1 | SUBROUTINE INLANDSIS(SnoMod,BloMod,jjtime,debut) |
---|
2 | |
---|
3 | USE dimphy |
---|
4 | |
---|
5 | !--------------------------------------------------------------------------+ |
---|
6 | ! INLANDSIS module | |
---|
7 | ! Simplified SISVAT module, containing ice and snow processes for | |
---|
8 | ! ice-covered surfaces | |
---|
9 | ! version MARv3, november 2020 | |
---|
10 | ! SubRoutine INLANDSIS contains the fortran 77 code of the | |
---|
11 | ! Soil/Ice Snow Vegetation Atmosphere Transfer Scheme | |
---|
12 | ! | |
---|
13 | !--------------------------------------------------------------------------+ |
---|
14 | ! PARAMETERS: klonv: Total Number of columns = | |
---|
15 | ! ^^^^^^^^^^ = Total Number of continental grid boxes | |
---|
16 | ! X Number of Mosaic Cell per grid box | |
---|
17 | ! | |
---|
18 | ! INPUT: daHost : Date Host Model | |
---|
19 | ! ^^^^^ | |
---|
20 | ! | |
---|
21 | ! INPUT: LSmask : 1: Land MASK | |
---|
22 | ! ^^^^^ 0: Sea MASK | |
---|
23 | ! isotSV = 0,...,12: Soil Type | |
---|
24 | ! 0: Water, Liquid (Sea, Lake) | |
---|
25 | ! 12: Water, Solid (Ice) | |
---|
26 | ! | |
---|
27 | ! INPUT: coszSV : Cosine of the Sun Zenithal Distance [-] | |
---|
28 | ! ^^^^^ sol_SV : Surface Downward Solar Radiation [W/m2] | |
---|
29 | ! IRd_SV : Surface Downward Longwave Radiation [W/m2] | |
---|
30 | ! drr_SV : Rain Intensity [kg/m2/s] | |
---|
31 | ! dsn_SV : Snow Intensity [mm w.e./s] | |
---|
32 | ! dsnbSV : Snow Intensity, Drift Fraction [-] | |
---|
33 | ! dbs_SV : Drift Amount [mm w.e.] | |
---|
34 | ! za__SV : Surface Boundary Layer (SBL) Height [m] | |
---|
35 | ! VV__SV :(SBL Top) Wind Velocity [m/s] | |
---|
36 | ! TaT_SV : SBL Top Temperature [K] | |
---|
37 | ! rhT_SV : SBL Top Air Density [kg/m3] | |
---|
38 | ! QaT_SV : SBL Top Specific Humidity [kg/kg] | |
---|
39 | ! qsnoSV : SBL Mean Snow Content [kg/kg] | |
---|
40 | ! alb0SV : Soil Basic Albedo [-] | |
---|
41 | ! slopSV : Surface Slope [-] | |
---|
42 | ! dt__SV : Time Step [s] | |
---|
43 | ! | |
---|
44 | ! INPUT / isnoSV = total Nb of Ice/Snow Layers | |
---|
45 | ! OUTPUT: ispiSV = 0,...,nsno: Uppermost Superimposed Ice Layer | |
---|
46 | ! ^^^^^^ iiceSV = total Nb of Ice Layers | |
---|
47 | ! istoSV = 0,...,5 : Snow History (see istdSV data) | |
---|
48 | ! | |
---|
49 | ! INPUT / alb_SV : Surface Albedo [-] | |
---|
50 | ! OUTPUT: emi_SV : Surface Emissivity [-] | |
---|
51 | ! ^^^^^^ IRs_SV : Soil IR Flux (negative) [W/m2] | |
---|
52 | ! LMO_SV : Monin-Obukhov Scale [m] | |
---|
53 | ! us__SV : Friction Velocity [m/s] | |
---|
54 | ! uts_SV : Temperature Turbulent Scale [m/s] | |
---|
55 | ! uqs_SV : Specific Humidity Velocity [m/s] | |
---|
56 | ! uss_SV : Blowing Snow Turbulent Scale [m/s] | |
---|
57 | ! usthSV : Blowing Snow Erosion Threshold [m/s] | |
---|
58 | ! Z0m_SV : Momentum Roughness Length [m] | |
---|
59 | ! Z0mmSV : Momentum Roughness Length (time mean) [m] | |
---|
60 | ! Z0mnSV : Momentum Roughness Length (instantaneous)[m] | |
---|
61 | ! Z0SaSV : Sastrugi Roughness Length [m] | |
---|
62 | ! Z0e_SV : Erosion Snow Roughness Length [m] | |
---|
63 | ! Z0emSV : Erosion Snow Roughness Length (time mean) [m] | |
---|
64 | ! Z0enSV : Erosion Snow Roughness Length (instantaneous)[m] | |
---|
65 | ! Z0roSV : Subgrid Topo Roughness Length [m] | |
---|
66 | ! Z0h_SV : Heat Roughness Length [m] | |
---|
67 | ! TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| |
---|
68 | ! & Snow Temperatures (layers 1,2,...,nsno) [K] | |
---|
69 | ! ro__SV : Soil/Snow Volumic Mass [kg/m3] | |
---|
70 | ! eta_SV : Soil/Snow Water Content [m3/m3] | |
---|
71 | ! G1snSV : snow dendricity/sphericity | |
---|
72 | ! G2snSV : snow sphericity/grain size | |
---|
73 | ! dzsnSV : Snow Layer Thickness [m] | |
---|
74 | ! agsnSV : Snow Age [day] | |
---|
75 | ! BufsSV : Snow Buffer Layer [kg/m2] .OR. [mm] | |
---|
76 | ! BrosSV : Snow Buffer Layer Density [kg/m3] | |
---|
77 | ! BG1sSV : Snow Buffer Layer Dendricity / Sphericity [-] | |
---|
78 | ! BG2sSV : Snow Buffer Layer Sphericity / Size [-] [0.1 mm] | |
---|
79 | ! rusnSV : Surficial Water [kg/m2] .OR. [mm] | |
---|
80 | ! | |
---|
81 | ! OUTPUT: no__SV : OUTPUT file Unit Number [-] | |
---|
82 | ! ^^^^^^ i___SV : OUTPUT point i Coordinate [-] | |
---|
83 | ! j___SV : OUTPUT point j Coordinate [-] | |
---|
84 | ! n___SV : OUTPUT point n Coordinate [-] | |
---|
85 | ! lwriSV : OUTPUT point vec Index [-] | |
---|
86 | ! | |
---|
87 | ! OUTPUT: IRu_SV : Upward IR Flux (+, upw., effective) [K] | |
---|
88 | ! ^^^^^^ hSalSV : Saltating Layer Height [m] | |
---|
89 | ! qSalSV : Saltating Snow Concentration [kg/kg] | |
---|
90 | ! RnofSV : RunOFF Intensity [kg/m2/s] | |
---|
91 | ! | |
---|
92 | ! Internal Variables: | |
---|
93 | ! ^^^^^^^^^^^^^^^^^^ | |
---|
94 | ! NLaysv = New Snow Layer Switch [-] | |
---|
95 | ! albisv : Snow/Ice/Water/Soil Integrated Albedo [-] | |
---|
96 | ! SoSosv : Absorbed Solar Radiation by Surfac.(Normaliz)[-] | |
---|
97 | ! TBr_sv : Brightness Temperature [K] | |
---|
98 | ! IRupsv : Upward IR Flux (-, upw.) [W/m2] | |
---|
99 | ! ram_sv : Aerodynamic Resistance for Momentum [s/m] | |
---|
100 | ! rah_sv : Aerodynamic Resistance for Heat [s/m] | |
---|
101 | ! Evp_sv : Evaporation [kg/m2] | |
---|
102 | ! EvT_sv : Evapotranspiration [kg/m2] | |
---|
103 | ! HSs_sv : Surface Sensible Heat Flux + => absorb.[W/m2] | |
---|
104 | ! HLs_sv : Surface Latent Heat Flux + => absorb.[W/m2] | |
---|
105 | ! Lx_H2O : Latent Heat of Vaporization/Sublimation [J/kg] | |
---|
106 | ! Tsrfsv : Surface Temperature [K] | |
---|
107 | ! sEX_sv : Verticaly Integrated Extinction Coefficient [-] | |
---|
108 | ! LSdzsv : Vertical Discretization Factor [-] | |
---|
109 | ! = 1. Soil | |
---|
110 | ! = 1000. Ocean | |
---|
111 | ! z_snsv : Snow Pack Thickness [m] | |
---|
112 | ! zzsnsv : Snow Pack Thickness [m] | |
---|
113 | ! albssv : Soil Albedo [-] | |
---|
114 | ! Eso_sv : Soil+Snow Emissivity [-] | |
---|
115 | ! Khydsv : Soil Hydraulic Conductivity [m/s] | |
---|
116 | ! | |
---|
