1 | ! $Id: lmdz_cv.f90 5158 2024-08-02 12:12:03Z abarral $ |
---|
2 | |
---|
3 | MODULE lmdz_cv |
---|
4 | !------------------------------------------------------------ |
---|
5 | ! Parameters for convectL: |
---|
6 | ! (includes - microphysical parameters, |
---|
7 | ! - parameters that control the rate of approach |
---|
8 | ! to quasi-equilibrium) |
---|
9 | ! - noff & minorig (previously in input of convect1) |
---|
10 | !------------------------------------------------------------ |
---|
11 | |
---|
12 | IMPLICIT NONE; PRIVATE |
---|
13 | PUBLIC elcrit, tlcrit, entp, sigs, sigd, omtrain, omtsnow, coeffr, coeffs & |
---|
14 | , dtmax, cu, betad, alpha, damp, delta, noff, minorig, nl, nlp, nlm, & |
---|
15 | cv_param, cv_prelim, cv_feed, cv_undilute1, cv_trigger, cv_compress, & |
---|
16 | cv_undilute2, cv_closure, cv_mixing, cv_unsat, cv_yield, cv_uncompress |
---|
17 | |
---|
18 | INTEGER noff, minorig, nl, nlp, nlm |
---|
19 | REAL elcrit, tlcrit |
---|
20 | REAL entp |
---|
21 | REAL sigs, sigd |
---|
22 | REAL omtrain, omtsnow, coeffr, coeffs |
---|
23 | REAL dtmax |
---|
24 | REAL cu |
---|
25 | REAL betad |
---|
26 | REAL alpha, damp |
---|
27 | REAL delta |
---|
28 | |
---|
29 | !$OMP THREADPRIVATE(elcrit, tlcrit, entp, sigs, sigd, omtrain, omtsnow, coeffr, coeffs & |
---|
30 | !$OMP , dtmax, cu, betad, alpha, damp, delta, noff, minorig, nl, nlp, nlm) |
---|
31 | |
---|
32 | CONTAINS |
---|
33 | |
---|
34 | SUBROUTINE cv_param(nd) |
---|
35 | IMPLICIT NONE |
---|
36 | |
---|
37 | ! ------------------------------------------------------------ |
---|
38 | ! Set parameters for convectL |
---|
39 | ! (includes microphysical parameters and parameters that |
---|
40 | ! control the rate of approach to quasi-equilibrium) |
---|
41 | ! ------------------------------------------------------------ |
---|
42 | |
---|
43 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
44 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
45 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
46 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
47 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
48 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
49 | ! *** FORMULATION *** |
---|
50 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
51 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
52 | ! *** OF CLOUD *** |
---|
53 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
54 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
55 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
56 | ! *** OF RAIN *** |
---|
57 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
58 | ! *** OF SNOW *** |
---|
59 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
60 | ! *** TRANSPORT *** |
---|
61 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
62 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
63 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
64 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
65 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
66 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
67 | |
---|
68 | INTEGER nd |
---|
69 | CHARACTER (LEN = 20) :: modname = 'cv_routines' |
---|
70 | CHARACTER (LEN = 80) :: abort_message |
---|
71 | |
---|
72 | ! noff: integer limit for convection (nd-noff) |
---|
73 | ! minorig: First level of convection |
---|
74 | |
---|
75 | noff = 2 |
---|
76 | minorig = 2 |
---|
77 | |
---|
78 | nl = nd - noff |
---|
79 | nlp = nl + 1 |
---|
80 | nlm = nl - 1 |
---|
81 | |
---|
82 | elcrit = 0.0011 |
---|
83 | tlcrit = -55.0 |
---|
84 | entp = 1.5 |
---|
85 | sigs = 0.12 |
---|
86 | sigd = 0.05 |
---|
87 | omtrain = 50.0 |
---|
88 | omtsnow = 5.5 |
---|
89 | coeffr = 1.0 |
---|
90 | coeffs = 0.8 |
---|
91 | dtmax = 0.9 |
---|
92 | |
---|
93 | cu = 0.70 |
---|
94 | |
---|
95 | betad = 10.0 |
---|
96 | |
---|
97 | damp = 0.1 |
---|
98 | alpha = 0.2 |
---|
99 | |
---|
100 | delta = 0.01 ! cld |
---|
101 | |
---|
102 | END SUBROUTINE cv_param |
---|
103 | |
---|
104 | SUBROUTINE cv_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm) |
---|
105 | USE lmdz_cvthermo |
---|
106 | |
---|
107 | IMPLICIT NONE |
---|
108 | |
---|
109 | ! ===================================================================== |
---|
110 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
111 | ! ===================================================================== |
---|
112 | |
---|
113 | ! inputs: |
---|
114 | INTEGER len, nd, ndp1 |
---|
115 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
116 | |
---|
117 | ! outputs: |
---|
118 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
119 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
120 | |
---|
121 | ! local variables: |
---|
122 | INTEGER k, i |
---|
123 | REAL cpx(len, nd) |
---|
124 | |
---|
125 | |
---|
126 | DO k = 1, nlp |
---|
127 | DO i = 1, len |
---|
128 | lv(i, k) = lv0 - clmcpv * (t(i, k) - t0) |
---|
129 | cpn(i, k) = cpd * (1.0 - q(i, k)) + cpv * q(i, k) |
---|
130 | cpx(i, k) = cpd * (1.0 - q(i, k)) + cl * q(i, k) |
---|
131 | tv(i, k) = t(i, k) * (1.0 + q(i, k) * epsim1) |
---|
132 | END DO |
---|
133 | END DO |
---|
134 | |
---|
135 | ! gz = phi at the full levels (same as p). |
---|
136 | |
---|
137 | DO i = 1, len |
---|
138 | gz(i, 1) = 0.0 |
---|
139 | END DO |
---|
140 | DO k = 2, nlp |
---|
141 | DO i = 1, len |
---|
142 | gz(i, k) = gz(i, k - 1) + hrd * (tv(i, k - 1) + tv(i, k)) * (p(i, k - 1) - p(i, k)) / ph(i, & |
---|
143 | k) |
---|
144 | END DO |
---|
145 | END DO |
---|
146 | |
---|
147 | ! h = phi + cpT (dry static energy). |
---|
148 | ! hm = phi + cp(T-Tbase)+Lq |
---|
149 | |
---|
150 | DO k = 1, nlp |
---|
151 | DO i = 1, len |
---|
152 | h(i, k) = gz(i, k) + cpn(i, k) * t(i, k) |
---|
153 | hm(i, k) = gz(i, k) + cpx(i, k) * (t(i, k) - t(i, 1)) + lv(i, k) * q(i, k) |
---|
154 | END DO |
---|
155 | END DO |
---|
156 | |
---|
157 | END SUBROUTINE cv_prelim |
---|
158 | |
---|
159 | SUBROUTINE cv_feed(len, nd, t, q, qs, p, hm, gz, nk, icb, icbmax, iflag, tnk, & |
---|
160 | qnk, gznk, plcl) |
---|
161 | IMPLICIT NONE |
---|
162 | |
---|
163 | ! ================================================================ |
---|
164 | ! Purpose: CONVECTIVE FEED |
---|
165 | ! ================================================================ |
---|
166 | |
---|
167 | |
---|
168 | ! inputs: |
---|
169 | INTEGER len, nd |
---|
170 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
171 | REAL hm(len, nd), gz(len, nd) |
---|
172 | |
---|
173 | ! outputs: |
---|
174 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
175 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
176 | |
---|
177 | ! local variables: |
---|
178 | INTEGER i, k |
---|
179 | INTEGER ihmin(len) |
---|
180 | REAL work(len) |
---|
181 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
182 | |
---|
183 | ! ------------------------------------------------------------------- |
---|
184 | ! --- Find level of minimum moist static energy |
---|
185 | ! --- If level of minimum moist static energy coincides with |
---|
186 | ! --- or is lower than minimum allowable parcel origin level, |
---|
187 | ! --- set iflag to 6. |
---|
188 | ! ------------------------------------------------------------------- |
---|
189 | |
---|
190 | DO i = 1, len |
---|
191 | work(i) = 1.0E12 |
---|
192 | ihmin(i) = nl |
---|
193 | END DO |
---|
194 | DO k = 2, nlp |
---|
195 | DO i = 1, len |
---|
196 | IF ((hm(i, k)<work(i)) .AND. (hm(i, k)<hm(i, k - 1))) THEN |
---|
197 | work(i) = hm(i, k) |
---|
198 | ihmin(i) = k |
---|
199 | END IF |
---|
200 | END DO |
---|
201 | END DO |
---|
202 | DO i = 1, len |
---|
203 | ihmin(i) = min(ihmin(i), nlm) |
---|
204 | IF (ihmin(i)<=minorig) THEN |
---|
205 | iflag(i) = 6 |
---|
206 | END IF |
---|
207 | END DO |
---|
208 | |
---|
209 | ! ------------------------------------------------------------------- |
---|
210 | ! --- Find that model level below the level of minimum moist static |
---|
211 | ! --- energy that has the maximum value of moist static energy |
---|
212 | ! ------------------------------------------------------------------- |
---|
213 | |
---|
214 | DO i = 1, len |
---|
215 | work(i) = hm(i, minorig) |
---|
216 | nk(i) = minorig |
---|
217 | END DO |
---|
218 | DO k = minorig + 1, nl |
---|
219 | DO i = 1, len |
---|
220 | IF ((hm(i, k)>work(i)) .AND. (k<=ihmin(i))) THEN |
---|
221 | work(i) = hm(i, k) |
---|
222 | nk(i) = k |
---|
223 | END IF |
---|
224 | END DO |
---|
225 | END DO |
---|
