1 | MODULE lmdz_cloudth |
---|
2 | |
---|
3 | |
---|
4 | IMPLICIT NONE |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
9 | ztv,po,zqta,fraca, & |
---|
10 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
11 | ratqs,zqs,t, & |
---|
12 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
13 | |
---|
14 | |
---|
15 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert,iflag_ratqs |
---|
16 | |
---|
17 | IMPLICIT NONE |
---|
18 | |
---|
19 | |
---|
20 | !=========================================================================== |
---|
21 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
22 | ! Date : 25 Mai 2010 |
---|
23 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
24 | !=========================================================================== |
---|
25 | |
---|
26 | |
---|
27 | INCLUDE "YOMCST.h" |
---|
28 | INCLUDE "YOETHF.h" |
---|
29 | INCLUDE "FCTTRE.h" |
---|
30 | |
---|
31 | INTEGER itap,ind1,ind2 |
---|
32 | INTEGER ngrid,klev,klon,l,ig |
---|
33 | REAL, DIMENSION(ngrid,klev), INTENT(OUT) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
34 | |
---|
35 | REAL ztv(ngrid,klev) |
---|
36 | REAL po(ngrid) |
---|
37 | REAL zqenv(ngrid) |
---|
38 | REAL zqta(ngrid,klev) |
---|
39 | |
---|
40 | REAL fraca(ngrid,klev+1) |
---|
41 | REAL zpspsk(ngrid,klev) |
---|
42 | REAL paprs(ngrid,klev+1) |
---|
43 | REAL pplay(ngrid,klev) |
---|
44 | REAL ztla(ngrid,klev) |
---|
45 | REAL zthl(ngrid,klev) |
---|
46 | |
---|
47 | REAL zqsatth(ngrid,klev) |
---|
48 | REAL zqsatenv(ngrid,klev) |
---|
49 | |
---|
50 | |
---|
51 | REAL sigma1(ngrid,klev) |
---|
52 | REAL sigma2(ngrid,klev) |
---|
53 | REAL qlth(ngrid,klev) |
---|
54 | REAL qlenv(ngrid,klev) |
---|
55 | REAL qltot(ngrid,klev) |
---|
56 | REAL cth(ngrid,klev) |
---|
57 | REAL cenv(ngrid,klev) |
---|
58 | REAL ctot(ngrid,klev) |
---|
59 | REAL rneb(ngrid,klev) |
---|
60 | REAL t(ngrid,klev) |
---|
61 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
62 | REAL rdd,cppd,Lv |
---|
63 | REAL alth,alenv,ath,aenv |
---|
64 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
65 | REAL Tbef,zdelta,qsatbef,zcor |
---|
66 | REAL qlbef |
---|
67 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
68 | |
---|
69 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
70 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
71 | REAL zqs(ngrid), qcloud(ngrid) |
---|
72 | REAL erf |
---|
73 | |
---|
74 | |
---|
75 | |
---|
76 | |
---|
77 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
78 | ! Gestion de deux versions de cloudth |
---|
79 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
80 | |
---|
81 | IF (iflag_cloudth_vert>=1) THEN |
---|
82 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
83 | ztv,po,zqta,fraca, & |
---|
84 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
85 | ratqs,zqs,t) |
---|
86 | RETURN |
---|
87 | ENDIF |
---|
88 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
89 | |
---|
90 | |
---|
91 | !------------------------------------------------------------------------------- |
---|
92 | ! Initialisation des variables r?elles |
---|
93 | !------------------------------------------------------------------------------- |
---|
94 | sigma1(:,:)=0. |
---|
95 | sigma2(:,:)=0. |
---|
96 | qlth(:,:)=0. |
---|
97 | qlenv(:,:)=0. |
---|
98 | qltot(:,:)=0. |
---|
99 | rneb(:,:)=0. |
---|
100 | qcloud(:)=0. |
---|
101 | cth(:,:)=0. |
---|
102 | cenv(:,:)=0. |
---|
103 | ctot(:,:)=0. |
---|
104 | qsatmmussig1=0. |
---|
105 | qsatmmussig2=0. |
---|
106 | rdd=287.04 |
---|
107 | cppd=1005.7 |
---|
108 | pi=3.14159 |
---|
109 | Lv=2.5e6 |
---|
110 | sqrt2pi=sqrt(2.*pi) |
---|
111 | |
---|
112 | |
---|
113 | |
---|
114 | !------------------------------------------------------------------------------- |
---|
115 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
116 | !------------------------------------------------------------------------------- |
---|
117 | do ind1=1,ngrid |
---|
118 | |
---|
119 | IF ((ztv(ind1,1)>ztv(ind1,2)).AND.(fraca(ind1,ind2)>1.e-10)) THEN |
---|
120 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
121 | |
---|
122 | |
---|
123 | ! zqenv(ind1)=po(ind1) |
---|
124 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
125 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
126 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
127 | qsatbef=MIN(0.5,qsatbef) |
---|
128 | zcor=1./(1.-retv*qsatbef) |
---|
129 | qsatbef=qsatbef*zcor |
---|
130 | zqsatenv(ind1,ind2)=qsatbef |
---|
131 | |
---|
132 | |
---|
133 | |
---|
134 | |
---|
135 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
136 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
137 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
138 | |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
143 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
144 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
145 | qsatbef=MIN(0.5,qsatbef) |
---|
146 | zcor=1./(1.-retv*qsatbef) |
---|
147 | qsatbef=qsatbef*zcor |
---|
148 | zqsatth(ind1,ind2)=qsatbef |
---|
149 | |
---|
150 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
151 | ath=1./(1.+(alth*Lv/cppd)) |
---|
152 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
153 | |
---|
154 | |
---|
155 | |
---|
156 | !------------------------------------------------------------------------------ |
---|
157 | ! Calcul des ?cart-types pour s |
---|
158 | !------------------------------------------------------------------------------ |
---|
159 | |
---|
160 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
161 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
162 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
163 | ! ratqs(ind1,ind2)=0.002 |
---|
164 | ! else |
---|
165 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
166 | ! endif |
---|
167 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
168 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
169 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
170 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
171 | |
---|
172 | !------------------------------------------------------------------------------ |
---|
173 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
174 | !------------------------------------------------------------------------------ |
---|
175 | sqrt2pi=sqrt(2.*pi) |
---|
176 | xth=sth/(sqrt(2.)*sigma2s) |
---|
177 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
178 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
179 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
180 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
181 | |
---|
182 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
183 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
184 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
185 | |
---|
186 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
187 | IF (ctot(ind1,ind2)<1.e-10) THEN |
---|
188 | ctot(ind1,ind2)=0. |
---|
189 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
190 | |
---|
191 | else |
---|
192 | |
---|
193 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
194 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
195 | |
---|
196 | endif |
---|
197 | |
---|
198 | |
---|
199 | ! PRINT*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
200 | |
---|
201 | |
---|
202 | else ! gaussienne environnement seule |
---|
203 | |
---|
204 | zqenv(ind1)=po(ind1) |
---|
205 | Tbef=t(ind1,ind2) |
---|
206 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
207 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
208 | qsatbef=MIN(0.5,qsatbef) |
---|
209 | zcor=1./(1.-retv*qsatbef) |
---|
210 | qsatbef=qsatbef*zcor |
---|
211 | zqsatenv(ind1,ind2)=qsatbef |
---|
212 | |
---|
213 | |
---|
214 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
215 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
216 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
217 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
218 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
219 | |
---|
220 | |
---|
221 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
222 | |
---|
223 | sqrt2pi=sqrt(2.*pi) |
---|
224 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
225 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
226 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
227 | |
---|
228 | IF (ctot(ind1,ind2)<1.e-3) THEN |
---|
229 | ctot(ind1,ind2)=0. |
---|
230 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
231 | |
---|
232 | else |
---|
233 | |
---|
234 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
235 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
236 | |
---|
237 | endif |
---|
238 | |
---|
239 | |
---|
240 | |
---|
241 | |
---|
242 | |
---|
243 | |
---|
244 | endif |
---|
245 | enddo |
---|
246 | |
---|
247 | RETURN |
---|
248 | ! end |
---|
249 | END SUBROUTINE cloudth |
---|
250 | |
---|
251 | |
---|
252 | |
---|
253 | !=========================================================================== |
---|
254 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
255 | ztv,po,zqta,fraca, & |
---|
256 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
257 | ratqs,zqs,t) |
---|
258 | |
---|
259 | !=========================================================================== |
---|
260 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
261 | ! Date : 25 Mai 2010 |
---|
262 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
263 | !=========================================================================== |
---|
264 | |
---|
265 | |
---|
266 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert, vert_alpha |
---|
267 | |
---|
268 | IMPLICIT NONE |
---|
269 | |
---|
270 | INCLUDE "YOMCST.h" |
---|
271 | INCLUDE "YOETHF.h" |
---|
272 | INCLUDE "FCTTRE.h" |
---|
273 | |
---|
274 | INTEGER itap,ind1,ind2 |
---|
275 | INTEGER ngrid,klev,klon,l,ig |
---|
276 | |
---|
277 | REAL ztv(ngrid,klev) |
---|
278 | REAL po(ngrid) |
---|
279 | REAL zqenv(ngrid) |
---|
280 | REAL zqta(ngrid,klev) |
---|
281 | |
---|
282 | REAL fraca(ngrid,klev+1) |
---|
283 | REAL zpspsk(ngrid,klev) |
---|
284 | REAL paprs(ngrid,klev+1) |
---|
285 | REAL pplay(ngrid,klev) |
---|
286 | REAL ztla(ngrid,klev) |
---|
287 | REAL zthl(ngrid,klev) |
---|
288 | |
---|
289 | REAL zqsatth(ngrid,klev) |
---|
290 | REAL zqsatenv(ngrid,klev) |
---|
291 | |
---|
292 | |
---|
293 | REAL sigma1(ngrid,klev) |
---|
294 | REAL sigma2(ngrid,klev) |
---|
295 | REAL qlth(ngrid,klev) |
---|
296 | REAL qlenv(ngrid,klev) |
---|
297 | REAL qltot(ngrid,klev) |
---|
298 | REAL cth(ngrid,klev) |
---|
299 | REAL cenv(ngrid,klev) |
---|
300 | REAL ctot(ngrid,klev) |
---|
301 | REAL rneb(ngrid,klev) |
---|
302 | REAL t(ngrid,klev) |
---|
303 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
304 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
305 | REAL alth,alenv,ath,aenv |
---|
306 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
307 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
308 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
309 | REAL Tbef,zdelta,qsatbef,zcor |
---|
310 | REAL qlbef |
---|
311 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
312 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
313 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
314 | |
---|
315 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
316 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
317 | REAL zqs(ngrid), qcloud(ngrid) |
---|
318 | REAL erf |
---|
319 | |
---|
320 | !------------------------------------------------------------------------------ |
---|
321 | ! Initialisation des variables r?elles |
---|
322 | !------------------------------------------------------------------------------ |
---|
323 | sigma1(:,:)=0. |
---|
324 | sigma2(:,:)=0. |
---|
325 | qlth(:,:)=0. |
---|
326 | qlenv(:,:)=0. |
---|
327 | qltot(:,:)=0. |
---|
328 | rneb(:,:)=0. |
---|
329 | qcloud(:)=0. |
---|
330 | cth(:,:)=0. |
---|
331 | cenv(:,:)=0. |
---|
332 | ctot(:,:)=0. |
---|
333 | qsatmmussig1=0. |
---|
334 | qsatmmussig2=0. |
---|
335 | rdd=287.04 |
---|
336 | cppd=1005.7 |
---|
337 | pi=3.14159 |
---|