117 | ! ETSo_0 : Snow/Soil Energy Power, before Forcing [W/m2] | |
---|
118 | ! ETSo_1 : Snow/Soil Energy Power, after Forcing [W/m2] | |
---|
119 | ! ETSo_d : Snow/Soil Energy Power Forcing [W/m2] | |
---|
120 | ! EqSn_0 : Snow Energy, before Phase Change [J/m2] | |
---|
121 | ! EqSn_1 : Snow Energy, after Phase Change [J/m2] | |
---|
122 | ! EqSn_d : Snow Energy, net Forcing [J/m2] | |
---|
123 | ! Enrsvd : SVAT Energy Power Forcing [W/m2] | |
---|
124 | ! Enrbal : SVAT Energy Balance [W/m2] | |
---|
125 | ! Wats_0 : Soil Water, before Forcing [mm] | |
---|
126 | ! Wats_1 : Soil Water, after Forcing [mm] | |
---|
127 | ! Wats_d : Soil Water Forcing [mm] | |
---|
128 | ! SIWm_0 : Snow initial Mass [mm w.e.] | |
---|
129 | ! SIWm_1 : Snow final Mass [mm w.e.] | |
---|
130 | ! SIWa_i : Snow Atmos. initial Forcing [mm w.e.] | |
---|
131 | ! SIWa_f : Snow Atmos. final Forcing(noConsumed)[mm w.e.] | |
---|
132 | ! SIWe_i : SnowErosion initial Forcing [mm w.e.] | |
---|
133 | ! SIWe_f : SnowErosion final Forcing(noConsumed)[mm w.e.] | |
---|
134 | ! SIsubl : Snow sublimed/deposed Mass [mm w.e.] | |
---|
135 | ! SImelt : Snow Melted Mass [mm w.e.] | |
---|
136 | ! SIrnof : Surficial Water + Run OFF Change [mm w.e.] | |
---|
137 | ! SIvAcr : Sea-Ice vertical Acretion [mm w.e.] | |
---|
138 | ! Watsvd : SVAT Water Forcing [mm] | |
---|
139 | ! Watbal : SVAT Water Balance [W/m2] | |
---|
140 | ! | |
---|
141 | ! vk2 : Square of Von Karman Constant [-] | |
---|
142 | ! sqrCm0 : Factor of Neutral Drag Coeffic.Momentum [s/m] | |
---|
143 | ! sqrCh0 : Factor of Neutral Drag Coeffic.Heat [s/m] | |
---|
144 | ! EmiSol : Soil Emissivity [-] | |
---|
145 | ! EmiSno : Snow Emissivity [-] | |
---|
146 | ! EmiWat : Water Emissivity [-] | |
---|
147 | ! Z0mLnd : Land Roughness Length [m] | |
---|
148 | ! sqrrZ0 : u*t/u* | |
---|
149 | ! f_eff : Marticorena & B. 1995 JGR (20) | |
---|
150 | ! A_Fact : Fundamental * Roughness | |
---|
151 | ! Z0mBSn : BSnow Roughness Length [m] | |
---|
152 | ! Z0mBS0 : Mimimum BSnow Roughness Length (blown* ) [m] | |
---|
153 | ! Z0m_Sn : Snow Roughness Length (surface) [m] | |
---|
154 | ! Z0m_S0 : Mimimum Snow Roughness Length [m] | |
---|
155 | ! Z0m_S1 : Maximum Snow Roughness Length [m] | |
---|
156 | ! Z0_GIM : Minimum GIMEX Roughness Length [m] | |
---|
157 | ! Z0_ICE : Sea Ice ISW Roughness Length [m] | |
---|
158 | ! | |
---|
159 | ! | |
---|
160 | !--------------------------------------------------------------------------+ |
---|
161 | |
---|
162 | |
---|
163 | |
---|
164 | ! Global Variables |
---|
165 | ! ================ |
---|
166 | |
---|
167 | |
---|
168 | USE VARphy |
---|
169 | USE VAR_SV |
---|
170 | USE VARdSV |
---|
171 | USE VAR0SV |
---|
172 | USE VARxSV |
---|
173 | USE VARySV |
---|
174 | USE VARtSV |
---|
175 | USE surface_data, ONLY: is_ok_z0h_rn, & |
---|
176 | is_ok_density_kotlyakov, & |
---|
177 | prescribed_z0m_snow, & |
---|
178 | iflag_z0m_snow, & |
---|
179 | iflag_tsurf_inlandsis, & |
---|
180 | iflag_temp_inlandsis, & |
---|
181 | discret_xf, buf_sph_pol,buf_siz_pol |
---|
182 | |
---|
183 | IMPLICIT NONE |
---|
184 | |
---|
185 | LOGICAL :: SnoMod |
---|
186 | LOGICAL :: BloMod |
---|
187 | LOGICAL :: debut |
---|
188 | INTEGER :: jjtime |
---|
189 | |
---|
190 | |
---|
191 | ! Internal Variables |
---|
192 | ! ================== |
---|
193 | |
---|
194 | ! Non Local |
---|
195 | ! --------- |
---|
196 | |
---|
197 | REAL :: TBr_sv(klonv) ! Brightness Temperature |
---|
198 | REAL :: IRdwsv(klonv) ! DOWNward IR Flux |
---|
199 | REAL :: IRupsv(klonv) ! UPward IR Flux |
---|
200 | REAL :: d_Bufs,Bufs_N ! Buffer Snow Layer Increment |
---|
201 | REAL :: Buf_ro,Bros_N ! Buffer Snow Layer Density |
---|
202 | REAL :: BufPro ! Buffer Snow Layer Density |
---|
203 | REAL :: Buf_G1,BG1__N ! Buffer Snow Layer Dendr/Sphe[-] |
---|
204 | REAL :: Buf_G2,BG2__N ! Buffer Snow Layer Spher/Size[-] |
---|
205 | REAL :: Bdzssv(klonv) ! Buffer Snow Layer Thickness |
---|
206 | REAL :: z_snsv(klonv) ! Snow-Ice, current Thickness |
---|
207 | |
---|
208 | |
---|
209 | |
---|
210 | ! Local |
---|
211 | ! ----- |
---|
212 | |
---|
213 | INTEGER :: iwr |
---|
214 | INTEGER :: ikl ,isn ,isl ,ist ! |
---|
215 | INTEGER :: ist__s,ist__w ! Soil/Water Body Identifier |
---|
216 | INTEGER :: growth ! Seasonal Mask |
---|
217 | INTEGER :: LISmsk ! Land+Ice / Open Sea Mask |
---|
218 | INTEGER :: LSnMsk ! Snow-Ice / No Snow-Ice Mask |
---|
219 | INTEGER :: IceMsk,IcIndx(klonv) ! Ice / No Ice Mask |
---|
220 | INTEGER :: SnoMsk ! Snow / No Snow Mask |
---|
221 | REAL :: roSMin,roSMax,roSn_1,roSn_2,roSn_3 ! Fallen Snow Density (PAHAUT) |
---|
222 | REAL :: Dendr1,Dendr2,Dendr3 ! Fallen Snow Dendric.(GIRAUD) |
---|
223 | REAL :: Spher1,Spher2,Spher3,Spher4 ! Fallen Snow Spheric.(GIRAUD) |
---|
224 | REAL :: Polair ! Polar Snow Switch |
---|
225 | REAL :: PorSno,Salt_f,PorRef ! |
---|
226 | ! #sw real PorVol,rWater ! |
---|
227 | ! #sw real rusNEW,rdzNEW,etaNEW ! |
---|
228 | REAL :: ro_new ! |
---|
229 | REAL :: TaPole ! Maximum Polar Temperature |
---|
230 | REAL :: T__Min ! Minimum realistic Temperature |
---|
231 | REAL :: EmiSol ! Emissivity of Soil |
---|
232 | REAL :: EmiSno ! Emissivity of Snow |
---|
233 | REAL :: EmiWat ! Emissivity of a Water Area |
---|
234 | REAL :: vk2 ! Square of Von Karman Constant |
---|
235 | REAL :: u2star !(u*)**2 |
---|
236 | REAL :: Z0mLnd ! Land Roughness Length |
---|
237 | ! #ZN real sqrrZ0 ! u*t/u* |
---|
238 | REAL :: f_eff ! Marticorena & B. 1995 JGR (20) |
---|
239 | REAL :: A_Fact ! Fundamental * Roughness |
---|
240 | REAL :: Z0m_nu ! Smooth R Snow Roughness Length |
---|
241 | REAL :: Z0mBSn ! BSnow Roughness Length |
---|
242 | REAL :: Z0mBS0 ! Mimimum BSnow Roughness Length |
---|
243 | REAL :: Z0m_S0 ! Mimimum Snow Roughness Length |
---|
244 | REAL :: Z0m_S1 ! Maximum Snow Roughness Length |
---|
245 | ! #SZ real Z0Sa_N ! Regime Snow Roughness Length |
---|
246 | ! #SZ real Z0SaSi ! 1.IF Rgm Snow Roughness Length |
---|
247 | ! #GL real Z0_GIM ! Mimimum GIMEX Roughness Length |
---|
248 | REAL :: Z0_ICE ! Ice ISW Roughness Length |