226 | ! ------------------------------------------------------------------- |
---|
227 | ! --- Check whether parcel level temperature and specific humidity |
---|
228 | ! --- are reasonable |
---|
229 | ! ------------------------------------------------------------------- |
---|
230 | DO i = 1, len |
---|
231 | IF (((t(i, nk(i))<250.0) .OR. (q(i, nk(i))<=0.0) .OR. (p(i, ihmin(i))< & |
---|
232 | 400.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
233 | END DO |
---|
234 | ! ------------------------------------------------------------------- |
---|
235 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
236 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
237 | ! ------------------------------------------------------------------- |
---|
238 | DO i = 1, len |
---|
239 | tnk(i) = t(i, nk(i)) |
---|
240 | qnk(i) = q(i, nk(i)) |
---|
241 | gznk(i) = gz(i, nk(i)) |
---|
242 | pnk(i) = p(i, nk(i)) |
---|
243 | qsnk(i) = qs(i, nk(i)) |
---|
244 | |
---|
245 | rh(i) = qnk(i) / qsnk(i) |
---|
246 | rh(i) = min(1.0, rh(i)) |
---|
247 | chi(i) = tnk(i) / (1669.0 - 122.0 * rh(i) - tnk(i)) |
---|
248 | plcl(i) = pnk(i) * (rh(i)**chi(i)) |
---|
249 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag(i & |
---|
250 | ) = 8 |
---|
251 | END DO |
---|
252 | ! ------------------------------------------------------------------- |
---|
253 | ! --- Calculate first level above lcl (=icb) |
---|
254 | ! ------------------------------------------------------------------- |
---|
255 | DO i = 1, len |
---|
256 | icb(i) = nlm |
---|
257 | END DO |
---|
258 | |
---|
259 | DO k = minorig, nl |
---|
260 | DO i = 1, len |
---|
261 | IF ((k>=(nk(i) + 1)) .AND. (p(i, k)<plcl(i))) icb(i) = min(icb(i), k) |
---|
262 | END DO |
---|
263 | END DO |
---|
264 | |
---|
265 | DO i = 1, len |
---|
266 | IF ((icb(i)>=nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
267 | END DO |
---|
268 | |
---|
269 | ! Compute icbmax. |
---|
270 | |
---|
271 | icbmax = 2 |
---|
272 | DO i = 1, len |
---|
273 | icbmax = max(icbmax, icb(i)) |
---|
274 | END DO |
---|
275 | |
---|
276 | END SUBROUTINE cv_feed |
---|
277 | |
---|
278 | SUBROUTINE cv_undilute1(len, nd, t, q, qs, gz, p, nk, icb, icbmax, tp, tvp, & |
---|
279 | clw) |
---|
280 | USE lmdz_cvthermo |
---|
281 | |
---|
282 | IMPLICIT NONE |
---|
283 | |
---|
284 | |
---|
285 | ! inputs: |
---|
286 | INTEGER len, nd |
---|
287 | INTEGER nk(len), icb(len), icbmax |
---|
288 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
289 | REAL p(len, nd) |
---|
290 | |
---|
291 | ! outputs: |
---|
292 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
293 | |
---|
294 | ! local variables: |
---|
295 | INTEGER i, k |
---|
296 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
297 | REAL ah0(len), cpp(len) |
---|
298 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
299 | |
---|
300 | ! ------------------------------------------------------------------- |
---|
301 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
302 | ! --- the actual temperature, and the adiabatic |
---|
303 | ! --- liquid water content. The procedure is to solve the equation. |
---|
304 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
305 | ! ------------------------------------------------------------------- |
---|
306 | |
---|
307 | DO i = 1, len |
---|
308 | tnk(i) = t(i, nk(i)) |
---|
309 | qnk(i) = q(i, nk(i)) |
---|
310 | gznk(i) = gz(i, nk(i)) |
---|
311 | ticb(i) = t(i, icb(i)) |
---|
312 | gzicb(i) = gz(i, icb(i)) |
---|
313 | END DO |
---|
314 | |
---|
315 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
316 | |
---|
317 | DO i = 1, len |
---|
318 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) + qnk(i) * (lv0 - clmcpv * (tnk(i) - & |
---|
319 | 273.15)) + gznk(i) |
---|
320 | cpp(i) = cpd * (1. - qnk(i)) + qnk(i) * cpv |
---|
321 | END DO |
---|
322 | |
---|
323 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
324 | |
---|
325 | DO k = minorig, icbmax - 1 |
---|
326 | DO i = 1, len |
---|
327 | tp(i, k) = tnk(i) - (gz(i, k) - gznk(i)) / cpp(i) |
---|
328 | tvp(i, k) = tp(i, k) * (1. + qnk(i) * epsi) |
---|
329 | END DO |
---|
330 | END DO |
---|
331 | |
---|
332 | ! *** Find lifted parcel quantities above cloud base *** |
---|
333 | |
---|
334 | DO i = 1, len |
---|
335 | tg = ticb(i) |
---|
336 | qg = qs(i, icb(i)) |
---|
337 | alv = lv0 - clmcpv * (ticb(i) - t0) |
---|
338 | |
---|
339 | ! First iteration. |
---|
340 | |
---|
341 | s = cpd + alv * alv * qg / (rrv * ticb(i) * ticb(i)) |
---|
342 | s = 1. / s |
---|
343 | ahg = cpd * tg + (cl - cpd) * qnk(i) * ticb(i) + alv * qg + gzicb(i) |
---|
344 | tg = tg + s * (ah0(i) - ahg) |
---|
345 | tg = max(tg, 35.0) |
---|
346 | tc = tg - t0 |
---|
347 | denom = 243.5 + tc |
---|
348 | IF (tc>=0.0) THEN |
---|
349 | es = 6.112 * exp(17.67 * tc / denom) |
---|
350 | ELSE |
---|
351 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
352 | END IF |
---|
353 | qg = eps * es / (p(i, icb(i)) - es * (1. - eps)) |
---|
354 | |
---|
355 | ! Second iteration. |
---|
356 | |
---|
357 | s = cpd + alv * alv * qg / (rrv * ticb(i) * ticb(i)) |
---|
358 | s = 1. / s |
---|
359 | ahg = cpd * tg + (cl - cpd) * qnk(i) * ticb(i) + alv * qg + gzicb(i) |
---|
360 | tg = tg + s * (ah0(i) - ahg) |
---|
361 | tg = max(tg, 35.0) |
---|
362 | tc = tg - t0 |
---|
363 | denom = 243.5 + tc |
---|
364 | IF (tc>=0.0) THEN |
---|
365 | es = 6.112 * exp(17.67 * tc / denom) |
---|
366 | ELSE |
---|
367 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
368 | END IF |
---|
369 | qg = eps * es / (p(i, icb(i)) - es * (1. - eps)) |
---|
370 | |
---|
371 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
372 | tp(i, icb(i)) = (ah0(i) - (cl - cpd) * qnk(i) * ticb(i) - gz(i, icb(i)) - alv * qg) / cpd |
---|
373 | clw(i, icb(i)) = qnk(i) - qg |
---|
374 | clw(i, icb(i)) = max(0.0, clw(i, icb(i))) |
---|
375 | rg = qg / (1. - qnk(i)) |
---|
376 | tvp(i, icb(i)) = tp(i, icb(i)) * (1. + rg * epsi) |
---|
377 | END DO |
---|
378 | |
---|
379 | DO k = minorig, icbmax |
---|
380 | DO i = 1, len |
---|
381 | tvp(i, k) = tvp(i, k) - tp(i, k) * qnk(i) |
---|
382 | END DO |
---|
383 | END DO |
---|
384 | |
---|
385 | END SUBROUTINE cv_undilute1 |
---|
386 | |
---|
387 | SUBROUTINE cv_trigger(len, nd, icb, cbmf, tv, tvp, iflag) |
---|
388 | IMPLICIT NONE |
---|
389 | |
---|
390 | ! ------------------------------------------------------------------- |
---|
391 | ! --- Test for instability. |
---|
392 | ! --- If there was no convection at last time step and parcel |
---|
393 | ! --- is stable at icb, then set iflag to 4. |
---|
394 | ! ------------------------------------------------------------------- |
---|
395 | |
---|
396 | |
---|
397 | ! inputs: |
---|
398 | INTEGER len, nd, icb(len) |
---|
399 | REAL cbmf(len), tv(len, nd), tvp(len, nd) |
---|
400 | |
---|
401 | ! outputs: |
---|
402 | INTEGER iflag(len) ! also an input |
---|
403 | |
---|
404 | ! local variables: |
---|
405 | INTEGER i |
---|
406 | |
---|
407 | DO i = 1, len |
---|
408 | IF ((cbmf(i)==0.0) .AND. (iflag(i)==0) .AND. (tvp(i, & |
---|
409 | icb(i))<=(tv(i, icb(i)) - dtmax))) iflag(i) = 4 |
---|
410 | END DO |
---|
411 | |
---|
412 | END SUBROUTINE cv_trigger |
---|
413 | |
---|
414 | SUBROUTINE cv_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, cbmf1, plcl1, & |
---|
415 | tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, cpn1, p1, ph1, tv1, & |
---|
416 | tp1, tvp1, clw1, iflag, nk, icb, cbmf, plcl, tnk, qnk, gznk, t, q, qs, u, & |
---|
417 | v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw, dph) |
---|
418 | USE lmdz_print_control, ONLY: lunout |
---|
419 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
420 | IMPLICIT NONE |
---|
421 | |
---|
422 | |
---|
423 | ! inputs: |
---|
424 | INTEGER len, ncum, nd, nloc |
---|
425 | INTEGER iflag1(len), nk1(len), icb1(len) |
---|
426 | REAL cbmf1(len), plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
427 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
428 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
429 | REAL p1(len, nd), ph1(len, nd + 1), tv1(len, nd), tp1(len, nd) |
---|
430 | REAL tvp1(len, nd), clw1(len, nd) |
---|
431 | |
---|
432 | ! outputs: |
---|
433 | INTEGER iflag(nloc), nk(nloc), icb(nloc) |
---|
434 | REAL cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
435 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
436 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
437 | REAL p(nloc, nd), ph(nloc, nd + 1), tv(nloc, nd), tp(nloc, nd) |
---|
438 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