338 | Lv=2.5e6 |
---|
339 | sqrt2pi=sqrt(2.*pi) |
---|
340 | sqrt2=sqrt(2.) |
---|
341 | sqrtpi=sqrt(pi) |
---|
342 | |
---|
343 | !------------------------------------------------------------------------------- |
---|
344 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
345 | !------------------------------------------------------------------------------- |
---|
346 | do ind1=1,ngrid |
---|
347 | |
---|
348 | IF ((ztv(ind1,1)>ztv(ind1,2)).AND.(fraca(ind1,ind2)>1.e-10)) THEN |
---|
349 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
350 | |
---|
351 | |
---|
352 | ! zqenv(ind1)=po(ind1) |
---|
353 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
354 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
355 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
356 | qsatbef=MIN(0.5,qsatbef) |
---|
357 | zcor=1./(1.-retv*qsatbef) |
---|
358 | qsatbef=qsatbef*zcor |
---|
359 | zqsatenv(ind1,ind2)=qsatbef |
---|
360 | |
---|
361 | |
---|
362 | |
---|
363 | |
---|
364 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
365 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
366 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
367 | |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
372 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
373 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
374 | qsatbef=MIN(0.5,qsatbef) |
---|
375 | zcor=1./(1.-retv*qsatbef) |
---|
376 | qsatbef=qsatbef*zcor |
---|
377 | zqsatth(ind1,ind2)=qsatbef |
---|
378 | |
---|
379 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
380 | ath=1./(1.+(alth*Lv/cppd)) |
---|
381 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
382 | |
---|
383 | |
---|
384 | |
---|
385 | !------------------------------------------------------------------------------ |
---|
386 | ! Calcul des ?cart-types pour s |
---|
387 | !------------------------------------------------------------------------------ |
---|
388 | |
---|
389 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
390 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
391 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
392 | ! ratqs(ind1,ind2)=0.002 |
---|
393 | ! else |
---|
394 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
395 | ! endif |
---|
396 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
397 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
398 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
399 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
400 | |
---|
401 | !------------------------------------------------------------------------------ |
---|
402 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
403 | !------------------------------------------------------------------------------ |
---|
404 | sqrt2pi=sqrt(2.*pi) |
---|
405 | xth=sth/(sqrt(2.)*sigma2s) |
---|
406 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
407 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
408 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
409 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
410 | |
---|
411 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
412 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
413 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
414 | |
---|
415 | IF (iflag_cloudth_vert == 1) THEN |
---|
416 | !------------------------------------------------------------------------------- |
---|
417 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
418 | !------------------------------------------------------------------------------- |
---|
419 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
420 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
421 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
422 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
423 | ! deltasenv=aenv*0.01*po(ind1) |
---|
424 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
425 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
426 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
427 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
428 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
429 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
430 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
431 | |
---|
432 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
433 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
434 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
435 | |
---|
436 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
437 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
438 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
439 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
440 | |
---|
441 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
442 | ! qlenv(ind1,ind2)=IntJ |
---|
443 | ! PRINT*, qlenv(ind1,ind2),'VERIF EAU' |
---|
444 | |
---|
445 | |
---|
446 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
447 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
448 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
449 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
450 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
451 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
452 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
453 | ! qlth(ind1,ind2)=IntJ |
---|
454 | ! PRINT*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
455 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
456 | |
---|
457 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
458 | |
---|
459 | !------------------------------------------------------------------------------- |
---|
460 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
461 | !------------------------------------------------------------------------------- |
---|
462 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
463 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
464 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
465 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
466 | deltasenv=aenv*vert_alpha*sigma1s |
---|
467 | deltasth=ath*vert_alpha*sigma2s |
---|
468 | |
---|
469 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
470 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
471 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
472 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
473 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
474 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
475 | |
---|
476 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
477 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
478 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
479 | |
---|
480 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
481 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
482 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
483 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
484 | |
---|
485 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
486 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
487 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
488 | |
---|
489 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
490 | ! qlenv(ind1,ind2)=IntJ |
---|
491 | ! PRINT*, qlenv(ind1,ind2),'VERIF EAU' |
---|
492 | |
---|
493 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
494 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
495 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
496 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
497 | |
---|
498 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
499 | ! qlth(ind1,ind2)=IntJ |
---|
500 | ! PRINT*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
501 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
502 | |
---|
503 | |
---|
504 | |
---|
505 | |
---|
506 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
507 | |
---|
508 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
509 | |
---|
510 | IF (cenv(ind1,ind2)<1.e-10.OR.cth(ind1,ind2)<1.e-10) THEN |
---|
511 | ctot(ind1,ind2)=0. |
---|
512 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
513 | |
---|
514 | else |
---|
515 | |
---|
516 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
517 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
518 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
519 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
520 | |
---|
521 | endif |
---|
522 | |
---|
523 | |
---|
524 | |
---|
525 | ! PRINT*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
526 | |
---|
527 | |
---|
528 | else ! gaussienne environnement seule |
---|
529 | |
---|
530 | zqenv(ind1)=po(ind1) |
---|
531 | Tbef=t(ind1,ind2) |
---|
532 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
533 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
534 | qsatbef=MIN(0.5,qsatbef) |
---|
535 | zcor=1./(1.-retv*qsatbef) |
---|
536 | qsatbef=qsatbef*zcor |
---|
537 | zqsatenv(ind1,ind2)=qsatbef |
---|
538 | |
---|
539 | |
---|
540 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
541 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
542 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
543 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
544 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
545 | |
---|
546 | |
---|
547 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
548 | |
---|
549 | sqrt2pi=sqrt(2.*pi) |
---|
550 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
551 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
552 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
553 | |
---|
554 | IF (ctot(ind1,ind2)<1.e-3) THEN |
---|
555 | ctot(ind1,ind2)=0. |
---|
556 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
557 | |
---|
558 | else |
---|
559 | |
---|
560 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
561 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
562 | |
---|
563 | endif |
---|
564 | |
---|
565 | |
---|
566 | |
---|
567 | |
---|
568 | |
---|
569 | |
---|
570 | endif |
---|
571 | enddo |
---|
572 | |
---|
573 | RETURN |
---|
574 | ! end |
---|
575 | END SUBROUTINE cloudth_vert |
---|
576 | |
---|
577 | |
---|
578 | |
---|
579 | |
---|
580 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
---|
581 | ztv,po,zqta,fraca, & |
---|
582 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
583 | ratqs,zqs,t, & |
---|
584 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
585 | |
---|
586 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert |
---|
587 | |
---|
588 | IMPLICIT NONE |
---|
589 | |
---|
590 | |
---|
591 | !=========================================================================== |
---|
592 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
593 | ! Date : 25 Mai 2010 |
---|
594 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
595 | !=========================================================================== |
---|
596 | |
---|
597 | |
---|
598 | INCLUDE "YOMCST.h" |
---|
599 | INCLUDE "YOETHF.h" |
---|
600 | INCLUDE "FCTTRE.h" |
---|
601 | |
---|
602 | INTEGER, INTENT(IN) :: ind2 |
---|
603 | INTEGER, INTENT(IN) :: ngrid,klev |
---|
604 | |
---|
605 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: ztv |
---|
606 | REAL, DIMENSION(ngrid), INTENT(IN) :: po |
---|
607 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: zqta |
---|
608 | REAL, DIMENSION(ngrid,klev+1), INTENT(IN) :: fraca |
---|
609 | REAL, DIMENSION(ngrid), INTENT(OUT) :: qcloud |
---|
610 | REAL, DIMENSION(ngrid,klev), INTENT(OUT) :: ctot |
---|
611 | REAL, DIMENSION(ngrid,klev), INTENT(OUT) :: ctot_vol |
---|
612 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: zpspsk |
---|
613 | REAL, DIMENSION(ngrid,klev+1), INTENT(IN) :: paprs |
---|
614 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: pplay |
---|
615 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: ztla |
---|
616 | REAL, DIMENSION(ngrid,klev), INTENT(INOUT) :: zthl |
---|
617 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: ratqs |
---|
618 | REAL, DIMENSION(ngrid), INTENT(IN) :: zqs |
---|
619 | REAL, DIMENSION(ngrid,klev), INTENT(IN) :: t |
---|
620 | REAL, DIMENSION(ngrid,klev), INTENT(OUT) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
621 | |