---|
249 | REAL :: Z0m_Sn,Z0m_90 ! Snow Surface Roughness Length |
---|
250 | REAL :: SnoWat ! Snow Layer Switch |
---|
251 | REAL :: rstar,alors ! |
---|
252 | REAL :: rstar0,rstar1,rstar2 ! |
---|
253 | REAL :: SameOK ! 1. => Same Type of Grains |
---|
254 | REAL :: G1same ! Averaged G1, same Grains |
---|
255 | REAL :: G2same ! Averaged G2, same Grains |
---|
256 | REAL :: typ__1 ! 1. => Lay1 Type: Dendritic |
---|
257 | REAL :: zroNEW ! dz X ro, if fresh Snow |
---|
258 | REAL :: G1_NEW ! G1, if fresh Snow |
---|
259 | REAL :: G2_NEW ! G2, if fresh Snow |
---|
260 | REAL :: zroOLD ! dz X ro, if old Snow |
---|
261 | REAL :: G1_OLD ! G1, if old Snow |
---|
262 | REAL :: G2_OLD ! G2, if old Snow |
---|
263 | REAL :: SizNEW ! Size, if fresh Snow |
---|
264 | REAL :: SphNEW ! Spheric.,if fresh Snow |
---|
265 | REAL :: SizOLD ! Size, if old Snow |
---|
266 | REAL :: SphOLD ! Spheric.,if old Snow |
---|
267 | REAL :: Siz_av ! Averaged Grain Size |
---|
268 | REAL :: Sph_av ! Averaged Grain Spher. |
---|
269 | REAL :: Den_av ! Averaged Grain Dendr. |
---|
270 | REAL :: G1diff ! Averaged G1, diff. Grains |
---|
271 | REAL :: G2diff ! Averaged G2, diff. Grains |
---|
272 | REAL :: G1 ! Averaged G1 |
---|
273 | REAL :: G2 ! Averaged G2 |
---|
274 | REAL :: param ! Polynomial fit z0=f(T) |
---|
275 | REAL :: Z0_obs ! Fit Z0_obs=f(T) (m) |
---|
276 | REAL :: tamin ! min T of linear fit (K) |
---|
277 | REAL :: tamax ! max T of linear fit (K) |
---|
278 | REAL :: coefa,coefb,coefc,coefd ! Coefs for z0=f(T) |
---|
279 | REAL :: ta1,ta2,ta3 ! Air temperature thresholds |
---|
280 | REAL :: z01,z02,z03 ! z0 thresholds |
---|
281 | REAL :: tt_c,vv_c ! Critical param. |
---|
282 | REAL :: tt_tmp,vv_tmp,vv_virt ! Temporary variables |
---|
283 | REAL :: e_prad,e1pRad,A_Rad0,absg_V,absgnI,exdRad ! variables for SoSosv calculations |
---|
284 | REAL :: zm1, zm2, coefslope ! variables for surface temperature extrapolation |
---|
285 | ! for Aeolian erosion and blowing snow |
---|
286 | INTEGER :: nit ,iit |
---|
287 | REAL :: Fac ! Correc. factor for drift ratio |
---|
288 | REAL :: dusuth,signus |
---|
289 | REAL :: sss__F,sss__N |
---|
290 | REAL :: sss__K,sss__G |
---|
291 | REAL :: us_127,us_227,us_327,us_427,us_527 |
---|
292 | REAL :: VVa_OK, usuth0 |
---|
293 | REAL :: ssstar |
---|
294 | REAL :: SblPom |
---|
295 | REAL :: rCd10n ! Square root of drag coefficient |
---|
296 | REAL :: DendOK ! Dendricity Switch |
---|
297 | REAL :: SaltOK ! Saltation Switch |
---|
298 | REAL :: MeltOK ! Saltation Switch (Melting Snow) |
---|
299 | REAL :: SnowOK ! Pack Top Switch |
---|
300 | REAL :: SaltM1,SaltM2,SaltMo,SaltMx ! Saltation Parameters |
---|
301 | REAL :: ShearX, ShearS ! Arg. Max Shear Stress |
---|
302 | REAL :: Por_BS ! Snow Porosity |
---|
303 | REAL :: Salt_us ! New thresh.friction velocity u*t |
---|
304 | REAL :: Fac_Mo,ArguSi,FacRho ! Numerical factors for u*t |
---|
305 | REAL :: SaltSI(klonv,0:nsno) ! Snow Drift Index ! |
---|
306 | REAL :: MIN_Mo ! Minimum Mobility Fresh Fallen * |
---|
307 | CHARACTER(LEN=3) :: qsalt_param ! Switch for saltation flux param. |
---|
308 | CHARACTER(LEN=3) :: usth_param ! Switch for u*t param |
---|
309 | |
---|
310 | |
---|
311 | ! Internal DATA |
---|
312 | ! ============= |
---|
313 | |
---|
314 | data T__Min / 200.00/ ! Minimum realistic Temperature |
---|
315 | data TaPole / 268.15/ ! Maximum Polar Temperature (value from C. Agosta) |
---|
316 | data roSMin / 300. / ! Minimum Snow Density |
---|
317 | data roSMax / 400. / ! Max Fresh Snow Density |
---|
318 | data tt_c / -2.0 / ! Critical Temp. (degC) |
---|
319 | data vv_c / 14.3 / ! Critical Wind speed (m/s) |
---|
320 | data roSn_1 / 109. / ! Fall.Sno.Density, Indep. Param. |
---|
321 | data roSn_2 / 6. / ! Fall.Sno.Density, Temper.Param. |
---|
322 | data roSn_3 / 26. / ! Fall.Sno.Density, Wind Param. |
---|
323 | data Dendr1 / 17.12/ ! Fall.Sno.Dendric.,Wind 1/Param. |
---|
324 | data Dendr2 / 128. / ! Fall.Sno.Dendric.,Wind 2/Param. |
---|
325 | data Dendr3 / -20. / ! Fall.Sno.Dendric.,Indep. Param. |
---|
326 | data Spher1 / 7.87/ ! Fall.Sno.Spheric.,Wind 1/Param. |
---|
327 | data Spher2 / 38. / ! Fall.Sno.Spheric.,Wind 2/Param. |
---|
328 | data Spher3 / 50. / ! Fall.Sno.Spheric.,Wind 3/Param. |
---|
329 | data Spher4 / 90. / ! Fall.Sno.Spheric.,Indep. Param. |
---|
330 | data EmiSol / 0.99999999/ ! 0.94Emissivity of Soil |
---|
331 | data EmiWat / 0.99999999/ ! Emissivity of a Water Area |
---|
332 | data EmiSno / 0.99999999/ ! Emissivity of Snow |
---|
333 | |
---|
334 | |
---|
335 | ! DATA Emissivities ! Pielke, 1984, pp. 383,409 |
---|
336 | |
---|
337 | data Z0mBS0 / 0.5e-6/ ! MINimum Snow Roughness Length |
---|
338 | ! for Momentum if Blowing Snow |
---|
339 | ! Gallee et al. 2001 BLM 99 (19) |
---|
340 | data Z0m_S0/ 0.00005/ ! MINimum Snow Roughness Length |
---|
341 | ! MegaDunes included |
---|
342 | data Z0m_S1/ 0.030 / ! MAXimum Snow Roughness Length |
---|
343 | ! (Sastrugis) |
---|
344 | ! #GL data Z0_GIM/ 0.0013/ ! Ice Min Z0 = 0.0013 m (Broeke) |
---|
345 | ! Old Ice Z0 = 0.0500 m (Bruce) |
---|
346 | ! 0.0500 m (Smeets) |
---|
347 | ! 0.1200 m (Broeke) |
---|
348 | data Z0_ICE/ 0.0010/ ! Sea-Ice Z0 = 0.0010 m (Andreas) |
---|
349 | ! (Ice Station Weddel -- ISW) |
---|
350 | ! for aerolian erosion |
---|
351 | data SblPom/ 1.27/ ! Lower Boundary Height Parameter |
---|
352 | ! + ! for Suspension |
---|
353 | ! + ! Pommeroy, Gray and Landine 1993, |
---|
354 | ! + ! J. Hydrology, 144(8) p.169 |
---|
355 | data nit / 5 / ! us(is0,uth) recursivity: Nb Iterations |
---|
356 | !c#AE data qsalt_param/"bin"/ ! saltation part. conc. from Bintanja 2001 (p |
---|
357 | data qsalt_param/"pom"/ ! saltation part. conc. from Pomeroy and Gray |
---|
358 | !c#AE data usth_param/"lis"/ ! u*t from Liston et al. 2007 |
---|
359 | data usth_param/"gal"/ ! u*t from Gallee et al. 2001 |
---|
360 | data SaltMx/-5.83e-2/ |
---|
361 | |
---|
362 | vk2 = vonKrm * vonKrm ! Square of Von Karman Constant |
---|
363 | |
---|
364 | |
---|
365 | ! BEGIN.main. |
---|
366 | ! =========================== |