439 | REAL dph(nloc, nd) |
---|
440 | |
---|
441 | ! local variables: |
---|
442 | INTEGER i, k, nn |
---|
443 | CHARACTER (LEN = 20) :: modname = 'cv_compress' |
---|
444 | CHARACTER (LEN = 80) :: abort_message |
---|
445 | |
---|
446 | DO k = 1, nl + 1 |
---|
447 | nn = 0 |
---|
448 | DO i = 1, len |
---|
449 | IF (iflag1(i)==0) THEN |
---|
450 | nn = nn + 1 |
---|
451 | t(nn, k) = t1(i, k) |
---|
452 | q(nn, k) = q1(i, k) |
---|
453 | qs(nn, k) = qs1(i, k) |
---|
454 | u(nn, k) = u1(i, k) |
---|
455 | v(nn, k) = v1(i, k) |
---|
456 | gz(nn, k) = gz1(i, k) |
---|
457 | h(nn, k) = h1(i, k) |
---|
458 | lv(nn, k) = lv1(i, k) |
---|
459 | cpn(nn, k) = cpn1(i, k) |
---|
460 | p(nn, k) = p1(i, k) |
---|
461 | ph(nn, k) = ph1(i, k) |
---|
462 | tv(nn, k) = tv1(i, k) |
---|
463 | tp(nn, k) = tp1(i, k) |
---|
464 | tvp(nn, k) = tvp1(i, k) |
---|
465 | clw(nn, k) = clw1(i, k) |
---|
466 | END IF |
---|
467 | END DO |
---|
468 | END DO |
---|
469 | |
---|
470 | IF (nn/=ncum) THEN |
---|
471 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
472 | abort_message = '' |
---|
473 | CALL abort_physic(modname, abort_message, 1) |
---|
474 | END IF |
---|
475 | |
---|
476 | nn = 0 |
---|
477 | DO i = 1, len |
---|
478 | IF (iflag1(i)==0) THEN |
---|
479 | nn = nn + 1 |
---|
480 | cbmf(nn) = cbmf1(i) |
---|
481 | plcl(nn) = plcl1(i) |
---|
482 | tnk(nn) = tnk1(i) |
---|
483 | qnk(nn) = qnk1(i) |
---|
484 | gznk(nn) = gznk1(i) |
---|
485 | nk(nn) = nk1(i) |
---|
486 | icb(nn) = icb1(i) |
---|
487 | iflag(nn) = iflag1(i) |
---|
488 | END IF |
---|
489 | END DO |
---|
490 | |
---|
491 | DO k = 1, nl |
---|
492 | DO i = 1, ncum |
---|
493 | dph(i, k) = ph(i, k) - ph(i, k + 1) |
---|
494 | END DO |
---|
495 | END DO |
---|
496 | |
---|
497 | END SUBROUTINE cv_compress |
---|
498 | |
---|
499 | SUBROUTINE cv_undilute2(nloc, ncum, nd, icb, nk, tnk, qnk, gznk, t, q, qs, & |
---|
500 | gz, p, dph, h, tv, lv, inb, inb1, tp, tvp, clw, hp, ep, sigp, frac) |
---|
501 | USE lmdz_cvthermo |
---|
502 | |
---|
503 | IMPLICIT NONE |
---|
504 | |
---|
505 | ! --------------------------------------------------------------------- |
---|
506 | ! Purpose: |
---|
507 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
508 | ! & |
---|
509 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
510 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
511 | ! & |
---|
512 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
513 | ! --------------------------------------------------------------------- |
---|
514 | |
---|
515 | |
---|
516 | ! inputs: |
---|
517 | INTEGER ncum, nd, nloc |
---|
518 | INTEGER icb(nloc), nk(nloc) |
---|
519 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
520 | REAL p(nloc, nd), dph(nloc, nd) |
---|
521 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
522 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
523 | |
---|
524 | ! outputs: |
---|
525 | INTEGER inb(nloc), inb1(nloc) |
---|
526 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
527 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
528 | REAL frac(nloc) |
---|
529 | |
---|
530 | ! local variables: |
---|
531 | INTEGER i, k |
---|
532 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
533 | REAL by, defrac |
---|
534 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
535 | LOGICAL lcape(nloc) |
---|
536 | |
---|
537 | ! ===================================================================== |
---|
538 | ! --- SOME INITIALIZATIONS |
---|
539 | ! ===================================================================== |
---|
540 | |
---|
541 | DO k = 1, nl |
---|
542 | DO i = 1, ncum |
---|
543 | ep(i, k) = 0.0 |
---|
544 | sigp(i, k) = sigs |
---|
545 | END DO |
---|
546 | END DO |
---|
547 | |
---|
548 | ! ===================================================================== |
---|
549 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
550 | ! ===================================================================== |
---|
551 | |
---|
552 | ! --- The procedure is to solve the equation. |
---|
553 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
554 | |
---|
555 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
556 | |
---|
557 | DO i = 1, ncum |
---|
558 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) + qnk(i) * (lv0 - clmcpv * (tnk(i) - & |
---|
559 | t0)) + gznk(i) |
---|
560 | END DO |
---|
561 | |
---|
562 | |
---|
563 | ! *** Find lifted parcel quantities above cloud base *** |
---|
564 | |
---|
565 | DO k = minorig + 1, nl |
---|
566 | DO i = 1, ncum |
---|
567 | IF (k>=(icb(i) + 1)) THEN |
---|
568 | tg = t(i, k) |
---|
569 | qg = qs(i, k) |
---|
570 | alv = lv0 - clmcpv * (t(i, k) - t0) |
---|
571 | |
---|
572 | ! First iteration. |
---|
573 | |
---|
574 | s = cpd + alv * alv * qg / (rrv * t(i, k) * t(i, k)) |
---|
575 | s = 1. / s |
---|
576 | ahg = cpd * tg + (cl - cpd) * qnk(i) * t(i, k) + alv * qg + gz(i, k) |
---|
577 | tg = tg + s * (ah0(i) - ahg) |
---|
578 | tg = max(tg, 35.0) |
---|
579 | tc = tg - t0 |
---|
580 | denom = 243.5 + tc |
---|
581 | IF (tc>=0.0) THEN |
---|
582 | es = 6.112 * exp(17.67 * tc / denom) |
---|
583 | ELSE |
---|
584 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
585 | END IF |
---|
586 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
587 | |
---|
588 | ! Second iteration. |
---|
589 | |
---|
590 | s = cpd + alv * alv * qg / (rrv * t(i, k) * t(i, k)) |
---|
591 | s = 1. / s |
---|
592 | ahg = cpd * tg + (cl - cpd) * qnk(i) * t(i, k) + alv * qg + gz(i, k) |
---|
593 | tg = tg + s * (ah0(i) - ahg) |
---|
594 | tg = max(tg, 35.0) |
---|
595 | tc = tg - t0 |
---|
596 | denom = 243.5 + tc |
---|
597 | IF (tc>=0.0) THEN |
---|
598 | es = 6.112 * exp(17.67 * tc / denom) |
---|
599 | ELSE |
---|
600 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
601 | END IF |
---|
602 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
603 | |
---|
604 | alv = lv0 - clmcpv * (t(i, k) - t0) |
---|
605 | ! PRINT*,'cpd dans convect2 ',cpd |
---|
606 | ! PRINT*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
607 | ! PRINT*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
608 | tp(i, k) = (ah0(i) - (cl - cpd) * qnk(i) * t(i, k) - gz(i, k) - alv * qg) / cpd |
---|
609 | ! if (.NOT.cpd.gt.1000.) THEN |
---|
610 | ! PRINT*,'CPD=',cpd |
---|
611 | ! stop |
---|
612 | ! END IF |
---|
613 | clw(i, k) = qnk(i) - qg |
---|
614 | clw(i, k) = max(0.0, clw(i, k)) |
---|
615 | rg = qg / (1. - qnk(i)) |
---|
616 | tvp(i, k) = tp(i, k) * (1. + rg * epsi) |
---|
617 | END IF |
---|
618 | END DO |
---|
619 | END DO |
---|
620 | |
---|
621 | ! ===================================================================== |
---|
622 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
623 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
624 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
625 | ! ===================================================================== |
---|
626 | |
---|
627 | DO k = minorig + 1, nl |
---|
628 | DO i = 1, ncum |
---|
629 | IF (k>=(nk(i) + 1)) THEN |
---|
630 | tca = tp(i, k) - t0 |
---|
631 | IF (tca>=0.0) THEN |
---|
632 | elacrit = elcrit |
---|
633 | ELSE |
---|
634 | elacrit = elcrit * (1.0 - tca / tlcrit) |
---|
635 | END IF |
---|
636 | elacrit = max(elacrit, 0.0) |
---|
637 | ep(i, k) = 1.0 - elacrit / max(clw(i, k), 1.0E-8) |
---|
638 | ep(i, k) = max(ep(i, k), 0.0) |
---|
639 | ep(i, k) = min(ep(i, k), 1.0) |
---|
640 | sigp(i, k) = sigs |
---|
641 | END IF |
---|
642 | END DO |
---|
643 | END DO |
---|
644 | |
---|
645 | ! ===================================================================== |
---|
646 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
647 | ! --- VIRTUAL TEMPERATURE |
---|
648 | ! ===================================================================== |
---|
649 | |
---|
650 | DO k = minorig + 1, nl |
---|
651 | DO i = 1, ncum |
---|
652 | IF (k>=(icb(i) + 1)) THEN |
---|
653 | tvp(i, k) = tvp(i, k) * (1.0 - qnk(i) + ep(i, k) * clw(i, k)) |
---|
654 | ! PRINT*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
655 | ! PRINT*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
656 | END IF |
---|
657 | END DO |
---|
658 | END DO |
---|
659 | DO i = 1, ncum |
---|
660 | tvp(i, nlp) = tvp(i, nl) - (gz(i, nlp) - gz(i, nl)) / cpd |
---|
661 | END DO |
---|
662 | |
---|
663 | ! ===================================================================== |
---|
664 | ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
665 | ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