---|
622 | |
---|
623 | REAL zqenv(ngrid) |
---|
624 | REAL zqsatth(ngrid,klev) |
---|
625 | REAL zqsatenv(ngrid,klev) |
---|
626 | |
---|
627 | REAL sigma1(ngrid,klev) |
---|
628 | REAL sigma2(ngrid,klev) |
---|
629 | REAL qlth(ngrid,klev) |
---|
630 | REAL qlenv(ngrid,klev) |
---|
631 | REAL qltot(ngrid,klev) |
---|
632 | REAL cth(ngrid,klev) |
---|
633 | REAL cenv(ngrid,klev) |
---|
634 | REAL cth_vol(ngrid,klev) |
---|
635 | REAL cenv_vol(ngrid,klev) |
---|
636 | REAL rneb(ngrid,klev) |
---|
637 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
638 | REAL rdd,cppd,Lv |
---|
639 | REAL alth,alenv,ath,aenv |
---|
640 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
641 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
642 | REAL Tbef,zdelta,qsatbef,zcor |
---|
643 | REAL qlbef |
---|
644 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
645 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
646 | REAL erf |
---|
647 | |
---|
648 | |
---|
649 | INTEGER :: ind1,l, ig |
---|
650 | |
---|
651 | IF (iflag_cloudth_vert>=1) THEN |
---|
652 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
---|
653 | ztv,po,zqta,fraca, & |
---|
654 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
655 | ratqs,zqs,t, & |
---|
656 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
657 | RETURN |
---|
658 | ENDIF |
---|
659 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
660 | |
---|
661 | |
---|
662 | !------------------------------------------------------------------------------- |
---|
663 | ! Initialisation des variables r?elles |
---|
664 | !------------------------------------------------------------------------------- |
---|
665 | sigma1(:,:)=0. |
---|
666 | sigma2(:,:)=0. |
---|
667 | qlth(:,:)=0. |
---|
668 | qlenv(:,:)=0. |
---|
669 | qltot(:,:)=0. |
---|
670 | rneb(:,:)=0. |
---|
671 | qcloud(:)=0. |
---|
672 | cth(:,:)=0. |
---|
673 | cenv(:,:)=0. |
---|
674 | ctot(:,:)=0. |
---|
675 | cth_vol(:,:)=0. |
---|
676 | cenv_vol(:,:)=0. |
---|
677 | ctot_vol(:,:)=0. |
---|
678 | qsatmmussig1=0. |
---|
679 | qsatmmussig2=0. |
---|
680 | rdd=287.04 |
---|
681 | cppd=1005.7 |
---|
682 | pi=3.14159 |
---|
683 | Lv=2.5e6 |
---|
684 | sqrt2pi=sqrt(2.*pi) |
---|
685 | sqrt2=sqrt(2.) |
---|
686 | sqrtpi=sqrt(pi) |
---|
687 | |
---|
688 | |
---|
689 | !------------------------------------------------------------------------------- |
---|
690 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
691 | !------------------------------------------------------------------------------- |
---|
692 | do ind1=1,ngrid |
---|
693 | |
---|
694 | IF ((ztv(ind1,1)>ztv(ind1,2)).AND.(fraca(ind1,ind2)>1.e-10)) THEN |
---|
695 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
696 | |
---|
697 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
698 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
699 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
700 | qsatbef=MIN(0.5,qsatbef) |
---|
701 | zcor=1./(1.-retv*qsatbef) |
---|
702 | qsatbef=qsatbef*zcor |
---|
703 | zqsatenv(ind1,ind2)=qsatbef |
---|
704 | |
---|
705 | |
---|
706 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
707 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
708 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
709 | |
---|
710 | !po = qt de l'environnement ET des thermique |
---|
711 | !zqenv = qt environnement |
---|
712 | !zqsatenv = qsat environnement |
---|
713 | !zthl = Tl environnement |
---|
714 | |
---|
715 | |
---|
716 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
717 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
718 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
719 | qsatbef=MIN(0.5,qsatbef) |
---|
720 | zcor=1./(1.-retv*qsatbef) |
---|
721 | qsatbef=qsatbef*zcor |
---|
722 | zqsatth(ind1,ind2)=qsatbef |
---|
723 | |
---|
724 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
725 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
726 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
727 | |
---|
728 | !zqta = qt thermals |
---|
729 | !zqsatth = qsat thermals |
---|
730 | !ztla = Tl thermals |
---|
731 | |
---|
732 | !------------------------------------------------------------------------------ |
---|
733 | ! s standard deviations |
---|
734 | !------------------------------------------------------------------------------ |
---|
735 | |
---|
736 | ! tests |
---|
737 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
738 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
739 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
740 | ! final option |
---|
741 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
742 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
743 | |
---|
744 | !------------------------------------------------------------------------------ |
---|
745 | ! Condensed water and cloud cover |
---|
746 | !------------------------------------------------------------------------------ |
---|
747 | xth=sth/(sqrt2*sigma2s) |
---|
748 | xenv=senv/(sqrt2*sigma1s) |
---|
749 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
750 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
751 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
752 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
753 | |
---|
754 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
755 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
756 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
757 | |
---|
758 | IF (ctot(ind1,ind2)<1.e-10) THEN |
---|
759 | ctot(ind1,ind2)=0. |
---|
760 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
761 | else |
---|
762 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
763 | endif |
---|
764 | |
---|
765 | else ! Environnement only, follow the if l.110 |
---|
766 | |
---|
767 | zqenv(ind1)=po(ind1) |
---|
768 | Tbef=t(ind1,ind2) |
---|
769 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
770 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
771 | qsatbef=MIN(0.5,qsatbef) |
---|
772 | zcor=1./(1.-retv*qsatbef) |
---|
773 | qsatbef=qsatbef*zcor |
---|
774 | zqsatenv(ind1,ind2)=qsatbef |
---|
775 | |
---|
776 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
777 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
778 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
779 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
780 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
781 | |
---|
782 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
783 | |
---|
784 | xenv=senv/(sqrt2*sigma1s) |
---|
785 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
786 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
787 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
788 | |
---|
789 | IF (ctot(ind1,ind2)<1.e-3) THEN |
---|
790 | ctot(ind1,ind2)=0. |
---|
791 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
792 | else |
---|
793 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
794 | endif |
---|
795 | |
---|
796 | |
---|
797 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
798 | enddo ! from the loop on ngrid l.108 |
---|
799 | RETURN |
---|
800 | ! end |
---|
801 | END SUBROUTINE cloudth_v3 |
---|
802 | |
---|
803 | |
---|
804 | |
---|
805 | !=========================================================================== |
---|
806 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
---|
807 | ztv,po,zqta,fraca, & |
---|
808 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
809 | ratqs,zqs,t, & |
---|
810 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
811 | |
---|
812 | !=========================================================================== |
---|
813 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
814 | ! Date : 25 Mai 2010 |
---|
815 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
816 | !=========================================================================== |
---|
817 | |
---|
818 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert,iflag_ratqs |
---|
819 | USE lmdz_cloudth_ini, ONLY: vert_alpha,vert_alpha_th, sigma1s_factor, sigma1s_power , sigma2s_factor , sigma2s_power , cloudth_ratqsmin , iflag_cloudth_vert_noratqs |
---|
820 | |
---|
821 | IMPLICIT NONE |
---|
822 | |
---|
823 | |
---|
824 | |
---|
825 | INCLUDE "YOMCST.h" |
---|
826 | INCLUDE "YOETHF.h" |
---|
827 | INCLUDE "FCTTRE.h" |
---|
828 | |
---|
829 | INTEGER itap,ind1,ind2 |
---|
830 | INTEGER ngrid,klev,klon,l,ig |
---|
831 | REAL, DIMENSION(ngrid,klev), INTENT(OUT) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
832 | |
---|
833 | REAL ztv(ngrid,klev) |
---|
834 | REAL po(ngrid) |
---|
835 | REAL zqenv(ngrid) |
---|
836 | REAL zqta(ngrid,klev) |
---|
837 | |
---|
838 | REAL fraca(ngrid,klev+1) |
---|
839 | REAL zpspsk(ngrid,klev) |
---|
840 | REAL paprs(ngrid,klev+1) |
---|
841 | REAL pplay(ngrid,klev) |
---|
842 | REAL ztla(ngrid,klev) |
---|
843 | REAL zthl(ngrid,klev) |
---|
844 | |
---|
845 | REAL zqsatth(ngrid,klev) |
---|
846 | REAL zqsatenv(ngrid,klev) |
---|
847 | |
---|
848 | REAL sigma1(ngrid,klev) |
---|
849 | REAL sigma2(ngrid,klev) |
---|
850 | REAL qlth(ngrid,klev) |
---|
851 | REAL qlenv(ngrid,klev) |
---|
852 | REAL qltot(ngrid,klev) |
---|
853 | REAL cth(ngrid,klev) |
---|
854 | REAL cenv(ngrid,klev) |
---|
855 | REAL ctot(ngrid,klev) |
---|
856 | REAL cth_vol(ngrid,klev) |
---|
857 | REAL cenv_vol(ngrid,klev) |
---|
858 | REAL ctot_vol(ngrid,klev) |
---|
859 | REAL rneb(ngrid,klev) |
---|
860 | REAL t(ngrid,klev) |
---|
861 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
862 | REAL rdd,cppd,Lv |
---|
863 | REAL alth,alenv,ath,aenv |
---|
864 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
865 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
866 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
867 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
868 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
869 | REAL Tbef,zdelta,qsatbef,zcor |
---|
870 | REAL qlbef |
---|
871 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
872 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
873 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
874 | |
---|
875 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
876 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
877 | REAL zqs(ngrid), qcloud(ngrid) |
---|
878 | REAL erf |
---|
879 | |
---|
880 | REAL rhodz(ngrid,klev) |
---|
881 | REAL zrho(ngrid,klev) |
---|
882 | REAL dz(ngrid,klev) |
---|
883 | |
---|
884 | DO ind1 = 1, ngrid |
---|
885 | !Layer calculation |
---|
886 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
---|
887 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
---|
888 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
---|
889 | END DO |
---|
890 | |
---|
891 | !------------------------------------------------------------------------------ |
---|
892 | ! Initialize |
---|
893 | !------------------------------------------------------------------------------ |
---|
894 | |
---|
895 | sigma1(:,:)=0. |
---|
896 | sigma2(:,:)=0. |
---|
897 | qlth(:,:)=0. |
---|
898 | qlenv(:,:)=0. |
---|
899 | qltot(:,:)=0. |
---|
900 | rneb(:,:)=0. |
---|
901 | qcloud(:)=0. |
---|
902 | cth(:,:)=0. |
---|
903 | cenv(:,:)=0. |
---|
904 | ctot(:,:)=0. |
---|
905 | cth_vol(:,:)=0. |
---|
906 | cenv_vol(:,:)=0. |
---|
907 | ctot_vol(:,:)=0. |
---|
908 | qsatmmussig1=0. |
---|
909 | qsatmmussig2=0. |
---|
910 | rdd=287.04 |
---|
911 | cppd=1005.7 |
---|
912 | pi=3.14159 |
---|
913 | Lv=2.5e6 |
---|
914 | sqrt2pi=sqrt(2.*pi) |
---|
915 | sqrt2=sqrt(2.) |
---|
916 | sqrtpi=sqrt(pi) |
---|
917 | |
---|
918 | |
---|
919 | |
---|
920 | !------------------------------------------------------------------------------- |
---|
921 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
922 | !------------------------------------------------------------------------------- |
---|
923 | do ind1=1,ngrid |
---|
924 | |
---|
925 | IF ((ztv(ind1,1)>ztv(ind1,2)).AND.(fraca(ind1,ind2)>1.e-10)) then !Thermal and environnement |
---|
926 | |
---|
927 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
928 | |
---|
929 | |
---|
930 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