---|
367 | |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | ! "Soil" Humidity of Water Bodies |
---|
372 | ! =============================== |
---|
373 | |
---|
374 | DO ikl=1,knonv |
---|
375 | |
---|
376 | ist = isotSV(ikl) ! Soil Type |
---|
377 | ist__s = min(ist, 1) ! 1 => Soil |
---|
378 | ist__w = 1 - ist__s ! 1 => Water Body |
---|
379 | DO isl=-nsol,0 |
---|
380 | eta_SV(ikl,isl) = eta_SV(ikl,isl) * ist__s & ! Soil |
---|
381 | + etadSV(ist) * ist__w ! Water Body |
---|
382 | END DO |
---|
383 | |
---|
384 | |
---|
385 | ! Vertical Discretization Factor |
---|
386 | ! ============================== |
---|
387 | |
---|
388 | LSdzsv(ikl) = ist__s & ! Soil |
---|
389 | + OcndSV * ist__w ! Water Body |
---|
390 | END DO |
---|
391 | |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | |
---|
396 | IF (SnoMod) THEN |
---|
397 | |
---|
398 | |
---|
399 | ! +--Aeolian erosion and Blowing Snow |
---|
400 | ! +================================== |
---|
401 | |
---|
402 | |
---|
403 | |
---|
404 | DO ikl=1,knonv |
---|
405 | usthSV(ikl) = 1.0e+2 |
---|
406 | END DO |
---|
407 | |
---|
408 | |
---|
409 | IF (BloMod) THEN |
---|
410 | |
---|
411 | IF (klonv==1) THEN |
---|
412 | IF(isnoSV(1)>=2 .AND. & |
---|
413 | TsisSV(1,max(1,isnoSV(1)))<273. .AND. & |
---|
414 | ro__SV(1,max(1,isnoSV(1)))<500. .AND. & |
---|
415 | eta_SV(1,max(1,isnoSV(1)))<epsi) THEN |
---|
416 | ! + ********** |
---|
417 | CALL SISVAT_BSn |
---|
418 | endif |
---|
419 | else |
---|
420 | CALL SISVAT_BSn |
---|
421 | ! + ********** |
---|
422 | endif |
---|
423 | |
---|
424 | |
---|
425 | |
---|
426 | |
---|
427 | |
---|
428 | |
---|
429 | |
---|
430 | ! Calculate threshold erosion velocity for next time step |
---|
431 | ! Unlike in sisvat, computation is of threshold velocity made here (instead of sisvaesbl) |
---|
432 | ! since we do not use sisvatesbl for the coupling with LMDZ |
---|
433 | |
---|
434 | ! +--Computation of threshold friction velocity for snow erosion |
---|
435 | ! --------------------------------------------------------------- |
---|
436 | |
---|
437 | rCd10n = 1. / 26.5 ! Vt / u*t = 26.5 |
---|
438 | ! Budd et al. 1965, Antarct. Res. Series Fig.13 |
---|
439 | ! ratio developped during assumed neutral conditions |
---|
440 | |
---|
441 | |
---|
442 | ! +--Snow Properties |
---|
443 | ! + ~~~~~~~~~~~~~~~ |
---|
444 | |
---|
445 | DO ikl = 1,knonv |
---|
446 | |
---|
447 | isn = isnoSV(ikl) |
---|
448 | |
---|
449 | |
---|
450 | |
---|
451 | DendOK = max(zero,sign(unun,epsi-G1snSV(ikl,isn) )) ! |
---|
452 | SaltOK = min(1 , max(istdSV(2)-istoSV(ikl,isn),0)) ! |
---|
453 | MeltOK = (unun & ! |
---|
454 | -max(zero,sign(unun,TfSnow-epsi & ! |
---|
455 | -TsisSV(ikl,isn) ))) & ! Melting Snow |
---|
456 | * min(unun,DendOK & ! |
---|
457 | +(1.-DendOK) & ! |
---|
458 | *sign(unun, G2snSV(ikl,isn)-1.0)) ! 1.0 for 1mm |
---|
459 | SnowOK = min(1 , max(isnoSV(ikl) +1 -isn ,0)) ! Snow Switch |
---|
460 | |
---|
461 | G1snSV(ikl,isn) = SnowOK * G1snSV(ikl,isn) & |
---|
462 | + (1.- SnowOK)*min(G1snSV(ikl,isn),G1_dSV) |
---|
463 | G2snSV(ikl,isn) = SnowOK * G2snSV(ikl,isn) & |
---|
464 | + (1.- SnowOK)*min(G2snSV(ikl,isn),G1_dSV) |
---|
465 | |
---|
466 | SaltOK = min(unun, SaltOK + MeltOK) * SnowOK |
---|
467 | |
---|
468 | |
---|
469 | ! +--Mobility Index (Guyomarc'h & Merindol 1997, Ann.Glaciol.) |
---|
470 | ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
471 | SaltM1 = -0.750e-2 * G1snSV(ikl,isn) & |
---|
472 | -0.500e-2 * G2snSV(ikl,isn)+ 0.500e00 !dendritic case |
---|
473 | ! + CAUTION: Guyomarc'h & Merindol Dendricity Sign is + |
---|
474 | ! + ^^^^^^^^ MAR Dendricity Sign is - |
---|
475 | SaltM2 = -0.833d-2 * G1snSV(ikl,isn) & |
---|
476 | -0.583d-2 * G2snSV(ikl,isn)+ 0.833d00 !non-dendritic case |
---|
477 | |
---|
478 | ! SaltMo = (DendOK * SaltM1 + (1.-DendOK) * SaltM2 ) |
---|
479 | SaltMo = 0.625 !SaltMo pour d=s=0.5 |
---|
480 | |
---|
481 | !weighting SaltMo with surface snow density (Vionnet et al. 2012) |
---|
482 | !c#AE FacRho = 1.25 - 0.0042 * ro__SV(ikl,isn) |
---|
483 | !c#AE SaltMo = 0.34 * SaltMo + 0.66 * FacRho !needed for polar snow |
---|
484 | MIN_Mo = 0. |
---|
485 | ! SaltMo = max(SaltMo,MIN_Mo) |
---|
486 | ! SaltMo = SaltOK * SaltMo + (1.-SaltOK) * min(SaltMo,SaltMx) |
---|
487 | ! #TUNE SaltMo = SaltOK * SaltMo - (1.-SaltOK) * 0.9500 |
---|
488 | SaltMo = max(SaltMo,epsi-unun) |
---|
489 | |
---|
490 | ! +--Influence of Density on Threshold Shear Stress |
---|
491 | ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
492 | Por_BS = 1. - 300. / ro_Ice |
---|
493 | ShearS = Por_BS / (1.-Por_BS) |
---|
494 | ! +... SheaBS = Arg(sqrt(shear = max shear stress in snow)): |
---|
495 | ! + shear = 3.420d00 * exp(-(Por_BS +Por_BS) |
---|
496 | ! + . /(unun -Por_BS)) |
---|
497 | ! + SheaBS : see de Montmollin (1978), |
---|
498 | ! + These Univ. Sci. Medic. Grenoble, Fig. 1 p. 124 |
---|
499 | |
---|
500 | ! +--Snow Drift Index (Guyomarc'h & Merindol 1997, Ann.Glaciol.) |
---|
501 | ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
502 | ArguSi = -0.085 *us__SV(ikl)/rCd10n |
---|
503 | !V=u*/sqrt(CD) eqs 2 to 4 Gallee et al. 2001 |
---|
504 | |
---|
505 | SaltSI(ikl,isn) = -2.868 * exp(ArguSi) + 1 + SaltMo |
---|
506 | |
---|
507 | |
---|
508 | ! +--Threshold Friction Velocity |
---|
509 | ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
510 | IF(ro__SV(ikl,isn)>300.) THEN |
---|
511 | Por_BS = 1.000 - ro__SV(ikl,isn) /ro_Ice |
---|
512 | else |
---|
513 | Por_BS = 1.000 - 300. /ro_Ice |
---|
514 | endif |
---|
515 | |
---|
516 | ShearX = Por_BS/max(epsi,1.-Por_BS) |
---|
517 | Fac_Mo = exp(-ShearX+ShearS) |
---|
518 | ! + Gallee et al., 2001 eq 5, p5 |
---|
519 | |
---|
520 | IF (usth_param == "gal") THEN |
---|
521 | Salt_us = (log(2.868) - log(1 + SaltMo)) * rCd10n/0.085 |
---|
522 | Salt_us = Salt_us * Fac_Mo |
---|
523 | ! +... Salt_us : Extension of Guyomarc'h & Merindol 1998 with |
---|
524 | ! +... de Montmollin (1978). Gallee et al. 2001 |
---|
525 | endif |
---|
526 | |
---|
527 | IF (usth_param == "lis") then !Liston et al. 2007 |