666 | ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
667 | ! ===================================================================== |
---|
668 | |
---|
669 | DO i = 1, ncum |
---|
670 | cape(i) = 0.0 |
---|
671 | capem(i) = 0.0 |
---|
672 | inb(i) = icb(i) + 1 |
---|
673 | inb1(i) = inb(i) |
---|
674 | END DO |
---|
675 | |
---|
676 | ! Originial Code |
---|
677 | |
---|
678 | ! do 530 k=minorig+1,nl-1 |
---|
679 | ! do 520 i=1,ncum |
---|
680 | ! IF(k.ge.(icb(i)+1))THEN |
---|
681 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
682 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
683 | ! cape(i)=cape(i)+by |
---|
684 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
685 | ! IF(cape(i).gt.0.0)THEN |
---|
686 | ! inb(i)=k+1 |
---|
687 | ! capem(i)=cape(i) |
---|
688 | ! END IF |
---|
689 | ! END IF |
---|
690 | ! 520 continue |
---|
691 | ! 530 continue |
---|
692 | ! do 540 i=1,ncum |
---|
693 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
694 | ! cape(i)=capem(i)+byp |
---|
695 | ! defrac=capem(i)-cape(i) |
---|
696 | ! defrac=max(defrac,0.001) |
---|
697 | ! frac(i)=-cape(i)/defrac |
---|
698 | ! frac(i)=min(frac(i),1.0) |
---|
699 | ! frac(i)=max(frac(i),0.0) |
---|
700 | ! 540 continue |
---|
701 | |
---|
702 | ! K Emanuel fix |
---|
703 | |
---|
704 | ! CALL zilch(byp,ncum) |
---|
705 | ! do 530 k=minorig+1,nl-1 |
---|
706 | ! do 520 i=1,ncum |
---|
707 | ! IF(k.ge.(icb(i)+1))THEN |
---|
708 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
709 | ! cape(i)=cape(i)+by |
---|
710 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
711 | ! IF(cape(i).gt.0.0)THEN |
---|
712 | ! inb(i)=k+1 |
---|
713 | ! capem(i)=cape(i) |
---|
714 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
715 | ! END IF |
---|
716 | ! END IF |
---|
717 | ! 520 continue |
---|
718 | ! 530 continue |
---|
719 | ! do 540 i=1,ncum |
---|
720 | ! inb(i)=max(inb(i),inb1(i)) |
---|
721 | ! cape(i)=capem(i)+byp(i) |
---|
722 | ! defrac=capem(i)-cape(i) |
---|
723 | ! defrac=max(defrac,0.001) |
---|
724 | ! frac(i)=-cape(i)/defrac |
---|
725 | ! frac(i)=min(frac(i),1.0) |
---|
726 | ! frac(i)=max(frac(i),0.0) |
---|
727 | ! 540 continue |
---|
728 | |
---|
729 | ! J Teixeira fix |
---|
730 | |
---|
731 | CALL zilch(byp, ncum) |
---|
732 | DO i = 1, ncum |
---|
733 | lcape(i) = .TRUE. |
---|
734 | END DO |
---|
735 | DO k = minorig + 1, nl - 1 |
---|
736 | DO i = 1, ncum |
---|
737 | IF (cape(i)<0.0) lcape(i) = .FALSE. |
---|
738 | IF ((k>=(icb(i) + 1)) .AND. lcape(i)) THEN |
---|
739 | by = (tvp(i, k) - tv(i, k)) * dph(i, k) / p(i, k) |
---|
740 | byp(i) = (tvp(i, k + 1) - tv(i, k + 1)) * dph(i, k + 1) / p(i, k + 1) |
---|
741 | cape(i) = cape(i) + by |
---|
742 | IF (by>=0.0) inb1(i) = k + 1 |
---|
743 | IF (cape(i)>0.0) THEN |
---|
744 | inb(i) = k + 1 |
---|
745 | capem(i) = cape(i) |
---|
746 | END IF |
---|
747 | END IF |
---|
748 | END DO |
---|
749 | END DO |
---|
750 | DO i = 1, ncum |
---|
751 | cape(i) = capem(i) + byp(i) |
---|
752 | defrac = capem(i) - cape(i) |
---|
753 | defrac = max(defrac, 0.001) |
---|
754 | frac(i) = -cape(i) / defrac |
---|
755 | frac(i) = min(frac(i), 1.0) |
---|
756 | frac(i) = max(frac(i), 0.0) |
---|
757 | END DO |
---|
758 | |
---|
759 | ! ===================================================================== |
---|
760 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
761 | ! ===================================================================== |
---|
762 | |
---|
763 | ! initialization: |
---|
764 | DO i = 1, ncum * nlp |
---|
765 | hp(i, 1) = h(i, 1) |
---|
766 | END DO |
---|
767 | |
---|
768 | DO k = minorig + 1, nl |
---|
769 | DO i = 1, ncum |
---|
770 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
771 | hp(i, k) = h(i, nk(i)) + (lv(i, k) + (cpd - cpv) * t(i, k)) * ep(i, k) * clw(i, k & |
---|
772 | ) |
---|
773 | END IF |
---|
774 | END DO |
---|
775 | END DO |
---|
776 | |
---|
777 | END SUBROUTINE cv_undilute2 |
---|
778 | |
---|
779 | SUBROUTINE cv_closure(nloc, ncum, nd, nk, icb, tv, tvp, p, ph, dph, plcl, & |
---|
780 | cpn, iflag, cbmf) |
---|
781 | USE lmdz_cvthermo |
---|
782 | |
---|
783 | IMPLICIT NONE |
---|
784 | |
---|
785 | ! inputs: |
---|
786 | INTEGER ncum, nd, nloc |
---|
787 | INTEGER nk(nloc), icb(nloc) |
---|
788 | REAL tv(nloc, nd), tvp(nloc, nd), p(nloc, nd), dph(nloc, nd) |
---|
789 | REAL ph(nloc, nd + 1) ! caution nd instead ndp1 to be consistent... |
---|
790 | REAL plcl(nloc), cpn(nloc, nd) |
---|
791 | |
---|
792 | ! outputs: |
---|
793 | INTEGER iflag(nloc) |
---|
794 | REAL cbmf(nloc) ! also an input |
---|
795 | |
---|
796 | ! local variables: |
---|
797 | INTEGER i, k, icbmax |
---|
798 | REAL dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) |
---|
799 | REAL work(nloc) |
---|
800 | |
---|
801 | |
---|
802 | ! ------------------------------------------------------------------- |
---|
803 | ! Compute icbmax. |
---|
804 | ! ------------------------------------------------------------------- |
---|
805 | |
---|
806 | icbmax = 2 |
---|
807 | DO i = 1, ncum |
---|
808 | icbmax = max(icbmax, icb(i)) |
---|
809 | END DO |
---|
810 | |
---|
811 | ! ===================================================================== |
---|
812 | ! --- CALCULATE CLOUD BASE MASS FLUX |
---|
813 | ! ===================================================================== |
---|
814 | |
---|
815 | ! tvpplcl = parcel temperature lifted adiabatically from level |
---|
816 | ! icb-1 to the LCL. |
---|
817 | ! tvaplcl = virtual temperature at the LCL. |
---|
818 | |
---|
819 | DO i = 1, ncum |
---|
820 | dtpbl(i) = 0.0 |
---|
821 | tvpplcl(i) = tvp(i, icb(i) - 1) - rrd * tvp(i, icb(i) - 1) * (p(i, icb(i) - 1) - plcl(& |
---|
822 | i)) / (cpn(i, icb(i) - 1) * p(i, icb(i) - 1)) |
---|
823 | tvaplcl(i) = tv(i, icb(i)) + (tvp(i, icb(i)) - tvp(i, icb(i) + 1)) * (plcl(i) - p(i & |
---|
824 | , icb(i))) / (p(i, icb(i)) - p(i, icb(i) + 1)) |
---|
825 | END DO |
---|
826 | |
---|
827 | ! ------------------------------------------------------------------- |
---|
828 | ! --- Interpolate difference between lifted parcel and |
---|
829 | ! --- environmental temperatures to lifted condensation level |
---|
830 | ! ------------------------------------------------------------------- |
---|
831 | |
---|
832 | ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
833 | |
---|
834 | DO k = minorig, icbmax |
---|
835 | DO i = 1, ncum |
---|
836 | IF ((k>=nk(i)) .AND. (k<=(icb(i) - 1))) THEN |
---|
837 | dtpbl(i) = dtpbl(i) + (tvp(i, k) - tv(i, k)) * dph(i, k) |
---|
838 | END IF |
---|
839 | END DO |
---|
840 | END DO |
---|
841 | DO i = 1, ncum |
---|
842 | dtpbl(i) = dtpbl(i) / (ph(i, nk(i)) - ph(i, icb(i))) |
---|
843 | dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
---|
844 | END DO |
---|
845 | |
---|
846 | ! ------------------------------------------------------------------- |
---|
847 | ! --- Adjust cloud base mass flux |
---|
848 | ! ------------------------------------------------------------------- |
---|
849 | |
---|
850 | DO i = 1, ncum |
---|
851 | work(i) = cbmf(i) |
---|
852 | cbmf(i) = max(0.0, (1.0 - damp) * cbmf(i) + 0.1 * alpha * dtmin(i)) |
---|
853 | IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
---|
854 | iflag(i) = 3 |
---|
855 | END IF |
---|
856 | END DO |
---|
857 | |
---|
858 | END SUBROUTINE cv_closure |
---|
859 | |
---|
860 | SUBROUTINE cv_mixing(nloc, ncum, nd, icb, nk, inb, inb1, ph, t, q, qs, u, v, & |
---|
861 | h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, uent, vent, nent, & |
---|
862 | sij, elij) |
---|
863 | USE lmdz_cvthermo |
---|
864 | |
---|
865 | IMPLICIT NONE |
---|
866 | |
---|
867 | |
---|
868 | ! inputs: |
---|
869 | INTEGER ncum, nd, nloc |
---|
870 | INTEGER icb(nloc), inb(nloc), inb1(nloc), nk(nloc) |
---|
871 | REAL cbmf(nloc), qnk(nloc) |
---|
872 | REAL ph(nloc, nd + 1) |
---|
873 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), lv(nloc, nd) |
---|
874 | REAL u(nloc, nd), v(nloc, nd), h(nloc, nd), hp(nloc, nd) |
---|
875 | REAL tv(nloc, nd), tvp(nloc, nd), ep(nloc, nd), clw(nloc, nd) |
---|
876 | |
---|
877 | ! outputs: |
---|
878 | INTEGER nent(nloc, nd) |
---|
879 | REAL m(nloc, nd), ment(nloc, nd, nd), qent(nloc, nd, nd) |
---|
880 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
881 | REAL sij(nloc, nd, nd), elij(nloc, nd, nd) |
---|
882 | |
---|
883 | ! local variables: |
---|
884 | INTEGER i, j, k, ij |
---|
885 | INTEGER num1, num2 |
---|
886 | REAL dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp |
---|
887 | REAL alt, qp1, smid, sjmin, sjmax, delp, delm |
---|
888 | REAL work(nloc), asij(nloc), smin(nloc), scrit(nloc) |
---|
889 | REAL bsum(nloc, nd) |
---|
890 | LOGICAL lwork(nloc) |
---|
891 | |
---|
892 | ! ===================================================================== |
---|
893 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
894 | ! ===================================================================== |
---|
895 | |
---|
896 | DO i = 1, ncum * nlp |
---|
897 | nent(i, 1) = 0 |
---|
898 | m(i, 1) = 0.0 |
---|
899 | END DO |
---|
900 | |
---|
901 | DO k = 1, nlp |
---|
902 | DO j = 1, nlp |
---|
903 | DO i = 1, ncum |
---|
904 | qent(i, k, j) = q(i, j) |
---|
905 | uent(i, k, j) = u(i, j) |
---|
906 | vent(i, k, j) = v(i, j) |
---|
907 | elij(i, k, j) = 0.0 |
---|
908 | ment(i, k, j) = 0.0 |
---|
909 | sij(i, k, j) = 0.0 |
---|
910 | END DO |
---|
911 | END DO |
---|
912 | END DO |
---|
913 | |
---|
914 | ! ------------------------------------------------------------------- |
---|
915 | ! --- Calculate rates of mixing, m(i) |
---|
916 | ! ------------------------------------------------------------------- |
---|
917 | |
---|
918 | CALL zilch(work, ncum) |
---|
919 | |
---|
920 | DO j = minorig + 1, nl |
---|
921 | DO i = 1, ncum |
---|
922 | IF ((j>=(icb(i) + 1)) .AND. (j<=inb(i))) THEN |
---|
923 | k = min(j, inb1(i)) |
---|
924 | dbo = abs(tv(i, k + 1) - tvp(i, k + 1) - tv(i, k - 1) + tvp(i, k - 1)) + & |
---|
925 | entp * 0.04 * (ph(i, k) - ph(i, k + 1)) |
---|
926 | work(i) = work(i) + dbo |
---|
927 | m(i, j) = cbmf(i) * dbo |
---|
928 | END IF |
---|
929 | END DO |
---|
930 | END DO |
---|
931 | DO k = minorig + 1, nl |
---|
932 | DO i = 1, ncum |
---|
933 | IF ((k>=(icb(i) + 1)) .AND. (k<=inb(i))) THEN |
---|
934 | m(i, k) = m(i, k) / work(i) |
---|
935 | END IF |
---|
936 | END DO |
---|
937 | END DO |
---|
938 | |
---|
939 | |
---|
940 | ! ===================================================================== |
---|
941 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
942 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
943 | ! --- FRACTION (sij) |
---|
944 | ! ===================================================================== |
---|
945 | |
---|
946 | DO i = minorig + 1, nl |
---|
947 | DO j = minorig + 1, nl |
---|
948 | DO ij = 1, ncum |
---|
949 | IF ((i>=(icb(ij) + 1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
---|
950 | inb(ij))) THEN |
---|
951 | qti = qnk(ij) - ep(ij, i) * clw(ij, i) |
---|
952 | bf2 = 1. + lv(ij, j) * lv(ij, j) * qs(ij, j) / (rrv * t(ij, j) * t(ij, j) * cpd) |
---|
953 | anum = h(ij, j) - hp(ij, i) + (cpv - cpd) * t(ij, j) * (qti - q(ij, j)) |
---|
954 | denom = h(ij, i) - hp(ij, i) + (cpd - cpv) * (q(ij, i) - qti) * t(ij, j) |
---|
955 | dei = denom |
---|
956 | IF (abs(dei)<0.01) dei = 0.01 |
---|
957 | sij(ij, i, j) = anum / dei |
---|
958 | sij(ij, i, i) = 1.0 |
---|
959 | altem = sij(ij, i, j) * q(ij, i) + (1. - sij(ij, i, j)) * qti - qs(ij, j) |
---|
960 | altem = altem / bf2 |
---|
961 | cwat = clw(ij, j) * (1. - ep(ij, j)) |
---|
962 | stemp = sij(ij, i, j) |
---|
963 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
964 | anum = anum - lv(ij, j) * (qti - qs(ij, j) - cwat * bf2) |
---|
965 | denom = denom + lv(ij, j) * (q(ij, i) - qti) |
---|
966 | IF (abs(denom)<0.01) denom = 0.01 |
---|
967 | sij(ij, i, j) = anum / denom |
---|
968 | altem = sij(ij, i, j) * q(ij, i) + (1. - sij(ij, i, j)) * qti - qs(ij, j) |
---|
969 | altem = altem - (bf2 - 1.) * cwat |
---|
970 | END IF |
---|
971 | IF (sij(ij, i, j)>0.0 .AND. sij(ij, i, j)<0.9) THEN |
---|
972 | qent(ij, i, j) = sij(ij, i, j) * q(ij, i) + (1. - sij(ij, i, j)) * qti |
---|
973 | uent(ij, i, j) = sij(ij, i, j) * u(ij, i) + & |
---|
974 | (1. - sij(ij, i, j)) * u(ij, nk(ij)) |
---|
975 | vent(ij, i, j) = sij(ij, i, j) * v(ij, i) + & |
---|
976 | (1. - sij(ij, i, j)) * v(ij, nk(ij)) |
---|
977 | elij(ij, i, j) = altem |
---|
978 | elij(ij, i, j) = max(0.0, elij(ij, i, j)) |
---|
979 | ment(ij, i, j) = m(ij, i) / (1. - sij(ij, i, j)) |
---|
980 | nent(ij, i) = nent(ij, i) + 1 |
---|
981 | END IF |
---|
982 | sij(ij, i, j) = max(0.0, sij(ij, i, j)) |
---|
983 | sij(ij, i, j) = min(1.0, sij(ij, i, j)) |
---|
984 | END IF |
---|
985 | END DO |
---|
986 | END DO |
---|
987 | |
---|
988 | ! *** If no air can entrain at level i assume that updraft detrains |
---|
989 | ! *** |
---|
990 | ! *** at that level and calculate detrained air flux and properties |
---|
991 | ! *** |
---|
992 | |
---|
993 | DO ij = 1, ncum |
---|
994 | IF ((i>=(icb(ij) + 1)) .AND. (i<=inb(ij)) .AND. (nent(ij, i)==0)) THEN |
---|
995 | ment(ij, i, i) = m(ij, i) |
---|
996 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i) * clw(ij, i) |
---|
997 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
998 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
999 | elij(ij, i, i) = clw(ij, i) |
---|
1000 | sij(ij, i, i) = 1.0 |
---|
1001 | END IF |
---|
1002 | END DO |
---|
1003 | END DO |
---|
1004 | |
---|
1005 | DO i = 1, ncum |
---|
1006 | sij(i, inb(i), inb(i)) = 1.0 |
---|
1007 | END DO |
---|
1008 | |
---|
1009 | ! ===================================================================== |
---|
1010 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
1011 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
1012 | ! ===================================================================== |
---|
1013 | |
---|
1014 | CALL zilch(bsum, ncum * nlp) |
---|
1015 | DO ij = 1, ncum |
---|
1016 | lwork(ij) = .FALSE. |
---|
1017 | END DO |
---|
1018 | DO i = minorig + 1, nl |
---|
1019 | |
---|
1020 | num1 = 0 |
---|
1021 | DO ij = 1, ncum |
---|
1022 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
---|
1023 | END DO |
---|
1024 | IF (num1<=0) GO TO 789 |
---|
1025 | |
---|
1026 | DO ij = 1, ncum |
---|
1027 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij))) THEN |
---|
1028 | lwork(ij) = (nent(ij, i)/=0) |
---|
1029 | qp1 = q(ij, nk(ij)) - ep(ij, i) * clw(ij, i) |
---|
1030 | anum = h(ij, i) - hp(ij, i) - lv(ij, i) * (qp1 - qs(ij, i)) |
---|
1031 | denom = h(ij, i) - hp(ij, i) + lv(ij, i) * (q(ij, i) - qp1) |
---|
1032 | IF (abs(denom)<0.01) denom = 0.01 |
---|
1033 | scrit(ij) = anum / denom |
---|
1034 | alt = qp1 - qs(ij, i) + scrit(ij) * (q(ij, i) - qp1) |
---|
1035 | IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
---|
1036 | asij(ij) = 0.0 |
---|
1037 | smin(ij) = 1.0 |
---|
1038 | END IF |
---|
1039 | END DO |
---|
1040 | DO j = minorig, nl |
---|
1041 | |
---|
1042 | num2 = 0 |
---|
1043 | DO ij = 1, ncum |
---|
1044 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (j>=icb(& |
---|
1045 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
---|
1046 | END DO |
---|
1047 | IF (num2<=0) GO TO 783 |
---|
1048 | |
---|
1049 | DO ij = 1, ncum |
---|
1050 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (j>=icb(& |
---|
1051 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
1052 | IF (sij(ij, i, j)>0.0 .AND. sij(ij, i, j)<0.9) THEN |
---|
1053 | IF (j>i) THEN |
---|
1054 | smid = min(sij(ij, i, j), scrit(ij)) |
---|
1055 | sjmax = smid |
---|
1056 | sjmin = smid |
---|
1057 | IF (smid<smin(ij) .AND. sij(ij, i, j + 1)<smid) THEN |
---|
1058 | smin(ij) = smid |
---|
1059 | sjmax = min(sij(ij, i, j + 1), sij(ij, i, j), scrit(ij)) |
---|
1060 | sjmin = max(sij(ij, i, j - 1), sij(ij, i, j)) |
---|
1061 | sjmin = min(sjmin, scrit(ij)) |
---|
1062 | END IF |
---|
1063 | ELSE |
---|
1064 | sjmax = max(sij(ij, i, j + 1), scrit(ij)) |
---|
1065 | smid = max(sij(ij, i, j), scrit(ij)) |
---|
1066 | sjmin = 0.0 |
---|
1067 | IF (j>1) sjmin = sij(ij, i, j - 1) |
---|
1068 | sjmin = max(sjmin, scrit(ij)) |
---|
1069 | END IF |
---|
1070 | delp = abs(sjmax - smid) |
---|
1071 | delm = abs(sjmin - smid) |
---|
1072 | asij(ij) = asij(ij) + (delp + delm) * (ph(ij, j) - ph(ij, j + 1)) |
---|
1073 | ment(ij, i, j) = ment(ij, i, j) * (delp + delm) * (ph(ij, j) - ph(ij, j + 1)) |
---|
1074 | END IF |
---|
1075 | END IF |
---|
1076 | END DO |
---|
1077 | 783 END DO |
---|
1078 | DO ij = 1, ncum |
---|
1079 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
---|
1080 | asij(ij) = max(1.0E-21, asij(ij)) |
---|
1081 | asij(ij) = 1.0 / asij(ij) |
---|
1082 | bsum(ij, i) = 0.0 |
---|
1083 | END IF |
---|
1084 | END DO |
---|
1085 | DO j = minorig, nl + 1 |
---|
1086 | DO ij = 1, ncum |
---|
1087 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (j>=icb(& |
---|
1088 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