931 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
932 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
933 | qsatbef=MIN(0.5,qsatbef) |
---|
934 | zcor=1./(1.-retv*qsatbef) |
---|
935 | qsatbef=qsatbef*zcor |
---|
936 | zqsatenv(ind1,ind2)=qsatbef |
---|
937 | |
---|
938 | |
---|
939 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
940 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
941 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
942 | |
---|
943 | !zqenv = qt environnement |
---|
944 | !zqsatenv = qsat environnement |
---|
945 | !zthl = Tl environnement |
---|
946 | |
---|
947 | |
---|
948 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
949 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
950 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
951 | qsatbef=MIN(0.5,qsatbef) |
---|
952 | zcor=1./(1.-retv*qsatbef) |
---|
953 | qsatbef=qsatbef*zcor |
---|
954 | zqsatth(ind1,ind2)=qsatbef |
---|
955 | |
---|
956 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
957 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
958 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
959 | |
---|
960 | |
---|
961 | !zqta = qt thermals |
---|
962 | !zqsatth = qsat thermals |
---|
963 | !ztla = Tl thermals |
---|
964 | !------------------------------------------------------------------------------ |
---|
965 | ! s standard deviation |
---|
966 | !------------------------------------------------------------------------------ |
---|
967 | |
---|
968 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
969 | (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
970 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
971 | IF (cloudth_ratqsmin>0.) THEN |
---|
972 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
973 | ELSE |
---|
974 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
---|
975 | ENDIF |
---|
976 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
977 | IF (iflag_ratqs==11) THEN |
---|
978 | sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
979 | ENDIF |
---|
980 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
981 | ! tests |
---|
982 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
983 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
984 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
985 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
986 | ! if (paprs(ind1,ind2).gt.90000) THEN |
---|
987 | ! ratqs(ind1,ind2)=0.002 |
---|
988 | ! else |
---|
989 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
990 | ! endif |
---|
991 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
992 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
993 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
994 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
995 | |
---|
996 | IF (iflag_cloudth_vert == 1) THEN |
---|
997 | !------------------------------------------------------------------------------- |
---|
998 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
999 | !------------------------------------------------------------------------------- |
---|
1000 | |
---|
1001 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1002 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1003 | |
---|
1004 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1005 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1006 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1007 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1008 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
1009 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
1010 | |
---|
1011 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
1012 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
1013 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1014 | |
---|
1015 | ! Environment |
---|
1016 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
1017 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
1018 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
1019 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
1020 | |
---|
1021 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1022 | |
---|
1023 | ! Thermal |
---|
1024 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
1025 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
1026 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
1027 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
1028 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1029 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1030 | |
---|
1031 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
1032 | IF (iflag_cloudth_vert < 5) THEN |
---|
1033 | !------------------------------------------------------------------------------- |
---|
1034 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
1035 | !------------------------------------------------------------------------------- |
---|
1036 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
1037 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
1038 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1039 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1040 | IF (iflag_cloudth_vert == 3) THEN |
---|
1041 | deltasenv=aenv*vert_alpha*sigma1s |
---|
1042 | deltasth=ath*vert_alpha_th*sigma2s |
---|
1043 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
1044 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
1045 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
---|
1046 | deltasth=vert_alpha_th*sigma2s |
---|
1047 | ELSE |
---|
1048 | deltasenv=vert_alpha*sigma1s |
---|
1049 | deltasth=vert_alpha_th*sigma2s |
---|
1050 | ENDIF |
---|
1051 | ENDIF |
---|
1052 | |
---|
1053 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1054 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1055 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
1056 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
1057 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1058 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1059 | exp_xth1 = exp(-1.*xth1**2) |
---|
1060 | exp_xth2 = exp(-1.*xth2**2) |
---|
1061 | |
---|
1062 | !CF_surfacique |
---|
1063 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
1064 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
1065 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1066 | |
---|
1067 | |
---|
1068 | !CF_volumique & eau condense |
---|
1069 | !environnement |
---|
1070 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
1071 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
1072 | IF (deltasenv < 1.e-10) THEN |
---|
1073 | qlenv(ind1,ind2)=IntJ |
---|
1074 | cenv_vol(ind1,ind2)=IntJ_CF |
---|
1075 | else |
---|
1076 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1077 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
1078 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
1079 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
1080 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
1081 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1082 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1083 | endif |
---|
1084 | |
---|
1085 | !thermique |
---|
1086 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1087 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1088 | IF (deltasth < 1.e-10) THEN |
---|
1089 | qlth(ind1,ind2)=IntJ |
---|
1090 | cth_vol(ind1,ind2)=IntJ_CF |
---|
1091 | else |
---|
1092 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1093 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1094 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1095 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1096 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1097 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1098 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1099 | endif |
---|
1100 | |
---|
1101 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1102 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1103 | |
---|
1104 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
1105 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
---|
1106 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
---|
1107 | +ratqs(ind1,ind2)*po(ind1) !Environment |
---|
1108 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
---|
1109 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
1110 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
1111 | xth=sth/(sqrt(2.)*sigma2s) |
---|
1112 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1113 | |
---|
1114 | !Volumique |
---|
1115 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
1116 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1117 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1118 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
1119 | |
---|
1120 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
---|
1121 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
---|
1122 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1123 | |
---|
1124 | !Surfacique |
---|
1125 | !Neggers |
---|
1126 | !beta=0.0044 |
---|
1127 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1128 | !print *,'jeanjean : beta=',beta |
---|
1129 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
1130 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
1131 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1132 | |
---|
1133 | !Brooks |
---|
1134 | a_Brooks=0.6694 |
---|
1135 | b_Brooks=0.1882 |
---|
1136 | A_Maj_Brooks=0.1635 !-- sans shear |
---|
1137 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
1138 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
1139 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
1140 | Dx_Brooks=200000. |
---|
1141 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
1142 | !print *,'jeanjean_f=',f_Brooks |
---|
1143 | |
---|
1144 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
---|
1145 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
---|
1146 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
1147 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
1148 | |
---|
1149 | |
---|
1150 | |
---|
1151 | |
---|
1152 | |
---|
1153 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
1154 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
1155 | |
---|
1156 | ! if (ctot(ind1,ind2).lt.1.e-10) THEN |
---|
1157 | IF (cenv(ind1,ind2)<1.e-10.OR.cth(ind1,ind2)<1.e-10) THEN |
---|
1158 | ctot(ind1,ind2)=0. |
---|
1159 | ctot_vol(ind1,ind2)=0. |
---|
1160 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1161 | |
---|
1162 | else |
---|
1163 | |
---|
1164 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
1165 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
1166 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
1167 | |
---|
1168 | endif |
---|
1169 | |
---|
1170 | else ! gaussienne environnement seule |
---|
1171 | |
---|
1172 | |
---|
1173 | zqenv(ind1)=po(ind1) |
---|
1174 | Tbef=t(ind1,ind2) |
---|
1175 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1176 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1177 | qsatbef=MIN(0.5,qsatbef) |
---|
1178 | zcor=1./(1.-retv*qsatbef) |
---|
1179 | qsatbef=qsatbef*zcor |
---|
1180 | zqsatenv(ind1,ind2)=qsatbef |
---|
1181 | |
---|
1182 | |
---|
1183 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
1184 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
1185 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1186 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1187 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1188 | sth=0. |
---|
1189 | |
---|
1190 | |
---|
1191 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1192 | sigma2s=0. |
---|
1193 | |
---|
1194 | sqrt2pi=sqrt(2.*pi) |
---|
1195 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1196 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1197 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
1198 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
1199 | |
---|
1200 | IF (ctot(ind1,ind2)<1.e-3) THEN |
---|
1201 | ctot(ind1,ind2)=0. |
---|
1202 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1203 | |
---|
1204 | else |
---|
1205 | |