---|
528 | IF(ro__SV(ikl,isn)>300.) THEN |
---|
529 | Salt_us = 0.005*exp(0.013*ro__SV(ikl,isn)) |
---|
530 | else |
---|
531 | Salt_us = 0.01*exp(0.003*ro__SV(ikl,isn)) |
---|
532 | endif |
---|
533 | endif |
---|
534 | |
---|
535 | SnowOK = 1 -min(1,iabs(isn-isnoSV(ikl))) !Switch new vs old snow |
---|
536 | |
---|
537 | usthSV(ikl) = SnowOK * (Salt_us) & |
---|
538 | + (1.-SnowOK)* usthSV(ikl) |
---|
539 | |
---|
540 | END DO |
---|
541 | |
---|
542 | |
---|
543 | |
---|
544 | ! Feeback between blowing snow turbulent Scale u* (commented here |
---|
545 | ! since ustar is an input variable (not in/out) of inlandsis) |
---|
546 | ! ----------------------------------------------------------------- |
---|
547 | |
---|
548 | |
---|
549 | ! VVa_OK = max(0.000001, VVaSBL(ikl)) |
---|
550 | ! sss__N = vonkar * VVa_OK |
---|
551 | ! sss__F = (sqrCm0(ikl) - psim_z + psim_0) |
---|
552 | ! usuth0 = sss__N /sss__F ! u* if NO Blow. Snow |
---|
553 | |
---|
554 | ! sss__G = 0.27417 * gravit |
---|
555 | |
---|
556 | ! ______________ _____ |
---|
557 | ! Newton-Raphson (! Iteration, BEGIN) |
---|
558 | ! ~~~~~~~~~~~~~~ ~~~~~ |
---|
559 | ! DO iit=1,nit |
---|
560 | ! sss__K = gravit * r_Turb * A_Turb *za__SV(ikl) |
---|
561 | ! . *rCDmSV(ikl)*rCDmSV(ikl) |
---|
562 | ! . /(1.+0.608*QaT_SV(ikl)-qsnoSV(ikl)) |
---|
563 | ! us_127 = exp( SblPom *log(us__SV(ikl))) |
---|
564 | ! us_227 = us_127 * us__SV(ikl) |
---|
565 | ! us_327 = us_227 * us__SV(ikl) |
---|
566 | ! us_427 = us_327 * us__SV(ikl) |
---|
567 | ! us_527 = us_427 * us__SV(ikl) |
---|
568 | |
---|
569 | ! us__SV(ikl) = us__SV(ikl) |
---|
570 | ! . - ( us_527 *sss__F /sss__N |
---|
571 | ! . - us_427 |
---|
572 | ! . - us_227 *qsnoSV(ikl)*sss__K |
---|
573 | ! . + (us__SV(ikl)*us__SV(ikl)-usthSV(ikl)*usthSV(ikl))/sss__G) |
---|
574 | ! . /( us_427*5.27*sss__F /sss__N |
---|
575 | ! . - us_327*4.27 |
---|
576 | ! . - us_127*2.27*qsnoSV(ikl)*sss__K |
---|
577 | ! . + us__SV(ikl)*2.0 /sss__G) |
---|
578 | |
---|
579 | ! us__SV(ikl)= min(us__SV(ikl),usuth0) |
---|
580 | ! us__SV(ikl)= max(us__SV(ikl),epsi ) |
---|
581 | ! rCDmSV(ikl)= us__SV(ikl)/VVa_OK |
---|
582 | ! #AE sss__F = vonkar /rCDmSV(ikl) |
---|
583 | ! ENDDO |
---|
584 | |
---|
585 | ! ______________ ___ |
---|
586 | ! Newton-Raphson (! Iteration, END ) |
---|
587 | ! ~~~~~~~~~~~~~~ ~~~ |
---|
588 | |
---|
589 | ! us_127 = exp( SblPom *log(us__SV(ikl))) |
---|
590 | ! us_227 = us_127 * us__SV(ikl) |
---|
591 | |
---|
592 | ! Momentum Turbulent Scale u*: 0-Limit in case of no Blow. Snow |
---|
593 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
594 | ! dusuth = us__SV(ikl) - usthSV(ikl) ! u* - uth* |
---|
595 | ! signus = max(sign(unun,dusuth),zero) ! 1 <=> u* - uth* > 0 |
---|
596 | ! us__SV(ikl) = ! |
---|
597 | ! . us__SV(ikl) *signus + ! u* (_BS) |
---|
598 | ! . usuth0 ! u* (nBS) |
---|
599 | ! . *(1.-signus) ! |
---|
600 | |
---|
601 | |
---|
602 | |
---|
603 | |
---|
604 | ! Blowing Snow Turbulent Scale ss* |
---|
605 | ! --------------------------------------- |
---|
606 | |
---|
607 | hSalSV(ikl) = 8.436e-2 * us__SV(ikl)**SblPom |
---|
608 | |
---|
609 | IF (qsalt_param == "pom") THEN |
---|
610 | qSalSV(ikl) = (us__SV(ikl)**2 - usthSV(ikl)**2) *signus & |
---|
611 | / (hSalSV(ikl) * gravit * us__SV(ikl) * 3.25) |
---|
612 | endif |
---|
613 | |
---|
614 | IF (qsalt_param == "bin") THEN |
---|
615 | qSalSV(ikl) = (us__SV(ikl) * us__SV(ikl) & |
---|
616 | -usthSV(ikl) * usthSV(ikl))*signus & |
---|
617 | * 0.535 / (hSalSV(ikl) * gravit) |
---|
618 | endif |
---|
619 | |
---|
620 | qSalSV(ikl) = qSalSV(ikl)/rht_SV(ikl) ! conversion kg/m3 to kg/kg |
---|
621 | |
---|
622 | ssstar = rCDmSV(ikl) * (qsnoSV(ikl) - qSalSV(ikl)) & |
---|
623 | * r_Turb !Bintanja 2000, BLM |
---|
624 | !r_Turb compensates for an overestim. of the blown snow part. fall velocity |
---|
625 | |
---|
626 | uss_SV(ikl) = min(zero , us__SV(ikl) *ssstar) |
---|
627 | uss_SV(ikl) = max(-0.0001 , uss_SV(ikl)) |
---|
628 | |
---|
629 | |
---|
630 | |
---|
631 | |
---|
632 | ENDIF ! BloMod |
---|
633 | |
---|
634 | ! + ------------------------------------------------------ |
---|
635 | ! +--Buffer Layer |
---|
636 | ! + ----------------------------------------------------- |
---|
637 | |
---|
638 | DO ikl=1,knonv |
---|
639 | ! BufsSV(ikl) [mm w.e.] i.e, i.e., [kg/m2] |
---|
640 | d_Bufs = max(dsn_SV(ikl) *dt__SV,0.) ! |
---|
641 | dsn_SV(ikl) = 0. ! |
---|
642 | Bufs_N = BufsSV(ikl) +d_Bufs ! |
---|
643 | |
---|
644 | |
---|
645 | ! +--Snow Density |
---|
646 | ! + ^^^^^^^^^^^^ |
---|
647 | Polair = zero |
---|
648 | ! #NP Polair = max(zero, ! |
---|
649 | ! #NP. sign(unun,TaPole ! |
---|
650 | ! #NP. -TaT_SV(ikl))) ! |
---|
651 | Polair = max(zero, & ! |
---|
652 | sign(unun,TaPole & ! |
---|
653 | -TaT_SV(ikl))) ! |
---|
654 | Buf_ro = max( rosMin, & ! Fallen Snow Density |
---|
655 | roSn_1+roSn_2* (TaT_SV(ikl)-TfSnow) & ! [kg/m3] |
---|
656 | +roSn_3*sqrt( VV__SV(ikl))) ! Pahaut (CEN), Etienne: use wind speed at first model level instead of 10m wind |
---|
657 | ! #NP BufPro = max( rosMin, ! Fallen Snow Density |
---|
658 | ! #NP. 104. *sqrt( max( VV10SV(ikl)-6.0,0.0))) ! Kotlyakov (1961) |
---|
659 | |
---|
660 | ! C.Agosta option for snow density, same as for BS i.e. |
---|
661 | ! is_ok_density_kotlyakov=.FALSE. |
---|
662 | ! #BS density_kotlyakov = .FALSE. !C.Amory BS 2018 |
---|
663 | ! + ... Fallen Snow Density, Adapted for Antarctica |
---|
664 | IF (is_ok_density_kotlyakov) THEN |
---|
665 | tt_tmp = TaT_SV(ikl)-TfSnow |
---|
666 | !vv_tmp = VV10SV(ikl) |
---|
667 | vv_tmp=VV__SV(ikl) ! Etienne: use wind speed at first model level instead of 10m wind |
---|
668 | ! + ... [ A compromise between |
---|
669 | ! + ... Kotlyakov (1961) and Lenaerts (2012, JGR, Part1) ] |
---|
670 | IF (tt_tmp>=-10) THEN |
---|
671 | BufPro = max( rosMin, & |
---|
672 | 104. *sqrt( max( vv_tmp-6.0,0.0))) ! Kotlyakov (1961) |
---|
673 | else |
---|
674 | vv_virt = (tt_c*vv_tmp+vv_c*(tt_tmp+10)) & |
---|
675 | /(tt_c+tt_tmp+10) |
---|
676 | BufPro = 104. *sqrt( max( vv_virt-6.0,0.0)) |