1089 | ment(ij, i, j) = ment(ij, i, j) * asij(ij) |
---|
1090 | bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
---|
1091 | END IF |
---|
1092 | END DO |
---|
1093 | END DO |
---|
1094 | DO ij = 1, ncum |
---|
1095 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
---|
1096 | i)<1.0E-18) .AND. lwork(ij)) THEN |
---|
1097 | nent(ij, i) = 0 |
---|
1098 | ment(ij, i, i) = m(ij, i) |
---|
1099 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i) * clw(ij, i) |
---|
1100 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
1101 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
1102 | elij(ij, i, i) = clw(ij, i) |
---|
1103 | sij(ij, i, i) = 1.0 |
---|
1104 | END IF |
---|
1105 | END DO |
---|
1106 | 789 END DO |
---|
1107 | |
---|
1108 | END SUBROUTINE cv_mixing |
---|
1109 | |
---|
1110 | SUBROUTINE cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph, h, lv, & |
---|
1111 | ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, water, evap) |
---|
1112 | USE lmdz_cvthermo |
---|
1113 | |
---|
1114 | IMPLICIT NONE |
---|
1115 | |
---|
1116 | |
---|
1117 | ! inputs: |
---|
1118 | INTEGER ncum, nd, nloc |
---|
1119 | INTEGER inb(nloc) |
---|
1120 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd) |
---|
1121 | REAL gz(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
1122 | REAL p(nloc, nd), ph(nloc, nd + 1), h(nloc, nd) |
---|
1123 | REAL lv(nloc, nd), ep(nloc, nd), sigp(nloc, nd), clw(nloc, nd) |
---|
1124 | REAL m(nloc, nd), ment(nloc, nd, nd), elij(nloc, nd, nd) |
---|
1125 | |
---|
1126 | ! outputs: |
---|
1127 | INTEGER iflag(nloc) ! also an input |
---|
1128 | REAL mp(nloc, nd), qp(nloc, nd), up(nloc, nd), vp(nloc, nd) |
---|
1129 | REAL water(nloc, nd), evap(nloc, nd), wt(nloc, nd) |
---|
1130 | |
---|
1131 | ! local variables: |
---|
1132 | INTEGER i, j, k, ij, num1 |
---|
1133 | INTEGER jtt(nloc) |
---|
1134 | REAL awat, coeff, qsm, afac, sigt, b6, c6, revap |
---|
1135 | REAL dhdp, fac, qstm, rat |
---|
1136 | REAL wdtrain(nloc) |
---|
1137 | LOGICAL lwork(nloc) |
---|
1138 | |
---|
1139 | ! ===================================================================== |
---|
1140 | ! --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
1141 | ! ===================================================================== |
---|
1142 | |
---|
1143 | ! Initializations: |
---|
1144 | |
---|
1145 | DO i = 1, ncum |
---|
1146 | DO k = 1, nl + 1 |
---|
1147 | wt(i, k) = omtsnow |
---|
1148 | mp(i, k) = 0.0 |
---|
1149 | evap(i, k) = 0.0 |
---|
1150 | water(i, k) = 0.0 |
---|
1151 | END DO |
---|
1152 | END DO |
---|
1153 | |
---|
1154 | DO i = 1, ncum |
---|
1155 | qp(i, 1) = q(i, 1) |
---|
1156 | up(i, 1) = u(i, 1) |
---|
1157 | vp(i, 1) = v(i, 1) |
---|
1158 | END DO |
---|
1159 | |
---|
1160 | DO k = 2, nl + 1 |
---|
1161 | DO i = 1, ncum |
---|
1162 | qp(i, k) = q(i, k - 1) |
---|
1163 | up(i, k) = u(i, k - 1) |
---|
1164 | vp(i, k) = v(i, k - 1) |
---|
1165 | END DO |
---|
1166 | END DO |
---|
1167 | |
---|
1168 | |
---|
1169 | ! *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
1170 | ! *** downdraft calculation *** |
---|
1171 | |
---|
1172 | |
---|
1173 | ! *** Integrate liquid water equation to find condensed water *** |
---|
1174 | ! *** and condensed water flux *** |
---|
1175 | |
---|
1176 | DO i = 1, ncum |
---|
1177 | jtt(i) = 2 |
---|
1178 | IF (ep(i, inb(i))<=0.0001) iflag(i) = 2 |
---|
1179 | IF (iflag(i)==0) THEN |
---|
1180 | lwork(i) = .TRUE. |
---|
1181 | ELSE |
---|
1182 | lwork(i) = .FALSE. |
---|
1183 | END IF |
---|
1184 | END DO |
---|
1185 | |
---|
1186 | ! *** Begin downdraft loop *** |
---|
1187 | |
---|
1188 | CALL zilch(wdtrain, ncum) |
---|
1189 | DO i = nl + 1, 1, -1 |
---|
1190 | |
---|
1191 | num1 = 0 |
---|
1192 | DO ij = 1, ncum |
---|
1193 | IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
---|
1194 | END DO |
---|
1195 | IF (num1<=0) GO TO 899 |
---|
1196 | |
---|
1197 | |
---|
1198 | ! *** Calculate detrained precipitation *** |
---|
1199 | |
---|
1200 | DO ij = 1, ncum |
---|
1201 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1202 | wdtrain(ij) = g * ep(ij, i) * m(ij, i) * clw(ij, i) |
---|
1203 | END IF |
---|
1204 | END DO |
---|
1205 | |
---|
1206 | IF (i>1) THEN |
---|
1207 | DO j = 1, i - 1 |
---|
1208 | DO ij = 1, ncum |
---|
1209 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1210 | awat = elij(ij, j, i) - (1. - ep(ij, i)) * clw(ij, i) |
---|
1211 | awat = max(0.0, awat) |
---|
1212 | wdtrain(ij) = wdtrain(ij) + g * awat * ment(ij, j, i) |
---|
1213 | END IF |
---|
1214 | END DO |
---|
1215 | END DO |
---|
1216 | END IF |
---|
1217 | |
---|
1218 | ! *** Find rain water and evaporation using provisional *** |
---|
1219 | ! *** estimates of qp(i)and qp(i-1) *** |
---|
1220 | |
---|
1221 | |
---|
1222 | ! *** Value of terminal velocity and coeffecient of evaporation for snow |
---|
1223 | ! *** |
---|
1224 | |
---|
1225 | DO ij = 1, ncum |
---|
1226 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1227 | coeff = coeffs |
---|
1228 | wt(ij, i) = omtsnow |
---|
1229 | |
---|
1230 | ! *** Value of terminal velocity and coeffecient of evaporation for |
---|
1231 | ! rain *** |
---|
1232 | |
---|
1233 | IF (t(ij, i)>273.0) THEN |
---|
1234 | coeff = coeffr |
---|
1235 | wt(ij, i) = omtrain |
---|
1236 | END IF |
---|
1237 | qsm = 0.5 * (q(ij, i) + qp(ij, i + 1)) |
---|
1238 | afac = coeff * ph(ij, i) * (qs(ij, i) - qsm) / (1.0E4 + 2.0E3 * ph(ij, i) * qs(ij, i)) |
---|
1239 | afac = max(afac, 0.0) |
---|
1240 | sigt = sigp(ij, i) |
---|
1241 | sigt = max(0.0, sigt) |
---|
1242 | sigt = min(1.0, sigt) |
---|
1243 | b6 = 100. * (ph(ij, i) - ph(ij, i + 1)) * sigt * afac / wt(ij, i) |
---|
1244 | c6 = (water(ij, i + 1) * wt(ij, i + 1) + wdtrain(ij) / sigd) / wt(ij, i) |
---|
1245 | revap = 0.5 * (-b6 + sqrt(b6 * b6 + 4. * c6)) |
---|
1246 | evap(ij, i) = sigt * afac * revap |
---|
1247 | water(ij, i) = revap * revap |
---|
1248 | |
---|
1249 | ! *** Calculate precipitating downdraft mass flux under *** |
---|
1250 | ! *** hydrostatic approximation *** |
---|
1251 | |
---|
1252 | IF (i>1) THEN |
---|
1253 | dhdp = (h(ij, i) - h(ij, i - 1)) / (p(ij, i - 1) - p(ij, i)) |
---|
1254 | dhdp = max(dhdp, 10.0) |
---|
1255 | mp(ij, i) = 100. * ginv * lv(ij, i) * sigd * evap(ij, i) / dhdp |
---|
1256 | mp(ij, i) = max(mp(ij, i), 0.0) |
---|
1257 | |
---|
1258 | ! *** Add small amount of inertia to downdraft *** |
---|
1259 | |
---|
1260 | fac = 20.0 / (ph(ij, i - 1) - ph(ij, i)) |
---|
1261 | mp(ij, i) = (fac * mp(ij, i + 1) + mp(ij, i)) / (1. + fac) |
---|
1262 | |
---|
1263 | ! *** Force mp to decrease linearly to zero |
---|
1264 | ! *** |
---|
1265 | ! *** between about 950 mb and the surface |
---|
1266 | ! *** |
---|
1267 | |
---|
1268 | IF (p(ij, i)>(0.949 * p(ij, 1))) THEN |
---|
1269 | jtt(ij) = max(jtt(ij), i) |
---|
1270 | mp(ij, i) = mp(ij, jtt(ij)) * (p(ij, 1) - p(ij, i)) / & |
---|
1271 | (p(ij, 1) - p(ij, jtt(ij))) |
---|
1272 | END IF |
---|
1273 | END IF |
---|
1274 | |
---|
1275 | ! *** Find mixing ratio of precipitating downdraft *** |
---|
1276 | |
---|
1277 | IF (i/=inb(ij)) THEN |
---|
1278 | IF (i==1) THEN |
---|
1279 | qstm = qs(ij, 1) |
---|
1280 | ELSE |
---|
1281 | qstm = qs(ij, i - 1) |
---|
1282 | END IF |
---|
1283 | IF (mp(ij, i)>mp(ij, i + 1)) THEN |
---|
1284 | rat = mp(ij, i + 1) / mp(ij, i) |
---|
1285 | qp(ij, i) = qp(ij, i + 1) * rat + q(ij, i) * (1.0 - rat) + & |
---|
1286 | 100. * ginv * sigd * (ph(ij, i) - ph(ij, i + 1)) * (evap(ij, i) / mp(ij, i)) |
---|
1287 | up(ij, i) = up(ij, i + 1) * rat + u(ij, i) * (1. - rat) |
---|
1288 | vp(ij, i) = vp(ij, i + 1) * rat + v(ij, i) * (1. - rat) |
---|
1289 | ELSE |
---|
1290 | IF (mp(ij, i + 1)>0.0) THEN |
---|
1291 | qp(ij, i) = (gz(ij, i + 1) - gz(ij, i) + qp(ij, i + 1) * (lv(ij, i + 1) + t(ij, & |
---|
1292 | i + 1) * (cl - cpd)) + cpd * (t(ij, i + 1) - t(ij, & |
---|
1293 | i))) / (lv(ij, i) + t(ij, i) * (cl - cpd)) |
---|
1294 | up(ij, i) = up(ij, i + 1) |
---|
1295 | vp(ij, i) = vp(ij, i + 1) |
---|
1296 | END IF |
---|
1297 | END IF |
---|
1298 | qp(ij, i) = min(qp(ij, i), qstm) |
---|
1299 | qp(ij, i) = max(qp(ij, i), 0.0) |
---|
1300 | END IF |
---|
1301 | END IF |
---|
1302 | END DO |
---|
1303 | 899 END DO |
---|
1304 | |
---|
1305 | END SUBROUTINE cv_unsat |
---|
1306 | |
---|
1307 | SUBROUTINE cv_yield(nloc, ncum, nd, nk, icb, inb, delt, t, q, u, v, gz, p, & |
---|
1308 | ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, water, evap, & |
---|
1309 | ment, qent, uent, vent, nent, elij, tv, tvp, iflag, wd, qprime, tprime, & |