---|
1206 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1207 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1208 | |
---|
1209 | endif |
---|
1210 | |
---|
1211 | |
---|
1212 | |
---|
1213 | |
---|
1214 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
1215 | ! Outputs used to check the PDFs |
---|
1216 | cloudth_senv(ind1,ind2) = senv |
---|
1217 | cloudth_sth(ind1,ind2) = sth |
---|
1218 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
---|
1219 | cloudth_sigmath(ind1,ind2) = sigma2s |
---|
1220 | |
---|
1221 | enddo ! from the loop on ngrid l.333 |
---|
1222 | RETURN |
---|
1223 | ! end |
---|
1224 | END SUBROUTINE cloudth_vert_v3 |
---|
1225 | |
---|
1226 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
---|
1227 | ztv,po,zqta,fraca, & |
---|
1228 | qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1229 | ratqs,zqs,T, & |
---|
1230 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
1231 | |
---|
1232 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert |
---|
1233 | |
---|
1234 | IMPLICIT NONE |
---|
1235 | |
---|
1236 | |
---|
1237 | INCLUDE "YOMCST.h" |
---|
1238 | INCLUDE "YOETHF.h" |
---|
1239 | INCLUDE "FCTTRE.h" |
---|
1240 | |
---|
1241 | |
---|
1242 | !Domain variables |
---|
1243 | INTEGER ngrid !indice Max lat-lon |
---|
1244 | INTEGER klev !indice Max alt |
---|
1245 | REAL, DIMENSION(ngrid,klev), INTENT(OUT) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
1246 | INTEGER ind1 !indice in [1:ngrid] |
---|
1247 | INTEGER ind2 !indice in [1:klev] |
---|
1248 | !thermal plume fraction |
---|
1249 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
---|
1250 | !temperatures |
---|
1251 | REAL T(ngrid,klev) !temperature |
---|
1252 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
---|
1253 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
---|
1254 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
---|
1255 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
---|
1256 | !pressure |
---|
1257 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
---|
1258 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
---|
1259 | !humidity |
---|
1260 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
---|
1261 | REAL po(ngrid) !total water (qt) |
---|
1262 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
1263 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
---|
1264 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
---|
1265 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
---|
1266 | REAL qlth(ngrid,klev) !condensed water in the thermals |
---|
1267 | REAL qlenv(ngrid,klev) !condensed water in the environment |
---|
1268 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
---|
1269 | !cloud fractions |
---|
1270 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
---|
1271 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
---|
1272 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
---|
1273 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
---|
1274 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
---|
1275 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
---|
1276 | !PDF of saturation deficit variables |
---|
1277 | REAL rdd,cppd,Lv |
---|
1278 | REAL Tbef,zdelta,qsatbef,zcor |
---|
1279 | REAL alth,alenv,ath,aenv |
---|
1280 | REAL sth,senv !saturation deficits in the thermals and environment |
---|
1281 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
---|
1282 | !cloud fraction variables |
---|
1283 | REAL xth,xenv |
---|
1284 | REAL inverse_rho,beta !Neggers et al. (2011) method |
---|
1285 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
---|
1286 | !Incloud total water variables |
---|
1287 | REAL zqs(ngrid) !q_sat |
---|
1288 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
1289 | !Some arithmetic variables |
---|
1290 | REAL erf,pi,sqrt2,sqrt2pi |
---|
1291 | !Depth of the layer |
---|
1292 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
---|
1293 | REAL rhodz(ngrid,klev) |
---|
1294 | REAL zrho(ngrid,klev) |
---|
1295 | DO ind1 = 1, ngrid |
---|
1296 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
---|
1297 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
---|
1298 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
---|
1299 | END DO |
---|
1300 | |
---|
1301 | !------------------------------------------------------------------------------ |
---|
1302 | ! Initialization |
---|
1303 | !------------------------------------------------------------------------------ |
---|
1304 | qlth(:,:)=0. |
---|
1305 | qlenv(:,:)=0. |
---|
1306 | qltot(:,:)=0. |
---|
1307 | cth_vol(:,:)=0. |
---|
1308 | cenv_vol(:,:)=0. |
---|
1309 | ctot_vol(:,:)=0. |
---|
1310 | cth_surf(:,:)=0. |
---|
1311 | cenv_surf(:,:)=0. |
---|
1312 | ctot_surf(:,:)=0. |
---|
1313 | qcloud(:)=0. |
---|
1314 | rdd=287.04 |
---|
1315 | cppd=1005.7 |
---|
1316 | pi=3.14159 |
---|
1317 | Lv=2.5e6 |
---|
1318 | sqrt2=sqrt(2.) |
---|
1319 | sqrt2pi=sqrt(2.*pi) |
---|
1320 | |
---|
1321 | |
---|
1322 | DO ind1=1,ngrid |
---|
1323 | !------------------------------------------------------------------------------- |
---|
1324 | !Both thermal and environment in the gridbox |
---|
1325 | !------------------------------------------------------------------------------- |
---|
1326 | IF ((ztv(ind1,1)>ztv(ind1,2)).AND.(fraca(ind1,ind2)>1.e-10)) THEN |
---|
1327 | !-------------------------------------------- |
---|
1328 | !calcul de qsat_env |
---|
1329 | !-------------------------------------------- |
---|
1330 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1331 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1332 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1333 | qsatbef=MIN(0.5,qsatbef) |
---|
1334 | zcor=1./(1.-retv*qsatbef) |
---|
1335 | qsatbef=qsatbef*zcor |
---|
1336 | zqsatenv(ind1,ind2)=qsatbef |
---|
1337 | !-------------------------------------------- |
---|
1338 | !calcul de s_env |
---|
1339 | !-------------------------------------------- |
---|
1340 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1341 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
1342 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
1343 | !-------------------------------------------- |
---|
1344 | !calcul de qsat_th |
---|
1345 | !-------------------------------------------- |
---|
1346 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1347 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1348 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1349 | qsatbef=MIN(0.5,qsatbef) |
---|
1350 | zcor=1./(1.-retv*qsatbef) |
---|
1351 | qsatbef=qsatbef*zcor |
---|
1352 | zqsatth(ind1,ind2)=qsatbef |
---|
1353 | !-------------------------------------------- |
---|
1354 | !calcul de s_th |
---|
1355 | !-------------------------------------------- |
---|
1356 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1357 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
1358 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
1359 | !-------------------------------------------- |
---|
1360 | !calcul standard deviations bi-Gaussian PDF |
---|
1361 | !-------------------------------------------- |
---|
1362 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
---|
1363 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
---|
1364 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
---|
1365 | +ratqs(ind1,ind2)*po(ind1) |
---|
1366 | xth=sth/(sqrt2*sigma_th) |
---|
1367 | xenv=senv/(sqrt2*sigma_env) |
---|
1368 | !-------------------------------------------- |
---|
1369 | !Cloud fraction by volume CF_vol |
---|
1370 | !-------------------------------------------- |
---|
1371 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
1372 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1373 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1374 | !-------------------------------------------- |
---|
1375 | !Condensed water qc |
---|
1376 | !-------------------------------------------- |
---|
1377 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
---|
1378 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
---|
1379 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1380 | !-------------------------------------------- |
---|
1381 | !Cloud fraction by surface CF_surf |
---|
1382 | !-------------------------------------------- |
---|
1383 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
1384 | !beta=0.0044 (Jouhaud et al.2018) |
---|
1385 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1386 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
1387 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
1388 | a_Brooks=0.6694 |
---|
1389 | b_Brooks=0.1882 |
---|
1390 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
---|
1391 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
---|
1392 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
1393 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
1394 | !-------------------------------------------- |
---|
1395 | !Incloud Condensed water qcloud |
---|
1396 | !-------------------------------------------- |
---|
1397 | IF (ctot_surf(ind1,ind2) < 1.e-10) THEN |
---|
1398 | ctot_vol(ind1,ind2)=0. |
---|
1399 | ctot_surf(ind1,ind2)=0. |
---|
1400 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1401 | else |
---|
1402 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
---|
1403 | endif |
---|
1404 | |
---|
1405 | |
---|
1406 | |
---|
1407 | !------------------------------------------------------------------------------- |
---|
1408 | !Environment only in the gridbox |
---|
1409 | !------------------------------------------------------------------------------- |
---|
1410 | ELSE |
---|
1411 | !-------------------------------------------- |
---|
1412 | !calcul de qsat_env |
---|
1413 | !-------------------------------------------- |
---|
1414 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1415 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1416 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1417 | qsatbef=MIN(0.5,qsatbef) |
---|
1418 | zcor=1./(1.-retv*qsatbef) |
---|
1419 | qsatbef=qsatbef*zcor |
---|
1420 | zqsatenv(ind1,ind2)=qsatbef |
---|
1421 | !-------------------------------------------- |
---|
1422 | !calcul de s_env |
---|
1423 | !-------------------------------------------- |
---|
1424 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1425 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
1426 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
1427 | !-------------------------------------------- |
---|
1428 | !calcul standard deviations Gaussian PDF |
---|
1429 | !-------------------------------------------- |
---|
1430 | zqenv(ind1)=po(ind1) |
---|
1431 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1432 | xenv=senv/(sqrt2*sigma_env) |
---|
1433 | !-------------------------------------------- |
---|
1434 | !Cloud fraction by volume CF_vol |
---|
1435 | !-------------------------------------------- |
---|
1436 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1437 | !-------------------------------------------- |
---|
1438 | !Condensed water qc |
---|
1439 | !-------------------------------------------- |
---|
1440 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
---|
1441 | !-------------------------------------------- |
---|
1442 | !Cloud fraction by surface CF_surf |
---|
1443 | !-------------------------------------------- |
---|
1444 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
1445 | !beta=0.0044 (Jouhaud et al.2018) |
---|
1446 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1447 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
1448 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
1449 | a_Brooks=0.6694 |
---|
1450 | b_Brooks=0.1882 |
---|
1451 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
---|
1452 | Dx_Brooks=200000. |
---|
1453 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
1454 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
1455 | !-------------------------------------------- |
---|
1456 | !Incloud Condensed water qcloud |
---|
1457 | !-------------------------------------------- |
---|