---|
677 | endif |
---|
678 | else |
---|
679 | ! + ... [ density derived from observations of the first 50cm of |
---|
680 | ! + ... snow - cf. Rajashree Datta - and multiplied by 0.8 ] |
---|
681 | ! + ... C. Agosta, 2016-09 |
---|
682 | !c #SD BufPro = 149.2 + 6.84*VV10SV(ikl) + 0.48*Tsrfsv(ikl) |
---|
683 | !c #SD BufPro = 125 + 14*VV10SV(ikl) + 0.6*Tsrfsv(ikl) !MAJ CK and CAm |
---|
684 | ! BufPro = 200 + 21 * VV10SV(ikl)!CK 29/07/19 |
---|
685 | BufPro = 200 + 21 * VV__SV(ikl)!Etienne: use wind speed at first model level instead of 10m wind |
---|
686 | endif |
---|
687 | |
---|
688 | Bros_N = (1. - Polair) * Buf_ro & ! Temperate Snow |
---|
689 | + Polair * BufPro ! Polar Snow |
---|
690 | |
---|
691 | Bros_N = max( 20.,max(rosMin, Bros_N)) |
---|
692 | Bros_N = min(400.,min(rosMax-1,Bros_N)) ! for dz_min in SISVAT_zSn |
---|
693 | |
---|
694 | |
---|
695 | ! Density of deposited blown snow |
---|
696 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
697 | |
---|
698 | IF (BloMod) THEN |
---|
699 | Bros_N = frsno |
---|
700 | ro_new = ro__SV(ikl,max(1,isnoSV(ikl))) |
---|
701 | ro_new = max(Bros_N,min(roBdSV,ro_new)) |
---|
702 | Fac = 1-((ro__SV(ikl,max(1,isnoSV(ikl))) & |
---|
703 | -roBdSV)/(500.-roBdSV)) |
---|
704 | Fac = max(0.,min(1.,Fac)) |
---|
705 | dsnbSV(ikl) = Fac*dsnbSV(ikl) |
---|
706 | Bros_N = Bros_N * (1.0-dsnbSV(ikl)) & |
---|
707 | + ro_new * dsnbSV(ikl) |
---|
708 | endif |
---|
709 | |
---|
710 | |
---|
711 | ! Time averaged Density of deposited blown Snow |
---|
712 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
713 | |
---|
714 | BrosSV(ikl) =(Bros_N * d_Bufs & ! |
---|
715 | +BrosSV(ikl)* BufsSV(ikl)) & ! |
---|
716 | / max(epsi,Bufs_N) ! |
---|
717 | |
---|
718 | |
---|
719 | ! +-- S.Falling Snow Properties (computed as in SISVAT_zAg) |
---|
720 | ! + ^^^^^^^^^^^^^^^^^^^^^^^ |
---|
721 | Buf_G1 = max(-G1_dSV, & ! Temperate Snow |
---|
722 | min(Dendr1*VV__SV(ikl)-Dendr2, & ! Dendricity |
---|
723 | Dendr3 )) ! |
---|
724 | Buf_G2 = min( Spher4, & ! Temperate Snow |
---|
725 | max(Spher1*VV__SV(ikl)+Spher2, & ! Sphericity |
---|
726 | Spher3 )) ! |
---|
727 | ! EV: now control buf_sph_pol and bug_siz_pol in physiq.def |
---|
728 | Buf_G1 = (1. - Polair) * Buf_G1 & ! Temperate Snow |
---|
729 | + Polair * buf_sph_pol ! Polar Snow |
---|
730 | Buf_G2 = (1. - Polair) * Buf_G2 & ! Temperate Snow |
---|
731 | + Polair * buf_siz_pol ! Polar Snow |
---|
732 | G1 = Buf_G1 ! NO Blown Snow |
---|
733 | G2 = Buf_G2 ! NO Blown Snow |
---|
734 | |
---|
735 | |
---|
736 | |
---|
737 | IF (BloMod) THEN |
---|
738 | |
---|
739 | ! S.1. Meme Type de Neige / same Grain Type |
---|
740 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
741 | |
---|
742 | SameOK = max(zero, & |
---|
743 | sign(unun, Buf_G1 *G1_dSV & |
---|
744 | - eps_21 )) |
---|
745 | G1same = ((1.0-dsnbSV(ikl))*Buf_G1+dsnbSV(ikl) *G1_dSV) |
---|
746 | G2same = ((1.0-dsnbSV(ikl))*Buf_G2+dsnbSV(ikl) *ADSdSV) |
---|
747 | ! Blowing Snow Properties: G1_dSV, ADSdSV |
---|
748 | |
---|
749 | ! S.2. Types differents / differents Types |
---|
750 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
751 | typ__1 = max(zero,sign(unun,epsi-Buf_G1)) ! =1.=> Dendritic |
---|
752 | zroNEW = typ__1 *(1.0-dsnbSV(ikl)) & ! fract.Dendr.Lay. |
---|
753 | + (1.-typ__1) * dsnbSV(ikl) ! |
---|
754 | G1_NEW = typ__1 *Buf_G1 & ! G1 of Dendr.Lay. |
---|
755 | + (1.-typ__1) *G1_dSV ! |
---|
756 | G2_NEW = typ__1 *Buf_G2 & ! G2 of Dendr.Lay. |
---|
757 | + (1.-typ__1) *ADSdSV ! |
---|
758 | zroOLD = (1.-typ__1) *(1.0-dsnbSV(ikl)) & ! fract.Spher.Lay. |
---|
759 | + typ__1 * dsnbSV(ikl) ! |
---|
760 | G1_OLD = (1.-typ__1) *Buf_G1 & ! G1 of Spher.Lay. |
---|
761 | + typ__1 *G1_dSV ! |
---|
762 | G2_OLD = (1.-typ__1) *Buf_G2 & ! G2 of Spher.Lay. |
---|
763 | + typ__1 *ADSdSV ! |
---|
764 | SizNEW = -G1_NEW *DDcdSV/G1_dSV & ! Size Dendr.Lay. |
---|
765 | +(1.+G1_NEW /G1_dSV) & ! |
---|
766 | *(G2_NEW *DScdSV/G1_dSV & ! |
---|
767 | +(1.-G2_NEW /G1_dSV)*DFcdSV) ! |
---|
768 | SphNEW = G2_NEW /G1_dSV ! Spher.Dendr.Lay. |
---|
769 | SizOLD = G2_OLD ! Size Spher.Lay. |
---|
770 | SphOLD = G1_OLD /G1_dSV ! Spher.Spher.Lay. |
---|
771 | Siz_av = (zroNEW*SizNEW+zroOLD*SizOLD) ! Averaged Size |
---|
772 | Sph_av = min( zroNEW*SphNEW+zroOLD*SphOLD & ! |
---|
773 | , unun) ! Averaged Sphericity |
---|
774 | Den_av = min((Siz_av -( Sph_av *DScdSV & ! |
---|
775 | +(1.-Sph_av)*DFcdSV)) & ! |
---|
776 | / (DDcdSV -( Sph_av *DScdSV & ! |
---|
777 | +(1.-Sph_av)*DFcdSV)) & ! |
---|
778 | , unun) ! |
---|
779 | DendOK = max(zero, & ! |
---|
780 | sign(unun, Sph_av *DScdSV & ! Small Grains |
---|
781 | +(1.-Sph_av)*DFcdSV & ! Faceted Grains |
---|
782 | - Siz_av )) ! |
---|
783 | ! +... REMARQUE: le type moyen (dendritique ou non) depend |
---|
784 | ! + ^^^^^^^^ de la comparaison avec le diametre optique |
---|
785 | ! + d'une neige recente de dendricite nulle |
---|
786 | ! +... REMARK: the mean type (dendritic or not) depends |
---|
787 | ! + ^^^^^^ on the comparaison with the optical diameter |
---|
788 | ! + of a recent snow having zero dendricity |
---|
789 | |
---|
790 | G1diff =( -DendOK *Den_av & |
---|
791 | +(1.-DendOK)*Sph_av) *G1_dSV |
---|
792 | G2diff = DendOK *Sph_av *G1_dSV & |
---|
793 | +(1.-DendOK)*Siz_av |
---|
794 | G1 = SameOK *G1same & |
---|
795 | +(1.-SameOK)*G1diff |
---|
796 | G2 = SameOK *G2same & |
---|
797 | +(1.-SameOK)*G2diff |
---|
798 | ENDIF |
---|
799 | |
---|
800 | |
---|
801 | |
---|
802 | ! S.1. Meme Type de Neige / same Grain Type |
---|
803 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
804 | SameOK = max(zero, & |
---|
805 | sign(unun, Buf_G1 *BG1sSV(ikl) & |
---|
806 | - eps_21 )) |
---|
807 | G1same = (d_Bufs*Buf_G1+BufsSV(ikl)*BG1sSV(ikl)) & |
---|
808 | /max(epsi,Bufs_N) |
---|
809 | G2same = (d_Bufs*Buf_G2+BufsSV(ikl)*BG2sSV(ikl)) & |
---|
810 | /max(epsi,Bufs_N) |
---|
811 | |
---|
812 | ! S.2. Types differents / differents Types |
---|
813 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
814 | |
---|
815 | typ__1 = max(zero,sign(unun,epsi-Buf_G1)) ! =1.=> Dendritic |