---|
1310 | precip, cbmf, ft, fq, fu, fv, ma, qcondc) |
---|
1311 | USE lmdz_cvthermo |
---|
1312 | |
---|
1313 | IMPLICIT NONE |
---|
1314 | |
---|
1315 | |
---|
1316 | ! inputs |
---|
1317 | INTEGER ncum, nd, nloc |
---|
1318 | INTEGER nk(nloc), icb(nloc), inb(nloc) |
---|
1319 | INTEGER nent(nloc, nd) |
---|
1320 | REAL delt |
---|
1321 | REAL t(nloc, nd), q(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
1322 | REAL gz(nloc, nd) |
---|
1323 | REAL p(nloc, nd), ph(nloc, nd + 1), h(nloc, nd) |
---|
1324 | REAL hp(nloc, nd), lv(nloc, nd) |
---|
1325 | REAL cpn(nloc, nd), ep(nloc, nd), clw(nloc, nd), frac(nloc) |
---|
1326 | REAL m(nloc, nd), mp(nloc, nd), qp(nloc, nd) |
---|
1327 | REAL up(nloc, nd), vp(nloc, nd) |
---|
1328 | REAL wt(nloc, nd), water(nloc, nd), evap(nloc, nd) |
---|
1329 | REAL ment(nloc, nd, nd), qent(nloc, nd, nd), elij(nloc, nd, nd) |
---|
1330 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
1331 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
1332 | |
---|
1333 | ! outputs |
---|
1334 | INTEGER iflag(nloc) ! also an input |
---|
1335 | REAL cbmf(nloc) ! also an input |
---|
1336 | REAL wd(nloc), tprime(nloc), qprime(nloc) |
---|
1337 | REAL precip(nloc) |
---|
1338 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
1339 | REAL ma(nloc, nd) |
---|
1340 | REAL qcondc(nloc, nd) |
---|
1341 | |
---|
1342 | ! local variables |
---|
1343 | INTEGER i, j, ij, k, num1 |
---|
1344 | REAL dpinv, cpinv, awat, fqold, ftold, fuold, fvold, delti |
---|
1345 | REAL work(nloc), am(nloc), amp1(nloc), ad(nloc) |
---|
1346 | REAL ents(nloc), uav(nloc), vav(nloc), lvcp(nloc, nd) |
---|
1347 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
1348 | REAL siga(nloc, nd), ax(nloc, nd), mac(nloc, nd) ! cld |
---|
1349 | |
---|
1350 | |
---|
1351 | ! -- initializations: |
---|
1352 | |
---|
1353 | delti = 1.0 / delt |
---|
1354 | |
---|
1355 | DO i = 1, ncum |
---|
1356 | precip(i) = 0.0 |
---|
1357 | wd(i) = 0.0 |
---|
1358 | tprime(i) = 0.0 |
---|
1359 | qprime(i) = 0.0 |
---|
1360 | DO k = 1, nl + 1 |
---|
1361 | ft(i, k) = 0.0 |
---|
1362 | fu(i, k) = 0.0 |
---|
1363 | fv(i, k) = 0.0 |
---|
1364 | fq(i, k) = 0.0 |
---|
1365 | lvcp(i, k) = lv(i, k) / cpn(i, k) |
---|
1366 | qcondc(i, k) = 0.0 ! cld |
---|
1367 | qcond(i, k) = 0.0 ! cld |
---|
1368 | nqcond(i, k) = 0.0 ! cld |
---|
1369 | END DO |
---|
1370 | END DO |
---|
1371 | |
---|
1372 | |
---|
1373 | ! *** Calculate surface precipitation in mm/day *** |
---|
1374 | |
---|
1375 | DO i = 1, ncum |
---|
1376 | IF (iflag(i)<=1) THEN |
---|
1377 | ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
1378 | ! c & /(rowl*g) |
---|
1379 | ! c precip(i)=precip(i)*delt/86400. |
---|
1380 | precip(i) = wt(i, 1) * sigd * water(i, 1) * 86400 / g |
---|
1381 | END IF |
---|
1382 | END DO |
---|
1383 | |
---|
1384 | |
---|
1385 | ! *** Calculate downdraft velocity scale and surface temperature and *** |
---|
1386 | ! *** water vapor fluctuations *** |
---|
1387 | |
---|
1388 | DO i = 1, ncum |
---|
1389 | wd(i) = betad * abs(mp(i, icb(i))) * 0.01 * rrd * t(i, icb(i)) / (sigd * p(i, icb(i))) |
---|
1390 | qprime(i) = 0.5 * (qp(i, 1) - q(i, 1)) |
---|
1391 | tprime(i) = lv0 * qprime(i) / cpd |
---|
1392 | END DO |
---|
1393 | |
---|
1394 | ! *** Calculate tendencies of lowest level potential temperature *** |
---|
1395 | ! *** and mixing ratio *** |
---|
1396 | |
---|
1397 | DO i = 1, ncum |
---|
1398 | work(i) = 0.01 / (ph(i, 1) - ph(i, 2)) |
---|
1399 | am(i) = 0.0 |
---|
1400 | END DO |
---|
1401 | DO k = 2, nl |
---|
1402 | DO i = 1, ncum |
---|
1403 | IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
---|
1404 | am(i) = am(i) + m(i, k) |
---|
1405 | END IF |
---|
1406 | END DO |
---|
1407 | END DO |
---|
1408 | DO i = 1, ncum |
---|
1409 | IF ((g * work(i) * am(i))>=delti) iflag(i) = 1 |
---|
1410 | ft(i, 1) = ft(i, 1) + g * work(i) * am(i) * (t(i, 2) - t(i, 1) + (gz(i, 2) - gz(i, & |
---|
1411 | 1)) / cpn(i, 1)) |
---|
1412 | ft(i, 1) = ft(i, 1) - lvcp(i, 1) * sigd * evap(i, 1) |
---|
1413 | ft(i, 1) = ft(i, 1) + sigd * wt(i, 2) * (cl - cpd) * water(i, 2) * (t(i, 2) - t(i, 1)) * & |
---|
1414 | work(i) / cpn(i, 1) |
---|
1415 | fq(i, 1) = fq(i, 1) + g * mp(i, 2) * (qp(i, 2) - q(i, 1)) * work(i) + & |
---|
1416 | sigd * evap(i, 1) |
---|
1417 | fq(i, 1) = fq(i, 1) + g * am(i) * (q(i, 2) - q(i, 1)) * work(i) |
---|
1418 | fu(i, 1) = fu(i, 1) + g * work(i) * (mp(i, 2) * (up(i, 2) - u(i, 1)) + am(i) * (u(i, & |
---|
1419 | 2) - u(i, 1))) |
---|
1420 | fv(i, 1) = fv(i, 1) + g * work(i) * (mp(i, 2) * (vp(i, 2) - v(i, 1)) + am(i) * (v(i, & |
---|
1421 | 2) - v(i, 1))) |
---|
1422 | END DO |
---|
1423 | DO j = 2, nl |
---|
1424 | DO i = 1, ncum |
---|
1425 | IF (j<=inb(i)) THEN |
---|
1426 | fq(i, 1) = fq(i, 1) + g * work(i) * ment(i, j, 1) * (qent(i, j, 1) - q(i, 1)) |
---|
1427 | fu(i, 1) = fu(i, 1) + g * work(i) * ment(i, j, 1) * (uent(i, j, 1) - u(i, 1)) |
---|
1428 | fv(i, 1) = fv(i, 1) + g * work(i) * ment(i, j, 1) * (vent(i, j, 1) - v(i, 1)) |
---|
1429 | END IF |
---|
1430 | END DO |
---|
1431 | END DO |
---|
1432 | |
---|
1433 | ! *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
1434 | ! *** at levels above the lowest level *** |
---|
1435 | |
---|
1436 | ! *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
1437 | ! *** through each level *** |
---|
1438 | |
---|
1439 | DO i = 2, nl + 1 |
---|
1440 | |
---|
1441 | num1 = 0 |
---|
1442 | DO ij = 1, ncum |
---|
1443 | IF (i<=inb(ij)) num1 = num1 + 1 |
---|
1444 | END DO |
---|
1445 | IF (num1<=0) GO TO 1500 |
---|
1446 | |
---|
1447 | CALL zilch(amp1, ncum) |
---|
1448 | CALL zilch(ad, ncum) |
---|
1449 | |
---|
1450 | DO k = i + 1, nl + 1 |
---|
1451 | DO ij = 1, ncum |
---|
1452 | IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij) + 1))) THEN |
---|
1453 | amp1(ij) = amp1(ij) + m(ij, k) |
---|
1454 | END IF |
---|
1455 | END DO |
---|
1456 | END DO |
---|
1457 | |
---|
1458 | DO k = 1, i |
---|
1459 | DO j = i + 1, nl + 1 |
---|
1460 | DO ij = 1, ncum |
---|
1461 | IF ((j<=(inb(ij) + 1)) .AND. (i<=inb(ij))) THEN |
---|
1462 | amp1(ij) = amp1(ij) + ment(ij, k, j) |
---|
1463 | END IF |
---|
1464 | END DO |
---|
1465 | END DO |
---|
1466 | END DO |
---|
1467 | DO k = 1, i - 1 |
---|
1468 | DO j = i, nl + 1 |
---|
1469 | DO ij = 1, ncum |
---|
1470 | IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
---|
1471 | ad(ij) = ad(ij) + ment(ij, j, k) |
---|
1472 | END IF |
---|
1473 | END DO |
---|
1474 | END DO |
---|
1475 | END DO |
---|
1476 | |
---|
1477 | DO ij = 1, ncum |
---|
1478 | IF (i<=inb(ij)) THEN |
---|
1479 | dpinv = 0.01 / (ph(ij, i) - ph(ij, i + 1)) |
---|
1480 | cpinv = 1.0 / cpn(ij, i) |
---|
1481 | |
---|
1482 | ft(ij, i) = ft(ij, i) + g * dpinv * (amp1(ij) * (t(ij, i + 1) - t(ij, & |
---|
1483 | i) + (gz(ij, i + 1) - gz(ij, i)) * cpinv) - ad(ij) * (t(ij, i) - t(ij, & |
---|
1484 | i - 1) + (gz(ij, i) - gz(ij, i - 1)) * cpinv)) - sigd * lvcp(ij, i) * evap(ij, i) |
---|
1485 | ft(ij, i) = ft(ij, i) + g * dpinv * ment(ij, i, i) * (hp(ij, i) - h(ij, i) + t(ij & |
---|
1486 | , i) * (cpv - cpd) * (q(ij, i) - qent(ij, i, i))) * cpinv |
---|
1487 | ft(ij, i) = ft(ij, i) + sigd * wt(ij, i + 1) * (cl - cpd) * water(ij, i + 1) * (t(& |
---|
1488 | ij, i + 1) - t(ij, i)) * dpinv * cpinv |
---|
1489 | fq(ij, i) = fq(ij, i) + g * dpinv * (amp1(ij) * (q(ij, i + 1) - q(ij, & |
---|
1490 | i)) - ad(ij) * (q(ij, i) - q(ij, i - 1))) |
---|
1491 | fu(ij, i) = fu(ij, i) + g * dpinv * (amp1(ij) * (u(ij, i + 1) - u(ij, & |
---|
1492 | i)) - ad(ij) * (u(ij, i) - u(ij, i - 1))) |
---|
1493 | fv(ij, i) = fv(ij, i) + g * dpinv * (amp1(ij) * (v(ij, i + 1) - v(ij, & |
---|
1494 | i)) - ad(ij) * (v(ij, i) - v(ij, i - 1))) |
---|
1495 | END IF |
---|
1496 | END DO |
---|
1497 | DO k = 1, i - 1 |
---|
1498 | DO ij = 1, ncum |
---|
1499 | IF (i<=inb(ij)) THEN |
---|
1500 | awat = elij(ij, k, i) - (1. - ep(ij, i)) * clw(ij, i) |
---|
1501 | awat = max(awat, 0.0) |
---|
1502 | fq(ij, i) = fq(ij, i) + g * dpinv * ment(ij, k, i) * (qent(ij, k, i) - awat - q & |
---|
1503 | (ij, i)) |
---|
1504 | fu(ij, i) = fu(ij, i) + g * dpinv * ment(ij, k, i) * (uent(ij, k, i) - u(ij, i & |
---|
1505 | )) |
---|
1506 | fv(ij, i) = fv(ij, i) + g * dpinv * ment(ij, k, i) * (vent(ij, k, i) - v(ij, i & |
---|
1507 | )) |
---|
1508 | ! (saturated updrafts resulting from mixing) ! cld |
---|
1509 | qcond(ij, i) = qcond(ij, i) + (elij(ij, k, i) - awat) ! cld |
---|
1510 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