1458 | IF (ctot_surf(ind1,ind2) < 1.e-8) THEN |
---|
1459 | ctot_vol(ind1,ind2)=0. |
---|
1460 | ctot_surf(ind1,ind2)=0. |
---|
1461 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1462 | else |
---|
1463 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1464 | endif |
---|
1465 | |
---|
1466 | |
---|
1467 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
1468 | |
---|
1469 | ! Outputs used to check the PDFs |
---|
1470 | cloudth_senv(ind1,ind2) = senv |
---|
1471 | cloudth_sth(ind1,ind2) = sth |
---|
1472 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
---|
1473 | cloudth_sigmath(ind1,ind2) = sigma_th |
---|
1474 | |
---|
1475 | END DO ! From the loop on ngrid |
---|
1476 | |
---|
1477 | |
---|
1478 | END SUBROUTINE cloudth_v6 |
---|
1479 | |
---|
1480 | |
---|
1481 | |
---|
1482 | |
---|
1483 | |
---|
1484 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1485 | SUBROUTINE cloudth_mpc(klon,klev,ind2,mpc_bl_points, & |
---|
1486 | & temp,qt,qt_th,frac_th,zpspsk,paprsup, paprsdn,play,thetal_th, & |
---|
1487 | & ratqs,qcloud,qincloud,icefrac,ctot,ctot_vol, & |
---|
1488 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
1489 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1490 | ! Author : Etienne Vignon (LMDZ/CNRS) |
---|
1491 | ! Date: April 2024 |
---|
1492 | ! Date: Adapted from cloudth_vert_v3 in 2023 by Arnaud Otavio Jam |
---|
1493 | ! IMPORTANT NOTE: we assume iflag_cloudth_vert=7 |
---|
1494 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1495 | |
---|
1496 | USE lmdz_cloudth_ini, ONLY: iflag_cloudth_vert,iflag_ratqs |
---|
1497 | USE lmdz_cloudth_ini, ONLY: C_mpc ,Ni,C_cap,Ei,d_top ,vert_alpha, vert_alpha_th ,sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin ,iflag_cloudth_vert_noratqs |
---|
1498 | USE lmdz_lscp_tools, only: CALC_QSAT_ECMWF |
---|
1499 | USE lmdz_lscp_ini, only: RTT, RG, RPI, RD, RCPD, RLVTT, RLSTT, temp_nowater, min_frac_th_cld, min_neb_th |
---|
1500 | |
---|
1501 | IMPLICIT NONE |
---|
1502 | |
---|
1503 | |
---|
1504 | !------------------------------------------------------------------------------ |
---|
1505 | ! Declaration |
---|
1506 | !------------------------------------------------------------------------------ |
---|
1507 | |
---|
1508 | ! INPUT/OUTPUT |
---|
1509 | |
---|
1510 | INTEGER, INTENT(IN) :: klon,klev,ind2 |
---|
1511 | |
---|
1512 | |
---|
1513 | REAL, DIMENSION(klon), INTENT(IN) :: temp ! Temperature (liquid temperature) in the mesh [K] : has seen evap of precip |
---|
1514 | REAL, DIMENSION(klon), INTENT(IN) :: qt ! total water specific humidity in the mesh [kg/kg]: has seen evap of precip |
---|
1515 | REAL, DIMENSION(klon), INTENT(IN) :: qt_th ! total water specific humidity in thermals [kg/kg]: has not seen evap of precip |
---|
1516 | REAL, DIMENSION(klon), INTENT(IN) :: thetal_th ! Liquid potential temperature in thermals [K]: has not seen the evap of precip |
---|
1517 | REAL, DIMENSION(klon), INTENT(IN) :: frac_th ! Fraction of the mesh covered by thermals [0-1] |
---|
1518 | REAL, DIMENSION(klon), INTENT(IN) :: zpspsk ! Exner potential |
---|
1519 | REAL, DIMENSION(klon), INTENT(IN) :: paprsup ! Pressure at top layer interface [Pa] |
---|
1520 | REAL, DIMENSION(klon), INTENT(IN) :: paprsdn ! Pressure at bottom layer interface [Pa] |
---|
1521 | REAL, DIMENSION(klon), INTENT(IN) :: play ! Pressure of layers [Pa] |
---|
1522 | REAL, DIMENSION(klon), INTENT(IN) :: ratqs ! Parameter that determines the width of the total water distrib. |
---|
1523 | |
---|
1524 | |
---|
1525 | INTEGER, DIMENSION(klon,klev), INTENT(INOUT) :: mpc_bl_points ! grid points with convective (thermals) mixed phase clouds |
---|
1526 | |
---|
1527 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot ! Cloud fraction [0-1] |
---|
1528 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot_vol ! Volume cloud fraction [0-1] |
---|
1529 | REAL, DIMENSION(klon), INTENT(OUT) :: qcloud ! In cloud total water content [kg/kg] |
---|
1530 | REAL, DIMENSION(klon), INTENT(OUT) :: qincloud ! In cloud condensed water content [kg/kg] |
---|
1531 | REAL, DIMENSION(klon), INTENT(OUT) :: icefrac ! Fraction of ice in clouds [0-1] |
---|
1532 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
---|
1533 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
---|
1534 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
---|
1535 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
---|
1536 | |
---|
1537 | |
---|
1538 | ! LOCAL VARIABLES |
---|
1539 | |
---|
1540 | INTEGER itap,ind1,l,ig,iter,k |
---|
1541 | INTEGER iflag_topthermals, niter |
---|
1542 | |
---|
1543 | REAL qcth(klon) |
---|
1544 | REAL qcenv(klon) |
---|
1545 | REAL qctot(klon) |
---|
1546 | REAL cth(klon) |
---|
1547 | REAL cenv(klon) |
---|
1548 | REAL cth_vol(klon) |
---|
1549 | REAL cenv_vol(klon) |
---|
1550 | REAL qt_env(klon), thetal_env(klon) |
---|
1551 | REAL icefracenv(klon), icefracth(klon) |
---|
1552 | REAL sqrtpi,sqrt2,sqrt2pi |
---|
1553 | REAL alth,alenv,ath,aenv |
---|
1554 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
1555 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
1556 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
1557 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
1558 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
1559 | REAL zdelta,qsatbef,zcor |
---|
1560 | REAL Tbefth(klon), Tbefenv(klon), zrho(klon), rhoth(klon) |
---|
1561 | REAL qlbef |
---|
1562 | REAL dqsatenv(klon), dqsatth(klon) |
---|
1563 | REAL erf |
---|
1564 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
---|
1565 | REAL zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
---|
1566 | REAL rhodz(klon) |
---|
1567 | REAL rho(klon) |
---|
1568 | REAL dz(klon) |
---|
1569 | REAL qslenv(klon), qslth(klon), qsienv(klon), qsith(klon) |
---|
1570 | REAL alenvl, aenvl |
---|
1571 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
---|
1572 | REAL senvi, senvl, qbase, sbase, qliqth, qiceth |
---|
1573 | REAL qmax, ttarget, stmp, cout, coutref, fraci |
---|
1574 | REAL maxi, mini, pas |
---|
1575 | |
---|
1576 | ! Modifty the saturation deficit PDF in thermals |
---|
1577 | ! in the presence of ice crystals |
---|
1578 | CHARACTER (len = 80) :: abort_message |
---|
1579 | CHARACTER (len = 20) :: routname = 'cloudth_mpc' |
---|
1580 | |
---|
1581 | |
---|
1582 | !------------------------------------------------------------------------------ |
---|
1583 | ! Initialisation |
---|
1584 | !------------------------------------------------------------------------------ |
---|
1585 | |
---|
1586 | |
---|
1587 | ! Few initial checksS |
---|
1588 | |
---|
1589 | DO k = 1,klev |
---|
1590 | DO ind1 = 1, klon |
---|
1591 | rhodz(ind1) = (paprsdn(ind1)-paprsup(ind1))/rg !kg/m2 |
---|
1592 | zrho(ind1) = play(ind1)/temp(ind1)/rd !kg/m3 |
---|
1593 | dz(ind1) = rhodz(ind1)/zrho(ind1) !m : epaisseur de la couche en metre |
---|
1594 | END DO |
---|
1595 | END DO |
---|
1596 | |
---|
1597 | |
---|
1598 | icefracth(:)=0. |
---|
1599 | icefracenv(:)=0. |
---|
1600 | sqrt2pi=sqrt(2.*rpi) |
---|
1601 | sqrt2=sqrt(2.) |
---|
1602 | sqrtpi=sqrt(rpi) |
---|
1603 | icefrac(:)=0. |
---|
1604 | |
---|
1605 | !------------------------------------------------------------------------------- |
---|
1606 | ! Identify grid points with potential mixed-phase conditions |
---|
1607 | !------------------------------------------------------------------------------- |
---|
1608 | |
---|
1609 | |
---|
1610 | DO ind1=1,klon |
---|
1611 | IF ((temp(ind1) < RTT) .AND. (temp(ind1) > temp_nowater) & |
---|
1612 | .AND. (ind2<=klev-2) & |
---|
1613 | .AND. (frac_th(ind1)>min_frac_th_cld)) THEN |
---|
1614 | mpc_bl_points(ind1,ind2)=1 |
---|
1615 | ELSE |
---|
1616 | mpc_bl_points(ind1,ind2)=0 |
---|
1617 | ENDIF |
---|
1618 | ENDDO |
---|
1619 | |
---|
1620 | |
---|
1621 | !------------------------------------------------------------------------------- |
---|
1622 | ! Thermal fraction calculation and standard deviation of the distribution |
---|
1623 | !------------------------------------------------------------------------------- |
---|
1624 | |
---|
1625 | ! initialisations and calculation of temperature, humidity and saturation specific humidity |
---|
1626 | |
---|
1627 | DO ind1=1,klon |
---|
1628 | |
---|
1629 | rhodz(ind1) = (paprsdn(ind1)-paprsup(ind1))/rg ! kg/m2 |
---|
1630 | rho(ind1) = play(ind1)/temp(ind1)/rd ! kg/m3 |
---|
1631 | dz(ind1) = rhodz(ind1)/rho(ind1) ! m : epaisseur de la couche en metre |
---|
1632 | Tbefenv(ind1) = temp(ind1) |
---|
1633 | thetal_env(ind1) = Tbefenv(ind1)/zpspsk(ind1) |
---|
1634 | Tbefth(ind1) = thetal_th(ind1)*zpspsk(ind1) |
---|
1635 | rhoth(ind1) = play(ind1)/Tbefth(ind1)/RD |
---|
1636 | qt_env(ind1) = (qt(ind1)-frac_th(ind1)*qt_th(ind1))/(1.-frac_th(ind1)) !qt = a*qtth + (1-a)*qtenv |
---|
1637 | |
---|
1638 | ENDDO |
---|
1639 | |
---|
1640 | ! Calculation of saturation specific humidity |
---|
1641 | CALL CALC_QSAT_ECMWF(klon,Tbefenv,qt_env,play,RTT,1,.FALSE.,qslenv,dqsatenv) |
---|
1642 | CALL CALC_QSAT_ECMWF(klon,Tbefenv,qt_env,play,RTT,2,.FALSE.,qsienv,dqsatenv) |
---|
1643 | CALL CALC_QSAT_ECMWF(klon,Tbefth,qt_th,play,RTT,1,.FALSE.,qslth,dqsatth) |
---|
1644 | |
---|
1645 | |
---|
1646 | DO ind1=1,klon |
---|
1647 | |
---|
1648 | |
---|
1649 | IF (frac_th(ind1)>min_frac_th_cld) THEN !Thermal and environnement |
---|
1650 | |
---|
1651 | ! unlike in the other cloudth routine, |
---|
1652 | ! We consider distributions of the saturation deficit WRT liquid |
---|
1653 | ! at positive AND negative celcius temperature |
---|
1654 | ! subsequently, cloud fraction corresponds to the part of the pdf corresponding |
---|
1655 | ! to superstauration with respect to liquid WHATEVER the temperature |
---|
1656 | |
---|
1657 | ! Environment: |
---|
1658 | |
---|
1659 | |
---|
1660 | alenv=(0.622*RLVTT*qslenv(ind1))/(rd*thetal_env(ind1)**2) |
---|
1661 | aenv=1./(1.+(alenv*RLVTT/rcpd)) |
---|
1662 | senv=aenv*(qt_env(ind1)-qslenv(ind1)) |
---|
1663 | |
---|
1664 | |
---|
1665 | ! Thermals: |
---|
1666 | |
---|
1667 | |
---|
1668 | alth=(0.622*RLVTT*qslth(ind1))/(rd*thetal_th(ind1)**2) |
---|
1669 | ath=1./(1.+(alth*RLVTT/rcpd)) |
---|
1670 | sth=ath*(qt_th(ind1)-qslth(ind1)) |
---|
1671 | |
---|
1672 | |
---|
1673 | ! IF (mpc_bl_points(ind1,ind2) .EQ. 0) THEN ! No BL MPC |
---|
1674 | |
---|
1675 | |
---|
1676 | ! Standard deviation of the distributions |
---|
1677 | |
---|
1678 | sigma1s_fraca = (sigma1s_factor**0.5)*(frac_th(ind1)**sigma1s_power) / & |
---|
1679 | (1-frac_th(ind1))*((sth-senv)**2)**0.5 |
---|
1680 | |
---|
1681 | IF (cloudth_ratqsmin>0.) THEN |
---|
1682 | sigma1s_ratqs = cloudth_ratqsmin*qt(ind1) |
---|
1683 | ELSE |
---|
1684 | sigma1s_ratqs = ratqs(ind1)*qt(ind1) |
---|
1685 | ENDIF |
---|
1686 | |
---|
1687 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
1688 | IF (iflag_ratqs==11) THEN |
---|
1689 | sigma1s = ratqs(ind1)*qt(ind1)*aenv |
---|
1690 | ENDIF |
---|
1691 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((frac_th(ind1)+0.02)**sigma2s_power))+0.002*qt_th(ind1) |
---|
1692 | |
---|
1693 | |
---|
1694 | deltasenv=aenv*vert_alpha*sigma1s |
---|
1695 | deltasth=ath*vert_alpha_th*sigma2s |
---|
1696 | |
---|
1697 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1698 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1699 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
1700 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
1701 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1702 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1703 | exp_xth1 = exp(-1.*xth1**2) |
---|
1704 | exp_xth2 = exp(-1.*xth2**2) |
---|
1705 | |
---|
1706 | !surface CF |
---|
1707 | |
---|
1708 | cth(ind1)=0.5*(1.-1.*erf(xth1)) |
---|
1709 | cenv(ind1)=0.5*(1.-1.*erf(xenv1)) |
---|
1710 | ctot(ind1)=frac_th(ind1)*cth(ind1)+(1.-1.*frac_th(ind1))*cenv(ind1) |
---|
1711 | |
---|
1712 | |
---|
1713 | !volume CF, condensed water and ice fraction |
---|
1714 | |
---|
1715 | !environnement |
---|
1716 | |
---|
1717 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
1718 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