---|
816 | zroNEW =( typ__1 *d_Bufs & ! fract.Dendr.Lay. |
---|
817 | + (1.-typ__1) *BufsSV(ikl)) & ! |
---|
818 | /max(epsi,Bufs_N) ! |
---|
819 | G1_NEW = typ__1 *Buf_G1 & ! G1 of Dendr.Lay. |
---|
820 | + (1.-typ__1) *BG1sSV(ikl) ! |
---|
821 | G2_NEW = typ__1 *Buf_G2 & ! G2 of Dendr.Lay. |
---|
822 | + (1.-typ__1) *BG2sSV(ikl) ! |
---|
823 | zroOLD =((1.-typ__1) *d_Bufs & ! fract.Spher.Lay. |
---|
824 | + typ__1 *BufsSV(ikl)) & ! |
---|
825 | /max(epsi,Bufs_N) ! |
---|
826 | G1_OLD = (1.-typ__1) *Buf_G1 & ! G1 of Spher.Lay. |
---|
827 | + typ__1 *BG1sSV(ikl) ! |
---|
828 | G2_OLD = (1.-typ__1) *Buf_G2 & ! G2 of Spher.Lay. |
---|
829 | + typ__1 *BG2sSV(ikl) ! |
---|
830 | SizNEW = -G1_NEW *DDcdSV/G1_dSV & ! Size Dendr.Lay. |
---|
831 | +(1.+G1_NEW /G1_dSV) & ! |
---|
832 | *(G2_NEW *DScdSV/G1_dSV & ! |
---|
833 | +(1.-G2_NEW /G1_dSV)*DFcdSV) ! |
---|
834 | SphNEW = G2_NEW /G1_dSV ! Spher.Dendr.Lay. |
---|
835 | SizOLD = G2_OLD ! Size Spher.Lay. |
---|
836 | SphOLD = G1_OLD /G1_dSV ! Spher.Spher.Lay. |
---|
837 | Siz_av = ( zroNEW *SizNEW+zroOLD*SizOLD) ! Averaged Size |
---|
838 | Sph_av = min( zroNEW *SphNEW+zroOLD*SphOLD & ! |
---|
839 | , unun ) ! Averaged Sphericity |
---|
840 | Den_av = min((Siz_av - ( Sph_av *DScdSV & ! |
---|
841 | +(1.-Sph_av)*DFcdSV)) & ! |
---|
842 | / (DDcdSV - ( Sph_av *DScdSV & ! |
---|
843 | +(1.-Sph_av)*DFcdSV)) & ! |
---|
844 | , unun )! |
---|
845 | DendOK = max(zero, & ! |
---|
846 | sign(unun, Sph_av *DScdSV & ! Small Grains |
---|
847 | +(1.-Sph_av)*DFcdSV & ! Faceted Grains |
---|
848 | - Siz_av )) ! |
---|
849 | ! +... REMARQUE: le type moyen (dendritique ou non) depend |
---|
850 | ! + ^^^^^^^^ de la comparaison avec le diametre optique |
---|
851 | ! + d'une neige recente de dendricite nulle |
---|
852 | ! +... REMARK: the mean type (dendritic or not) depends |
---|
853 | ! + ^^^^^^ on the comparaison with the optical diameter |
---|
854 | ! + of a recent snow having zero dendricity |
---|
855 | |
---|
856 | G1diff =( -DendOK *Den_av & |
---|
857 | +(1.-DendOK)*Sph_av) *G1_dSV |
---|
858 | G2diff = DendOK *Sph_av *G1_dSV & |
---|
859 | +(1.-DendOK)*Siz_av |
---|
860 | G1 = SameOK *G1same & |
---|
861 | +(1.-SameOK)*G1diff |
---|
862 | G2 = SameOK *G2same & |
---|
863 | +(1.-SameOK)*G2diff |
---|
864 | |
---|
865 | BG1sSV(ikl) = G1 & ! |
---|
866 | * Bufs_N/max(epsi,Bufs_N) ! |
---|
867 | BG2sSV(ikl) = G2 & ! |
---|
868 | * Bufs_N/max(epsi,Bufs_N) ! |
---|
869 | |
---|
870 | |
---|
871 | ! +--Update of Buffer Layer Content & Decision about creating a new snow layer |
---|
872 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
873 | BufsSV(ikl) = Bufs_N ! [mm w.e.] |
---|
874 | NLaysv(ikl) = min(unun, & ! |
---|
875 | max(zero, & ! Allows to create |
---|
876 | sign(unun,BufsSV(ikl) & ! a new snow Layer |
---|
877 | -SMndSV )) & ! if Buffer > SMndSV |
---|
878 | *max(zero, & ! Except if * Erosion |
---|
879 | sign(unun,0.50 & ! dominates |
---|
880 | -dsnbSV(ikl))) & ! |
---|
881 | +max(zero, & ! Allows to create |
---|
882 | sign(unun,BufsSV(ikl) & ! a new snow Layer |
---|
883 | -SMndSV*3.00))) ! is Buffer > SMndSV*3 |
---|
884 | Bdzssv(ikl) = 1.e-3*BufsSV(ikl)*ro_Wat & ! [mm w.e.] -> [m w.e.] |
---|
885 | /max(epsi,BrosSV(ikl))!& [m w.e.] -> [m] |
---|
886 | |
---|
887 | |
---|
888 | END DO |
---|
889 | |
---|
890 | |
---|
891 | |
---|
892 | ! Snow Pack Discretization(option XF in MAR) |
---|
893 | ! ========================================== |
---|
894 | |
---|
895 | |
---|
896 | IF (discret_xf.AND.klonv==1) THEN |
---|
897 | IF(isnoSV(1)>=1.OR.NLaysv(1)>=1) THEN |
---|
898 | ! + ********** |
---|
899 | CALL SISVAT_zSn |
---|
900 | ! + ********** |
---|
901 | endif |
---|
902 | else |
---|
903 | ! + ********** |
---|
904 | CALL SISVAT_zSn |
---|
905 | ! + ********** |
---|
906 | ENDIF |
---|
907 | |
---|
908 | ! + ********** |
---|
909 | ! #ve CALL SISVAT_wEq('_zSn ',0) |
---|
910 | ! + ********** |
---|
911 | |
---|
912 | ! Add a new Snow Layer |
---|
913 | ! ==================== |
---|
914 | |
---|
915 | DO ikl=1,knonv |
---|
916 | |
---|
917 | isnoSV(ikl) = isnoSV(ikl) +NLaysv(ikl) |
---|
918 | isn = isnoSV(ikl) |
---|
919 | dzsnSV(ikl,isn) = dzsnSV(ikl,isn) * (1-NLaysv(ikl)) & |
---|
920 | + Bdzssv(ikl) * NLaysv(ikl) |
---|
921 | TsisSV(ikl,isn) = TsisSV(ikl,isn) * (1-NLaysv(ikl)) & |
---|
922 | + min(TaT_SV(ikl),Tf_Sno) *NLaysv(ikl) |
---|
923 | ro__SV(ikl,isn) = ro__SV(ikl,isn) * (1-NLaysv(ikl)) & |
---|
924 | + Brossv(ikl) * NLaysv(ikl) |
---|
925 | eta_SV(ikl,isn) = eta_SV(ikl,isn) * (1-NLaysv(ikl)) ! + 0. |
---|
926 | agsnSV(ikl,isn) = agsnSV(ikl,isn) * (1-NLaysv(ikl)) ! + 0. |
---|
927 | G1snSV(ikl,isn) = G1snSV(ikl,isn) * (1-NLaysv(ikl)) & |
---|
928 | + BG1ssv(ikl) * NLaysv(ikl) |
---|
929 | G2snSV(ikl,isn) = G2snSV(ikl,isn) * (1-NLaysv(ikl)) & |
---|
930 | + BG2ssv(ikl) * NLaysv(ikl) |
---|
931 | istoSV(ikl,isn) = istoSV(ikl,isn) * (1-NLaysv(ikl)) & |
---|
932 | + max(zer0,sign(un_1,TaT_SV(ikl) & |
---|
933 | -Tf_Sno-eps_21)) * istdSV(2) & |
---|
934 | * NLaysv(ikl) |
---|
935 | BufsSV(ikl) = BufsSV(ikl) * (1-NLaysv(ikl)) |
---|
936 | NLaysv(ikl) = 0 |
---|
937 | |
---|
938 | |
---|
939 | END DO |
---|
940 | |
---|
941 | |
---|
942 | ! Snow Pack Thickness |
---|
943 | ! ------------------- |
---|
944 | |
---|
945 | DO ikl=1,knonv |
---|
946 | z_snsv(ikl) = 0.0 |
---|
947 | END DO |
---|
948 | DO isn=1,nsno |
---|
949 | DO ikl=1,knonv |
---|
950 | z_snsv(ikl) = z_snsv(ikl) + dzsnSV(ikl,isn) |
---|
951 | zzsnsv(ikl,isn) = z_snsv(ikl) |
---|
952 | END DO |
---|
953 | END DO |
---|
954 | |
---|
955 | |
---|
956 | |
---|
957 | END IF ! SnoMod |
---|
958 | |
---|
959 | |
---|
960 | |
---|
961 | ! Soil Albedo: Soil Humidity Correction |
---|
962 | ! ========================================== |
---|
963 | |
---|
964 | ! REFERENCE: McCumber and Pielke (1981), Pielke (1984) |
---|
965 | ! ^^^^^^^^^ |
---|
966 | DO ikl=1,knonv |
---|
967 | albssv(ikl) = & |
---|
968 | alb0SV(ikl) *(1.0-min(half,eta_SV( ikl,0) & |
---|
969 | /etadSV(isotSV(ikl)))) |
---|
970 | ! REMARK: Albedo of Water Surfaces (isotSV=0): |