1511 | END IF |
---|
1512 | END DO |
---|
1513 | END DO |
---|
1514 | DO k = i, nl + 1 |
---|
1515 | DO ij = 1, ncum |
---|
1516 | IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
---|
1517 | fq(ij, i) = fq(ij, i) + g * dpinv * ment(ij, k, i) * (qent(ij, k, i) - q(ij, i & |
---|
1518 | )) |
---|
1519 | fu(ij, i) = fu(ij, i) + g * dpinv * ment(ij, k, i) * (uent(ij, k, i) - u(ij, i & |
---|
1520 | )) |
---|
1521 | fv(ij, i) = fv(ij, i) + g * dpinv * ment(ij, k, i) * (vent(ij, k, i) - v(ij, i & |
---|
1522 | )) |
---|
1523 | END IF |
---|
1524 | END DO |
---|
1525 | END DO |
---|
1526 | DO ij = 1, ncum |
---|
1527 | IF (i<=inb(ij)) THEN |
---|
1528 | fq(ij, i) = fq(ij, i) + sigd * evap(ij, i) + g * (mp(ij, i + 1) * (qp(ij, & |
---|
1529 | i + 1) - q(ij, i)) - mp(ij, i) * (qp(ij, i) - q(ij, i - 1))) * dpinv |
---|
1530 | fu(ij, i) = fu(ij, i) + g * (mp(ij, i + 1) * (up(ij, i + 1) - u(ij, & |
---|
1531 | i)) - mp(ij, i) * (up(ij, i) - u(ij, i - 1))) * dpinv |
---|
1532 | fv(ij, i) = fv(ij, i) + g * (mp(ij, i + 1) * (vp(ij, i + 1) - v(ij, & |
---|
1533 | i)) - mp(ij, i) * (vp(ij, i) - v(ij, i - 1))) * dpinv |
---|
1534 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
1535 | DO k = i + 1, inb(ij) ! cld |
---|
1536 | qcond(ij, i) = qcond(ij, i) + elij(ij, k, i) ! cld |
---|
1537 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
1538 | END DO ! cld |
---|
1539 | ! (particular case: no detraining level is found) ! cld |
---|
1540 | IF (nent(ij, i)==0) THEN ! cld |
---|
1541 | qcond(ij, i) = qcond(ij, i) + (1. - ep(ij, i)) * clw(ij, i) ! cld |
---|
1542 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
1543 | END IF ! cld |
---|
1544 | IF (nqcond(ij, i)/=0.) THEN ! cld |
---|
1545 | qcond(ij, i) = qcond(ij, i) / nqcond(ij, i) ! cld |
---|
1546 | END IF ! cld |
---|
1547 | END IF |
---|
1548 | END DO |
---|
1549 | 1500 END DO |
---|
1550 | |
---|
1551 | ! *** Adjust tendencies at top of convection layer to reflect *** |
---|
1552 | ! *** actual position of the level zero cape *** |
---|
1553 | |
---|
1554 | DO ij = 1, ncum |
---|
1555 | fqold = fq(ij, inb(ij)) |
---|
1556 | fq(ij, inb(ij)) = fq(ij, inb(ij)) * (1. - frac(ij)) |
---|
1557 | fq(ij, inb(ij) - 1) = fq(ij, inb(ij) - 1) + frac(ij) * fqold * ((ph(ij, & |
---|
1558 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, & |
---|
1559 | inb(ij)))) * lv(ij, inb(ij)) / lv(ij, inb(ij) - 1) |
---|
1560 | ftold = ft(ij, inb(ij)) |
---|
1561 | ft(ij, inb(ij)) = ft(ij, inb(ij)) * (1. - frac(ij)) |
---|
1562 | ft(ij, inb(ij) - 1) = ft(ij, inb(ij) - 1) + frac(ij) * ftold * ((ph(ij, & |
---|
1563 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, & |
---|
1564 | inb(ij)))) * cpn(ij, inb(ij)) / cpn(ij, inb(ij) - 1) |
---|
1565 | fuold = fu(ij, inb(ij)) |
---|
1566 | fu(ij, inb(ij)) = fu(ij, inb(ij)) * (1. - frac(ij)) |
---|
1567 | fu(ij, inb(ij) - 1) = fu(ij, inb(ij) - 1) + frac(ij) * fuold * ((ph(ij, & |
---|
1568 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, inb(ij)))) |
---|
1569 | fvold = fv(ij, inb(ij)) |
---|
1570 | fv(ij, inb(ij)) = fv(ij, inb(ij)) * (1. - frac(ij)) |
---|
1571 | fv(ij, inb(ij) - 1) = fv(ij, inb(ij) - 1) + frac(ij) * fvold * ((ph(ij, & |
---|
1572 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, inb(ij)))) |
---|
1573 | END DO |
---|
1574 | |
---|
1575 | ! *** Very slightly adjust tendencies to force exact *** |
---|
1576 | ! *** enthalpy, momentum and tracer conservation *** |
---|
1577 | |
---|
1578 | DO ij = 1, ncum |
---|
1579 | ents(ij) = 0.0 |
---|
1580 | uav(ij) = 0.0 |
---|
1581 | vav(ij) = 0.0 |
---|
1582 | DO i = 1, inb(ij) |
---|
1583 | ents(ij) = ents(ij) + (cpn(ij, i) * ft(ij, i) + lv(ij, i) * fq(ij, i)) * (ph(ij, i) - & |
---|
1584 | ph(ij, i + 1)) |
---|
1585 | uav(ij) = uav(ij) + fu(ij, i) * (ph(ij, i) - ph(ij, i + 1)) |
---|
1586 | vav(ij) = vav(ij) + fv(ij, i) * (ph(ij, i) - ph(ij, i + 1)) |
---|
1587 | END DO |
---|
1588 | END DO |
---|
1589 | DO ij = 1, ncum |
---|
1590 | ents(ij) = ents(ij) / (ph(ij, 1) - ph(ij, inb(ij) + 1)) |
---|
1591 | uav(ij) = uav(ij) / (ph(ij, 1) - ph(ij, inb(ij) + 1)) |
---|
1592 | vav(ij) = vav(ij) / (ph(ij, 1) - ph(ij, inb(ij) + 1)) |
---|
1593 | END DO |
---|
1594 | DO ij = 1, ncum |
---|
1595 | DO i = 1, inb(ij) |
---|
1596 | ft(ij, i) = ft(ij, i) - ents(ij) / cpn(ij, i) |
---|
1597 | fu(ij, i) = (1. - cu) * (fu(ij, i) - uav(ij)) |
---|
1598 | fv(ij, i) = (1. - cu) * (fv(ij, i) - vav(ij)) |
---|
1599 | END DO |
---|
1600 | END DO |
---|
1601 | |
---|
1602 | DO k = 1, nl + 1 |
---|
1603 | DO i = 1, ncum |
---|
1604 | IF ((q(i, k) + delt * fq(i, k))<0.0) iflag(i) = 10 |
---|
1605 | END DO |
---|
1606 | END DO |
---|
1607 | |
---|
1608 | DO i = 1, ncum |
---|
1609 | IF (iflag(i)>2) THEN |
---|
1610 | precip(i) = 0.0 |
---|
1611 | cbmf(i) = 0.0 |
---|
1612 | END IF |
---|
1613 | END DO |
---|
1614 | DO k = 1, nl |
---|
1615 | DO i = 1, ncum |
---|
1616 | IF (iflag(i)>2) THEN |
---|
1617 | ft(i, k) = 0.0 |
---|
1618 | fq(i, k) = 0.0 |
---|
1619 | fu(i, k) = 0.0 |
---|
1620 | fv(i, k) = 0.0 |
---|
1621 | qcondc(i, k) = 0.0 ! cld |
---|
1622 | END IF |
---|
1623 | END DO |
---|
1624 | END DO |
---|
1625 | |
---|
1626 | DO k = 1, nl + 1 |
---|
1627 | DO i = 1, ncum |
---|
1628 | ma(i, k) = 0. |
---|
1629 | END DO |
---|
1630 | END DO |
---|
1631 | DO k = nl, 1, -1 |
---|
1632 | DO i = 1, ncum |
---|
1633 | ma(i, k) = ma(i, k + 1) + m(i, k) |
---|
1634 | END DO |
---|
1635 | END DO |
---|
1636 | |
---|
1637 | |
---|
1638 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
1639 | ! *** of condensed water *** ! cld |
---|
1640 | ! cld |
---|
1641 | DO ij = 1, ncum ! cld |
---|
1642 | DO i = 1, nd ! cld |
---|
1643 | mac(ij, i) = 0.0 ! cld |
---|
1644 | wa(ij, i) = 0.0 ! cld |
---|
1645 | siga(ij, i) = 0.0 ! cld |
---|
1646 | END DO ! cld |
---|
1647 | DO i = nk(ij), inb(ij) ! cld |
---|
1648 | DO k = i + 1, inb(ij) + 1 ! cld |
---|
1649 | mac(ij, i) = mac(ij, i) + m(ij, k) ! cld |
---|
1650 | END DO ! cld |
---|
1651 | END DO ! cld |
---|
1652 | DO i = icb(ij), inb(ij) - 1 ! cld |
---|
1653 | ax(ij, i) = 0. ! cld |
---|
1654 | DO j = icb(ij), i ! cld |
---|
1655 | ax(ij, i) = ax(ij, i) + rrd * (tvp(ij, j) - tv(ij, j)) & ! cld |
---|
1656 | * (ph(ij, j) - ph(ij, j + 1)) / p(ij, j) ! cld |
---|
1657 | END DO ! cld |
---|
1658 | IF (ax(ij, i)>0.0) THEN ! cld |
---|
1659 | wa(ij, i) = sqrt(2. * ax(ij, i)) ! cld |
---|
1660 | END IF ! cld |
---|
1661 | END DO ! cld |
---|
1662 | DO i = 1, nl ! cld |
---|
1663 | IF (wa(ij, i)>0.0) & ! cld |
---|
1664 | siga(ij, i) = mac(ij, i) / wa(ij, i) & ! cld |
---|
1665 | * rrd * tvp(ij, i) / p(ij, i) / 100. / delta ! cld |
---|
1666 | siga(ij, i) = min(siga(ij, i), 1.0) ! cld |
---|
1667 | qcondc(ij, i) = siga(ij, i) * clw(ij, i) * (1. - ep(ij, i)) & ! cld |
---|
1668 | + (1. - siga(ij, i)) * qcond(ij, i) ! cld |
---|
1669 | END DO ! cld |
---|
1670 | END DO ! cld |
---|
1671 | |
---|
1672 | END SUBROUTINE cv_yield |
---|
1673 | |
---|
1674 | SUBROUTINE cv_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, cbmf, ft, & |
---|
1675 | fq, fu, fv, ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, ma1, & |
---|
1676 | qcondc1) |
---|
1677 | IMPLICIT NONE |
---|
1678 | |
---|
1679 | |
---|
1680 | ! inputs: |
---|
1681 | INTEGER len, ncum, nd, nloc |
---|
1682 | INTEGER idcum(nloc) |
---|
1683 | INTEGER iflag(nloc) |
---|
1684 | REAL precip(nloc), cbmf(nloc) |
---|
1685 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
1686 | REAL ma(nloc, nd) |
---|
1687 | REAL qcondc(nloc, nd) !cld |
---|
1688 | |
---|
1689 | ! outputs: |
---|
1690 | INTEGER iflag1(len) |
---|
1691 | REAL precip1(len), cbmf1(len) |
---|
1692 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
1693 | REAL ma1(len, nd) |
---|
1694 | REAL qcondc1(len, nd) !cld |
---|
1695 | |
---|
1696 | ! local variables: |
---|
1697 | INTEGER i, k |
---|
1698 | |
---|
1699 | DO i = 1, ncum |
---|
1700 | precip1(idcum(i)) = precip(i) |
---|
1701 | cbmf1(idcum(i)) = cbmf(i) |
---|
1702 | iflag1(idcum(i)) = iflag(i) |
---|
1703 | END DO |
---|
1704 | |
---|
1705 | DO k = 1, nl |
---|
1706 | DO i = 1, ncum |
---|
1707 | ft1(idcum(i), k) = ft(i, k) |
---|
1708 | fq1(idcum(i), k) = fq(i, k) |
---|
1709 | fu1(idcum(i), k) = fu(i, k) |
---|
1710 | fv1(idcum(i), k) = fv(i, k) |
---|
1711 | ma1(idcum(i), k) = ma(i, k) |
---|
1712 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
1713 | END DO |
---|
1714 | END DO |
---|
1715 | |
---|
1716 | END SUBROUTINE cv_uncompress |
---|
1717 | |
---|
1718 | |
---|
1719 | END MODULE lmdz_cv |
---|