1719 | |
---|
1720 | IF (deltasenv < 1.e-10) THEN |
---|
1721 | qcenv(ind1)=IntJ |
---|
1722 | cenv_vol(ind1)=IntJ_CF |
---|
1723 | ELSE |
---|
1724 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1725 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
1726 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
1727 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
1728 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
1729 | qcenv(ind1)=IntJ+IntI1+IntI2+IntI3 |
---|
1730 | cenv_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1731 | IF (Tbefenv(ind1) < temp_nowater) THEN |
---|
1732 | ! freeze all droplets in cirrus temperature regime |
---|
1733 | icefracenv(ind1)=1. |
---|
1734 | ENDIF |
---|
1735 | ENDIF |
---|
1736 | |
---|
1737 | |
---|
1738 | |
---|
1739 | !thermals |
---|
1740 | |
---|
1741 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1742 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1743 | |
---|
1744 | IF (deltasth < 1.e-10) THEN |
---|
1745 | qcth(ind1)=IntJ |
---|
1746 | cth_vol(ind1)=IntJ_CF |
---|
1747 | ELSE |
---|
1748 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1749 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1750 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1751 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1752 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1753 | qcth(ind1)=IntJ+IntI1+IntI2+IntI3 |
---|
1754 | cth_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1755 | IF (Tbefth(ind1) < temp_nowater) THEN |
---|
1756 | ! freeze all droplets in cirrus temperature regime |
---|
1757 | icefracth(ind1)=1. |
---|
1758 | ENDIF |
---|
1759 | |
---|
1760 | ENDIF |
---|
1761 | |
---|
1762 | qctot(ind1)=frac_th(ind1)*qcth(ind1)+(1.-1.*frac_th(ind1))*qcenv(ind1) |
---|
1763 | ctot_vol(ind1)=frac_th(ind1)*cth_vol(ind1)+(1.-1.*frac_th(ind1))*cenv_vol(ind1) |
---|
1764 | |
---|
1765 | IF (cenv(ind1)<min_neb_th.AND.cth(ind1)<min_neb_th) THEN |
---|
1766 | ctot(ind1)=0. |
---|
1767 | ctot_vol(ind1)=0. |
---|
1768 | qcloud(ind1)=qslenv(ind1) |
---|
1769 | qincloud(ind1)=0. |
---|
1770 | icefrac(ind1)=0. |
---|
1771 | ELSE |
---|
1772 | qcloud(ind1)=qctot(ind1)/ctot(ind1)+qslenv(ind1) |
---|
1773 | qincloud(ind1)=qctot(ind1)/ctot(ind1) |
---|
1774 | IF (qctot(ind1) > 0) THEN |
---|
1775 | icefrac(ind1)=(frac_th(ind1)*qcth(ind1)*icefracth(ind1)+(1.-1.*frac_th(ind1))*qcenv(ind1)*icefracenv(ind1))/qctot(ind1) |
---|
1776 | icefrac(ind1)=max(min(1.,icefrac(ind1)), 0.) |
---|
1777 | ENDIF |
---|
1778 | ENDIF |
---|
1779 | |
---|
1780 | |
---|
1781 | ! ELSE ! mpc_bl_points>0 |
---|
1782 | |
---|
1783 | ELSE ! gaussian for environment only |
---|
1784 | |
---|
1785 | |
---|
1786 | alenv=(0.622*RLVTT*qslenv(ind1))/(rd*thetal_env(ind1)**2) |
---|
1787 | aenv=1./(1.+(alenv*RLVTT/rcpd)) |
---|
1788 | senv=aenv*(qt_env(ind1)-qslenv(ind1)) |
---|
1789 | sth=0. |
---|
1790 | sigma1s=ratqs(ind1)*qt_env(ind1) |
---|
1791 | sigma2s=0. |
---|
1792 | |
---|
1793 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1794 | cenv(ind1)=0.5*(1.-1.*erf(xenv)) |
---|
1795 | ctot(ind1)=0.5*(1.+1.*erf(xenv)) |
---|
1796 | ctot_vol(ind1)=ctot(ind1) |
---|
1797 | qctot(ind1)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1)) |
---|
1798 | |
---|
1799 | |
---|
1800 | IF (ctot(ind1)<min_neb_th) THEN |
---|
1801 | ctot(ind1)=0. |
---|
1802 | qcloud(ind1)=qslenv(ind1) |
---|
1803 | qincloud(ind1)=0. |
---|
1804 | ELSE |
---|
1805 | qcloud(ind1)=qctot(ind1)/ctot(ind1)+qslenv(ind1) |
---|
1806 | qincloud(ind1)=MAX(qctot(ind1)/ctot(ind1),0.) |
---|
1807 | ENDIF |
---|
1808 | |
---|
1809 | |
---|
1810 | ENDIF ! From the separation (thermal/envrionnement) and (environnement only,) l.335 et l.492 |
---|
1811 | |
---|
1812 | ! Outputs used to check the PDFs |
---|
1813 | cloudth_senv(ind1) = senv |
---|
1814 | cloudth_sth(ind1) = sth |
---|
1815 | cloudth_sigmaenv(ind1) = sigma1s |
---|
1816 | cloudth_sigmath(ind1) = sigma2s |
---|
1817 | |
---|
1818 | |
---|
1819 | ENDDO !loop on klon |
---|
1820 | |
---|
1821 | |
---|
1822 | |
---|
1823 | |
---|
1824 | |
---|
1825 | END SUBROUTINE cloudth_mpc |
---|
1826 | |
---|
1827 | |
---|
1828 | |
---|
1829 | ! ELSE ! mpc_bl_points>0 |
---|
1830 | |
---|
1831 | ! ! Treat boundary layer mixed phase clouds |
---|
1832 | |
---|
1833 | ! ! thermals |
---|
1834 | ! !========= |
---|
1835 | |
---|
1836 | ! ! ice phase |
---|
1837 | ! !........... |
---|
1838 | |
---|
1839 | ! qiceth=0. |
---|
1840 | ! deltazlev_mpc=dz(ind1,:) |
---|
1841 | ! temp_mpc=ztla(ind1,:)*zpspsk(ind1,:) |
---|
1842 | ! pres_mpc=pplay(ind1,:) |
---|
1843 | ! fraca_mpc=fraca(ind1,:) |
---|
1844 | ! snowf_mpc=snowflux(ind1,:) |
---|
1845 | ! iflag_topthermals=0 |
---|
1846 | ! IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 0)) THEN |
---|
1847 | ! iflag_topthermals = 1 |
---|
1848 | ! ELSE IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 1) & |
---|
1849 | ! .AND. (mpc_bl_points(ind1,ind2+2) .EQ. 0) ) THEN |
---|
1850 | ! iflag_topthermals = 2 |
---|
1851 | ! ELSE |
---|
1852 | ! iflag_topthermals = 0 |
---|
1853 | ! ENDIF |
---|
1854 | |
---|
1855 | ! CALL ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp_mpc,pres_mpc,zqta(ind1,:), & |
---|
1856 | ! qsith(ind1,:),qlth(ind1,:),deltazlev_mpc,wiceth(ind1,:),fraca_mpc,qith(ind1,:)) |
---|
1857 | |
---|
1858 | ! ! qmax calculation |
---|
1859 | ! sigma2s=(sigma2s_factor*((MAX((sthl-senvl),0.)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
1860 | ! deltasth=athl*vert_alpha_th*sigma2s |
---|
1861 | ! xth1=-(sthl+deltasth)/(sqrt(2.)*sigma2s) |
---|
1862 | ! xth2=-(sthl-deltasth)/(sqrt(2.)*sigma2s) |
---|
1863 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
1864 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
1865 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1866 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1867 | ! IntI1=(((sthl+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1868 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1869 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1870 | ! IntI1_CF=((sthl+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1871 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1872 | ! qmax=MAX(IntJ+IntI1+IntI2+IntI3,0.) |
---|
1873 | |
---|
1874 | |
---|
1875 | ! ! Liquid phase |
---|
1876 | ! !................ |
---|
1877 | ! ! We account for the effect of ice crystals in thermals on sthl |
---|
1878 | ! ! and on the width of the distribution |
---|
1879 | |
---|
1880 | ! sthlc=sthl*1./(1.+C_mpc*qith(ind1,ind2)) & |
---|
1881 | ! + (1.-1./(1.+C_mpc*qith(ind1,ind2))) * athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
1882 | |
---|
1883 | ! sigma2sc=(sigma2s_factor*((MAX((sthlc-senvl),0.)**2)**0.5) & |
---|
1884 | ! /((fraca(ind1,ind2)+0.02)**sigma2s_power)) & |
---|
1885 | ! +0.002*zqta(ind1,ind2) |
---|
1886 | ! deltasthc=athl*vert_alpha_th*sigma2sc |
---|
1887 | |
---|
1888 | |
---|
1889 | ! xth1=-(sthlc+deltasthc)/(sqrt(2.)*sigma2sc) |
---|
1890 | ! xth2=-(sthlc-deltasthc)/(sqrt(2.)*sigma2sc) |
---|
1891 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
1892 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
1893 | ! IntJ=0.5*sthlc*(1-erf(xth2))+(sigma2sc/sqrt2pi)*exp_xth2 |
---|
1894 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1895 | ! IntI1=(((sthlc+deltasthc)**2+(sigma2sc)**2)/(8*deltasthc))*(erf(xth2)-erf(xth1)) |
---|
1896 | ! IntI2=(sigma2sc**2/(4*deltasthc*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1897 | ! IntI3=((sqrt2*sigma2sc*(sthlc+deltasthc))/(4*sqrtpi*deltasthc))*(exp_xth1-exp_xth2) |
---|
1898 | ! IntI1_CF=((sthlc+deltasthc)*(erf(xth2)-erf(xth1)))/(4*deltasthc) |
---|
1899 | ! IntI3_CF=(sqrt2*sigma2sc*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasthc) |
---|
1900 | ! qliqth=IntJ+IntI1+IntI2+IntI3 |
---|
1901 | |
---|
1902 | ! qlth(ind1,ind2)=MAX(0.,qliqth) |
---|
1903 | |
---|
1904 | ! ! Condensed water |
---|
1905 | |
---|
1906 | ! qcth(ind1,ind2)=qlth(ind1,ind2)+qith(ind1,ind2) |
---|
1907 | |
---|
1908 | |
---|
1909 | ! ! consistency with subgrid distribution |
---|
1910 | |
---|
1911 | ! IF ((qcth(ind1,ind2) .GT. qmax) .AND. (qcth(ind1,ind2) .GT. 0)) THEN |
---|
1912 | ! fraci=qith(ind1,ind2)/qcth(ind1,ind2) |
---|
1913 | ! qcth(ind1,ind2)=qmax |
---|
1914 | ! qith(ind1,ind2)=fraci*qmax |
---|
1915 | ! qlth(ind1,ind2)=(1.-fraci)*qmax |
---|
1916 | ! ENDIF |
---|
1917 | |
---|
1918 | ! ! Cloud Fraction |
---|
1919 | ! !............... |
---|
1920 | ! ! calculation of qbase which is the value of the water vapor within mixed phase clouds |
---|
1921 | ! ! such that the total water in cloud = qbase+qliqth+qiceth |
---|
1922 | ! ! sbase is the value of s such that int_sbase^\intfy s ds = cloud fraction |
---|
1923 | ! ! sbase and qbase calculation (note that sbase is wrt liq so negative) |
---|
1924 | ! ! look for an approximate solution with iteration |
---|
1925 | |
---|
1926 | ! ttarget=qcth(ind1,ind2) |
---|
1927 | ! mini= athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
1928 | ! maxi= 0. !athl*(3.*sqrt(sigma2s)) |
---|
1929 | ! niter=20 |
---|
1930 | ! pas=(maxi-mini)/niter |
---|
1931 | ! stmp=mini |
---|
1932 | ! sbase=stmp |
---|
1933 | ! coutref=1.E6 |
---|
1934 | ! DO iter=1,niter |
---|
1935 | ! cout=ABS(sigma2s/SQRT(2.*RPI)*EXP(-((sthl-stmp)/sigma2s)**2)+(sthl-stmp)/SQRT(2.)*(1.-erf(-(sthl-stmp)/sigma2s)) & |
---|
1936 | ! + stmp/2.*(1.-erf(-(sthl-stmp)/sigma2s)) -ttarget) |
---|
1937 | ! IF (cout .LT. coutref) THEN |
---|
1938 | ! sbase=stmp |
---|
1939 | ! coutref=cout |
---|
1940 | ! ELSE |
---|
1941 | ! stmp=stmp+pas |
---|
1942 | ! ENDIF |
---|
1943 | ! ENDDO |
---|
1944 | ! qbase=MAX(0., sbase/athl+qslth(ind1)) |
---|
1945 | |
---|
1946 | ! ! surface cloud fraction in thermals |
---|
1947 | ! cth(ind1,ind2)=0.5*(1.-erf((sbase-sthl)/sqrt(2.)/sigma2s)) |
---|
1948 | ! cth(ind1,ind2)=MIN(MAX(cth(ind1,ind2),0.),1.) |
---|
1949 | |
---|
1950 | |
---|
1951 | ! !volume cloud fraction in thermals |
---|
1952 | ! !to be checked |
---|
1953 | ! xth1=-(sthl+deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
1954 | ! xth2=-(sthl-deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
1955 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
1956 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
1957 | |
---|
1958 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1959 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1960 | |
---|
1961 | ! IF (deltasth .LT. 1.e-10) THEN |
---|
1962 | ! cth_vol(ind1,ind2)=IntJ_CF |
---|
1963 | ! ELSE |
---|
1964 | ! IntI1=(((sthl+deltasth-sbase)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1965 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1966 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1967 | ! IntI1_CF=((sthl-sbase+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1968 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1969 | ! cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1970 | ! ENDIF |
---|
1971 | ! cth_vol(ind1,ind2)=MIN(MAX(0.,cth_vol(ind1,ind2)),1.) |
---|
1972 | |
---|
1973 | |
---|
1974 | |
---|
1975 | ! ! Environment |
---|
1976 | ! !============= |
---|
1977 | ! ! In the environment/downdrafts, ONLY liquid clouds |
---|
1978 | ! ! See Shupe et al. 2008, JAS |
---|
1979 | |
---|
1980 | ! ! standard deviation of the distribution in the environment |
---|
1981 | ! sth=sthl |
---|
1982 | ! senv=senvl |
---|
1983 | ! sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
1984 | ! & (1-fraca(ind1,ind2))*(MAX((sth-senv),0.)**2)**0.5 |
---|
1985 | ! ! for mixed phase clouds, there is no contribution from large scale ratqs to the distribution |
---|
1986 | ! ! in the environement |
---|
1987 | |
---|
1988 | ! sigma1s_ratqs=1E-10 |
---|
1989 | ! IF (cloudth_ratqsmin>0.) THEN |
---|
1990 | ! sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
1991 | ! ENDIF |
---|
1992 | |
---|
1993 | ! sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
1994 | ! IF (iflag_ratqs.EQ.11) THEN |
---|
1995 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
1996 | ! ENDIF |
---|
1997 | ! IF (iflag_ratqs.EQ.11) THEN |
---|
