 | hp_bak(i, k) = hp(i, k) |
---|
| 3321 | enddo |
---|
[5111] | 3322 | enddo |
---|
[5158] | 3323 | DO k = 1, nlp |
---|
| 3324 | DO i = 1, ncum |
---|
[5141] | 3325 | hp(i, k) = h(i, k) |
---|
| 3326 | enddo |
---|
| 3327 | enddo |
---|
[5158] | 3328 | DO k = minorig + 1, nl |
---|
| 3329 | DO i = 1, ncum |
---|
[5141] | 3330 | IF((k>=icb(i)).AND.(k<=inb(i)))THEN |
---|
| 3331 | hp(i, k) = h(i, nk(i)) + (lv(i, k) + (cpd - cpv) * t(i, k)) * ep(i, k) * clw(i, k) |
---|
| 3332 | endif |
---|
| 3333 | enddo |
---|
| 3334 | enddo !do k=minorig+1,n |
---|
| 3335 | ! WRITE(*,*) 'cv30_routines 6218: hp(1,20)=',hp(1,20) |
---|
[5158] | 3336 | DO i = 1, ncum |
---|
| 3337 | DO k = 1, nl |
---|
[5141] | 3338 | IF (abs(hp_bak(i, k) - hp(i, k))>0.01) THEN |
---|
| 3339 | WRITE(*, *) 'i,k=', i, k |
---|
| 3340 | WRITE(*, *) 'coef_epmax_cape=', coef_epmax_cape |
---|
| 3341 | WRITE(*, *) 'epmax_diag(i)=', epmax_diag(i) |
---|
| 3342 | WRITE(*, *) 'ep(i,k)=', ep(i, k) |
---|
| 3343 | WRITE(*, *) 'hp(i,k)=', hp(i, k) |
---|
| 3344 | WRITE(*, *) 'hp_bak(i,k)=', hp_bak(i, k) |
---|
| 3345 | WRITE(*, *) 'h(i,k)=', h(i, k) |
---|
| 3346 | WRITE(*, *) 'nk(i)=', nk(i) |
---|
| 3347 | WRITE(*, *) 'h(i,nk(i))=', h(i, nk(i)) |
---|
| 3348 | WRITE(*, *) 'lv(i,k)=', lv(i, k) |
---|
| 3349 | WRITE(*, *) 't(i,k)=', t(i, k) |
---|
| 3350 | WRITE(*, *) 'clw(i,k)=', clw(i, k) |
---|
| 3351 | WRITE(*, *) 'cpd,cpv=', cpd, cpv |
---|
| 3352 | CALL abort_physic(modname, abort_message, 1) |
---|
| 3353 | endif |
---|
| 3354 | enddo !do k=1,nl |
---|
| 3355 | enddo !do i=1,ncum |
---|
| 3356 | ENDIF !if (coef_epmax_cape.gt.1e-12) THEN |
---|
| 3357 | END SUBROUTINE cv30_epmax_fn_cape |
---|
[5105] | 3358 | |
---|
[2481] | 3359 | |
---|
[5141] | 3360 | END MODULE lmdz_cv30 |
---|
| 3361 | |
---|
| 3362 | |
---|