1998 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenvl |
---|
1999 | ! ENDIF |
---|
2000 | ! deltasenv=aenvl*vert_alpha*sigma1s |
---|
2001 | ! xenv1=-(senvl+deltasenv)/(sqrt(2.)*sigma1s) |
---|
2002 | ! xenv2=-(senvl-deltasenv)/(sqrt(2.)*sigma1s) |
---|
2003 | ! exp_xenv1 = exp(-1.*xenv1**2) |
---|
2004 | ! exp_xenv2 = exp(-1.*xenv2**2) |
---|
2005 | |
---|
2006 | ! !surface CF |
---|
2007 | ! cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
2008 | |
---|
2009 | ! !volume CF and condensed water |
---|
2010 | ! IntJ=0.5*senvl*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
2011 | ! IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
2012 | |
---|
2013 | ! IF (deltasenv .LT. 1.e-10) THEN |
---|
2014 | ! qcenv(ind1,ind2)=IntJ |
---|
2015 | ! cenv_vol(ind1,ind2)=IntJ_CF |
---|
2016 | ! ELSE |
---|
2017 | ! IntI1=(((senvl+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
2018 | ! IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
2019 | ! IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
2020 | ! IntI1_CF=((senvl+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
2021 | ! IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
2022 | ! qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 ! only liquid water in environment |
---|
2023 | ! cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
2024 | ! ENDIF |
---|
2025 | |
---|
2026 | ! qcenv(ind1,ind2)=MAX(qcenv(ind1,ind2),0.) |
---|
2027 | ! cenv_vol(ind1,ind2)=MIN(MAX(cenv_vol(ind1,ind2),0.),1.) |
---|
2028 | |
---|
2029 | |
---|
2030 | |
---|
2031 | ! ! Thermals + environment |
---|
2032 | ! ! ======================= |
---|
2033 | ! ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
2034 | ! qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2) |
---|
2035 | ! ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
2036 | ! IF (qcth(ind1,ind2) .GT. 0) THEN |
---|
2037 | ! icefrac(ind1,ind2)=fraca(ind1,ind2)*qith(ind1,ind2) & |
---|
2038 | ! /(fraca(ind1,ind2)*qcth(ind1,ind2) & |
---|
2039 | ! +(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)) |
---|
2040 | ! icefrac(ind1,ind2)=MAX(MIN(1.,icefrac(ind1,ind2)),0.) |
---|
2041 | ! ELSE |
---|
2042 | ! icefrac(ind1,ind2)=0. |
---|
2043 | ! ENDIF |
---|
2044 | |
---|
2045 | ! IF (cenv(ind1,ind2).LT.1.e-10.OR.cth(ind1,ind2).LT.1.e-10) THEN |
---|
2046 | ! ctot(ind1,ind2)=0. |
---|
2047 | ! ctot_vol(ind1,ind2)=0. |
---|
2048 | ! qincloud(ind1)=0. |
---|
2049 | ! qcloud(ind1)=zqsatenv(ind1) |
---|
2050 | ! ELSE |
---|
2051 | ! qcloud(ind1)=fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)+qbase) & |
---|
2052 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)+qslenv(ind1)) |
---|
2053 | ! qincloud(ind1)=MAX(fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)) & |
---|
2054 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)),0.) |
---|
2055 | ! ENDIF |
---|
2056 | |
---|
2057 | ! ENDIF ! mpc_bl_points |
---|
2058 | |
---|
2059 | |
---|
2060 | |
---|
2061 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2062 | SUBROUTINE ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp,pres,qth,qsith,qlth,deltazlev,vith,fraca,qith) |
---|
2063 | |
---|
2064 | ! parameterization of ice for boundary |
---|
2065 | ! layer mixed-phase clouds assuming a stationary system |
---|
2066 | |
---|
2067 | ! Note that vapor deposition on ice crystals and riming of liquid droplets |
---|
2068 | ! depend on the ice number concentration Ni |
---|
2069 | ! One could assume that Ni depends on qi, e.g., Ni=beta*(qi*rho)**xi |
---|
2070 | ! and use values from Hong et al. 2004, MWR for instance |
---|
2071 | ! One may also estimate Ni as a function of T, as in Meyers 1922 or Fletcher 1962 |
---|
2072 | ! One could also think of a more complex expression of Ni; |
---|
2073 | ! function of qi, T, the concentration in aerosols or INP .. |
---|
2074 | ! Here we prefer fixing Ni to a tuning parameter |
---|
2075 | ! By default we take 2.0L-1=2.0e3m-3, median value from measured vertical profiles near Svalbard |
---|
2076 | ! in Mioche et al. 2017 |
---|
2077 | |
---|
2078 | |
---|
2079 | ! References: |
---|
2080 | !------------ |
---|
2081 | ! This parameterization is thoroughly described in Vignon et al. |
---|
2082 | |
---|
2083 | ! More specifically |
---|
2084 | ! for the Water vapor deposition process: |
---|
2085 | |
---|
2086 | ! Rotstayn, L. D., 1997: A physically based scheme for the treat- |
---|
2087 | ! ment of stratiform cloudfs and precipitation in large-scale |
---|
2088 | ! models. I: Description and evaluation of the microphysical |
---|
2089 | ! processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282. |
---|
2090 | |
---|
2091 | ! Morrison, H., and A. Gettelman, 2008: A new two-moment bulk |
---|
2092 | ! stratiform cloud microphysics scheme in the NCAR Com- |
---|
2093 | ! munity Atmosphere Model (CAM3). Part I: Description and |
---|
2094 | ! numerical tests. J. Climate, 21, 3642–3659 |
---|
2095 | |
---|
2096 | ! for the Riming process: |
---|
2097 | |
---|
2098 | ! Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and micro- |
---|
2099 | ! scale structure and organization of clouds and precipitation in |
---|
2100 | ! midlatitude cyclones. VII: A model for the ‘‘seeder-feeder’’ |
---|
2101 | ! process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206 |
---|
2102 | |
---|
2103 | ! Thompson, G., R. M. Rasmussen, and K. Manning, 004: Explicit |
---|
2104 | ! forecasts of winter precipitation using an improved bulk |
---|
2105 | ! microphysics scheme. Part I: Description and sensitivityThompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit |
---|
2106 | ! forecasts of winter precipitation using an improved bulk |
---|
2107 | ! microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542 |
---|
2108 | |
---|
2109 | ! For the formation of clouds by thermals: |
---|
2110 | |
---|
2111 | ! Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary layer : Representation of cumulus clouds. Journal of |
---|
2112 | ! the Atmospheric Sciences, 65, 407–425. |
---|
2113 | |
---|
2114 | ! Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013). Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a |
---|
2115 | ! statistical scheme for cumulus clouds. Boundary-layer Meteorology, 147, 421–441. https://doi.org/10.1007/s10546-012-9789-3 |
---|
2116 | |
---|
2117 | |
---|
2118 | |
---|
2119 | ! Contact: Etienne Vignon, etienne.vignon@lmd.ipsl.fr |
---|
2120 | !============================================================================= |
---|
2121 | |
---|
2122 | USE phys_state_var_mod, ONLY: fm_therm, detr_therm, entr_therm |
---|
2123 | |
---|
2124 | IMPLICIT none |
---|
2125 | |
---|
2126 | INCLUDE "YOMCST.h" |
---|
2127 | |
---|
2128 | INTEGER, INTENT(IN) :: ind1,ind2, klev ! horizontal and vertical indices and dimensions |
---|
2129 | INTEGER, INTENT(IN) :: iflag_topthermals ! uppermost layer of thermals ? |
---|
2130 | REAL, INTENT(IN) :: Ni ! ice number concentration [m-3] |
---|
2131 | REAL, INTENT(IN) :: Ei ! ice-droplet collision efficiency |
---|
2132 | REAL, INTENT(IN) :: C_cap ! ice crystal capacitance |
---|
2133 | REAL, INTENT(IN) :: d_top ! cloud-top ice crystal mixing parameter |
---|
2134 | REAL, DIMENSION(klev), INTENT(IN) :: temp ! temperature [K] within thermals |
---|
2135 | REAL, DIMENSION(klev), INTENT(IN) :: pres ! pressure [Pa] |
---|
2136 | REAL, DIMENSION(klev), INTENT(IN) :: qth ! mean specific water content in thermals [kg/kg] |
---|
2137 | REAL, DIMENSION(klev), INTENT(IN) :: qsith ! saturation specific humidity wrt ice in thermals [kg/kg] |
---|
2138 | REAL, DIMENSION(klev), INTENT(IN) :: qlth ! condensed liquid water in thermals, approximated value [kg/kg] |
---|
2139 | REAL, DIMENSION(klev), INTENT(IN) :: deltazlev ! layer thickness [m] |
---|
2140 | REAL, DIMENSION(klev), INTENT(IN) :: vith ! ice crystal fall velocity [m/s] |
---|
2141 | REAL, DIMENSION(klev+1), INTENT(IN) :: fraca ! fraction of the mesh covered by thermals |
---|
2142 | REAL, DIMENSION(klev), INTENT(INOUT) :: qith ! condensed ice water , thermals [kg/kg] |
---|
2143 | |
---|
2144 | |
---|
2145 | INTEGER ind2p1,ind2p2 |
---|
2146 | REAL rho(klev) |
---|
2147 | REAL unsurtaudet, unsurtaustardep, unsurtaurim |
---|
2148 | REAL qi, AA, BB, Ka, Dv, rhoi |
---|
2149 | REAL p0, t0, fp1, fp2 |
---|
2150 | REAL alpha, flux_term |
---|
2151 | REAL det_term, precip_term, rim_term, dep_term |
---|
2152 | |
---|
2153 | |
---|
2154 | ind2p1=ind2+1 |
---|
2155 | ind2p2=ind2+2 |
---|
2156 | |
---|
2157 | rho=pres/temp/RD ! air density kg/m3 |
---|
2158 | |
---|
2159 | Ka=2.4e-2 ! thermal conductivity of the air, SI |
---|
2160 | p0=101325.0 ! ref pressure |
---|
2161 | T0=273.15 ! ref temp |
---|
2162 | rhoi=500.0 ! cloud ice density following Reisner et al. 1998 |
---|
2163 | alpha=700. ! fallvelocity param |
---|
2164 | |
---|
2165 | |
---|
2166 | IF (iflag_topthermals > 0) THEN ! uppermost thermals levels |
---|
2167 | |
---|
2168 | Dv=0.0001*0.211*(p0/pres(ind2))*((temp(ind2)/T0)**1.94) ! water vapor diffusivity in air, SI |
---|
2169 | |
---|
2170 | ! Detrainment term: |
---|
2171 | |
---|
2172 | unsurtaudet=detr_therm(ind1,ind2)/rho(ind2)/deltazlev(ind2) |
---|
2173 | |
---|
2174 | |
---|
2175 | ! Deposition term |
---|
2176 | AA=RLSTT/Ka/temp(ind2)*(RLSTT/RV/temp(ind2)-1.) |
---|
2177 | BB=1./(rho(ind2)*Dv*qsith(ind2)) |
---|
2178 | unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2)-qsith(ind2))/qsith(ind2) & |
---|
2179 | *4.*RPI/(AA+BB)*(6.*rho(ind2)/rhoi/RPI/Gamma(4.))**(0.33) |
---|
2180 | |
---|
2181 | ! Riming term neglected at this level |
---|
2182 | !unsurtaurim=rho(ind2)*alpha*3./rhoi/2.*Ei*qlth(ind2)*((p0/pres(ind2))**0.4) |
---|
2183 | |
---|
2184 | qi=fraca(ind2)*unsurtaustardep/MAX((d_top*unsurtaudet),1E-12) |
---|
2185 | qi=MAX(qi,0.)**(3./2.) |
---|
2186 | |
---|
2187 | ELSE ! other levels, estimate qi(k) from variables at k+1 and k+2 |
---|
2188 | |
---|
2189 | Dv=0.0001*0.211*(p0/pres(ind2p1))*((temp(ind2p1)/T0)**1.94) ! water vapor diffusivity in air, SI |
---|
2190 | |
---|
2191 | ! Detrainment term: |
---|
2192 | |
---|
2193 | unsurtaudet=detr_therm(ind1,ind2p1)/rho(ind2p1)/deltazlev(ind2p1) |
---|
2194 | det_term=-unsurtaudet*qith(ind2p1)*rho(ind2p1) |
---|
2195 | |
---|
2196 | |
---|
2197 | ! Deposition term |
---|
2198 | |
---|
2199 | AA=RLSTT/Ka/temp(ind2p1)*(RLSTT/RV/temp(ind2p1)-1.) |
---|
2200 | BB=1./(rho(ind2p1)*Dv*qsith(ind2p1)) |
---|
2201 | unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2p1)-qsith(ind2p1)) & |
---|
2202 | /qsith(ind2p1)*4.*RPI/(AA+BB) & |
---|
2203 | *(6.*rho(ind2p1)/rhoi/RPI/Gamma(4.))**(0.33) |
---|
2204 | dep_term=rho(ind2p1)*fraca(ind2p1)*(qith(ind2p1)**0.33)*unsurtaustardep |
---|
2205 | |
---|
2206 | ! Riming term |
---|
2207 | |
---|
2208 | unsurtaurim=rho(ind2p1)*alpha*3./rhoi/2.*Ei*qlth(ind2p1)*((p0/pres(ind2p1))**0.4) |
---|
2209 | rim_term=rho(ind2p1)*fraca(ind2p1)*qith(ind2p1)*unsurtaurim |
---|
2210 | |
---|
2211 | ! Precip term |
---|
2212 | |
---|
2213 | ! We assume that there is no solid precipitation outside thermals |
---|
2214 | ! so the precipitation flux within thermals is equal to the precipitation flux |
---|
2215 | ! at mesh-scale divided by thermals fraction |
---|
2216 | |
---|
2217 | fp2=0. |
---|
2218 | fp1=0. |
---|
2219 | IF (fraca(ind2p1) > 0.) THEN |
---|
2220 | fp2=-qith(ind2p2)*rho(ind2p2)*vith(ind2p2)*fraca(ind2p2)! flux defined positive upward |
---|
2221 | fp1=-qith(ind2p1)*rho(ind2p1)*vith(ind2p1)*fraca(ind2p1) |
---|
2222 | ENDIF |
---|
2223 | |
---|
2224 | precip_term=-1./deltazlev(ind2p1)*(fp2-fp1) |
---|
2225 | |
---|
2226 | ! Calculation in a top-to-bottom loop |
---|
2227 | |
---|
2228 | IF (fm_therm(ind1,ind2p1) > 0.) THEN |
---|
2229 | qi= 1./fm_therm(ind1,ind2p1)* & |
---|
2230 | (deltazlev(ind2p1)*(-rim_term-dep_term-det_term-precip_term) + & |
---|
2231 | fm_therm(ind1,ind2p2)*(qith(ind2p1))) |
---|
2232 | END IF |
---|
2233 | |
---|
2234 | ENDIF ! top thermals |
---|
2235 | |
---|
2236 | qith(ind2)=MAX(0.,qi) |
---|
2237 | |
---|
2238 | |
---|
2239 | |
---|
2240 | END SUBROUTINE ICE_MPC_BL_CLOUDS |
---|
2241 | |
---|
2242 | END MODULE lmdz_cloudth |
---|