---|
971 | ! ^^^^^^ alb0SV := 2 X effective value, while |
---|
972 | ! eta_SV := etadSV |
---|
973 | END DO |
---|
974 | |
---|
975 | |
---|
976 | ! Snow Pack Optical Properties |
---|
977 | ! ============================ |
---|
978 | |
---|
979 | IF (SnoMod) THEN |
---|
980 | |
---|
981 | ! ****** |
---|
982 | CALL SnOptP(jjtime) |
---|
983 | ! ****** |
---|
984 | |
---|
985 | ELSE |
---|
986 | DO ikl=1,knonv |
---|
987 | sEX_sv(ikl,1) = 1.0 |
---|
988 | sEX_sv(ikl,0) = 0.0 |
---|
989 | albisv(ikl) = albssv(ikl) |
---|
990 | END DO |
---|
991 | END IF |
---|
992 | |
---|
993 | |
---|
994 | |
---|
995 | ! Soil optical properties |
---|
996 | ! ============================= |
---|
997 | !Etienne: as in inlandis we do not CALL vgopt, we need to define |
---|
998 | !the albedo alb_SV and to calculate the |
---|
999 | !absorbed Solar Radiation by Surfac (Normaliz)[-] SoSosv |
---|
1000 | |
---|
1001 | |
---|
1002 | DO ikl=1,klonv |
---|
1003 | |
---|
1004 | e_pRad = 2.5 * coszSV(ikl) ! exponential argument, |
---|
1005 | ! V/nIR radiation partitioning, |
---|
1006 | ! DR97, 2, eqn (2.53) & (2.54) |
---|
1007 | e1pRad = 1.-exp(-e_pRad) ! exponential, V/nIR Rad. Part. |
---|
1008 | exdRad= 1. |
---|
1009 | |
---|
1010 | ! Visible Part of the Solar Radiation Spectrum (V, 0.4--0.7mi.m) |
---|
1011 | A_Rad0 = 0.25 + 0.697 * e1pRad ! Absorbed Vis. Radiation |
---|
1012 | absg_V = (1.-albisv(ikl))*(A_Rad0*exdRad) ! |
---|
1013 | |
---|
1014 | ! Near-IR Part of the Solar Radiation Spectrum (nIR, 0.7--2.8mi.m) |
---|
1015 | |
---|
1016 | A_Rad0 = 0.80 + 0.185 * e1pRad ! Absorbed nIR. Radiation |
---|
1017 | absgnI = (1.-albisv(ikl))*(A_Rad0*exdRad) ! |
---|
1018 | |
---|
1019 | SoSosv(ikl) = (absg_V+absgnI)*0.5d0 |
---|
1020 | |
---|
1021 | alb_SV(ikl) = albisv(ikl) |
---|
1022 | |
---|
1023 | END DO |
---|
1024 | |
---|
1025 | ! ********** |
---|
1026 | ! #ve CALL SISVAT_wEq('SnOptP',0) |
---|
1027 | ! ********** |
---|
1028 | |
---|
1029 | |
---|
1030 | ! Surface Emissivity (Etienne: simplified calculation for landice) |
---|
1031 | ! ============================================================= |
---|
1032 | |
---|
1033 | DO ikl=1,knonv |
---|
1034 | LSnMsk = min( 1,isnoSV(ikl)) |
---|
1035 | Eso_sv(ikl)= EmiSol*(1-LSnMsk)+EmiSno*LSnMsk ! Sol+Sno Emissivity |
---|
1036 | emi_SV(ikl)= EmiSol*(1-LSnMsk) + EmiSno*LSnMsk |
---|
1037 | END DO |
---|
1038 | |
---|
1039 | |
---|
1040 | |
---|
1041 | |
---|
1042 | ! Upward IR (INPUT, from previous time step) |
---|
1043 | ! =================================================================== |
---|
1044 | |
---|
1045 | DO ikl=1,knonv |
---|
1046 | ! #e1 Enrsvd(ikl) = - IRs_SV(ikl) |
---|
1047 | IRupsv(ikl) = IRs_SV(ikl) |
---|
1048 | END DO |
---|
1049 | |
---|
1050 | |
---|
1051 | ! Turbulence |
---|
1052 | ! ========== |
---|
1053 | |
---|
1054 | ! Latent Heat of Vaporization/Sublimation |
---|
1055 | ! --------------------------------------- |
---|
1056 | |
---|
1057 | DO ikl=1,knonv |
---|
1058 | SnoWat = min(isnoSV(ikl),0) |
---|
1059 | Lx_H2O(ikl) = & |
---|
1060 | (1.-SnoWat) * LhvH2O & |
---|
1061 | + SnoWat *(LhsH2O * (1.-eta_SV(ikl,isnoSV(ikl))) & |
---|
1062 | +LhvH2O * eta_SV(ikl,isnoSV(ikl)) ) |
---|
1063 | END DO |
---|
1064 | |
---|
1065 | |
---|
1066 | |
---|
1067 | |
---|
1068 | ! Aerodynamic Resistance (calculated from drags given by LMDZ) |
---|
1069 | ! Commented because already calculated in surf_inlandsis_mod |
---|
1070 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1071 | ! DO ikl=1,knonv |
---|
1072 | ! ram_sv(ikl) = 1./(cdM_SV(ikl)*max(VV__SV(ikl),eps6)) |
---|
1073 | ! rah_sv(ikl) = 1./(cdH_SV(ikl)*max(VV__SV(ikl),eps6)) |
---|
1074 | ! END DO |
---|
1075 | |
---|
1076 | |
---|
1077 | |
---|
1078 | ! Soil Energy Balance |
---|
1079 | ! ===================== |
---|
1080 | |
---|
1081 | |
---|
1082 | IF (iflag_temp_inlandsis == 0) THEN |
---|
1083 | CALL SISVAT_TSo |
---|
1084 | |
---|
1085 | else |
---|
1086 | DO ikl=1,knonv |
---|
1087 | Tsf_SV(ikl)=Tsrfsv(ikl) |
---|
1088 | END DO |
---|
1089 | |
---|
1090 | CALL SISVAT_TS2 |
---|
1091 | |
---|
1092 | end if |
---|
1093 | |
---|
1094 | |
---|
1095 | ! ********** |
---|
1096 | ! #ve CALL SISVAT_wEq('_TSo ',0) |
---|
1097 | ! ********** |
---|
1098 | |
---|
1099 | |
---|
1100 | |
---|
1101 | ! Soil Water Potential |
---|
1102 | ! ------------------------ |
---|
1103 | |
---|
1104 | DO isl=-nsol,0 |
---|
1105 | DO ikl=1,knonv |
---|
1106 | ist = isotSV(ikl) ! Soil Type |
---|
1107 | psi_sv(ikl,isl) = psidSV(ist) & ! DR97, Eqn.(3.34) |
---|
1108 | *(etadSV(ist) /max(eps6,eta_SV(ikl,isl))) & ! |
---|
1109 | **bCHdSV(ist) ! |
---|
1110 | |
---|
1111 | |
---|
1112 | ! Soil Hydraulic Conductivity |
---|
1113 | ! --------------------------- |
---|
1114 | |
---|
1115 | Khydsv(ikl,isl) = s2__SV(ist) & ! DR97, Eqn.(3.35) |
---|
1116 | *(eta_SV(ikl,isl)**(2.*bCHdSV(ist)+3.)) ! |
---|
1117 | END DO |
---|
1118 | END DO |
---|
1119 | |
---|
1120 | |
---|
1121 | ! Melting / Refreezing in the Snow Pack |
---|
1122 | ! ===================================== |
---|
1123 | |
---|
1124 | IF (SnoMod) THEN |
---|
1125 | |
---|
1126 | ! ********** |
---|
1127 | CALL SISVAT_qSn |
---|
1128 | ! ********** |
---|
1129 | |
---|
1130 | ! ********** |
---|
1131 | ! #ve CALL SISVAT_wEq('_qSn ',0) |
---|
1132 | ! ********** |
---|
1133 | |
---|
1134 | |
---|
1135 | ! Snow Pack Thickness |
---|
1136 | ! ------------------- |
---|
1137 | |
---|
1138 | DO ikl=1,knonv |
---|
1139 | z_snsv(ikl) = 0.0 |
---|
1140 | END DO |
---|
1141 | DO isn=1,nsno |
---|
1142 | DO ikl=1,knonv |
---|
1143 | z_snsv(ikl) = z_snsv(ikl) + dzsnSV(ikl,isn) |
---|
1144 | zzsnsv(ikl,isn) = z_snsv(ikl) |
---|
1145 | END DO |
---|
1146 | END DO |
---|
1147 | |
---|
1148 | |
---|
1149 | ! Energy in Excess is added to the first Soil Layer |
---|
1150 | ! ------------------------------------------------- |
---|
1151 | DO ikl=1,knonv |
---|
1152 | z_snsv(ikl) = max(zer0, & |
---|
1153 | sign(un_1,eps6-z_snsv(ikl))) |
---|
1154 | TsisSV(ikl,0) = TsisSV(ikl,0) + EExcsv(ikl) & |
---|
1155 | /(rocsSV(isotSV(ikl)) & |
---|
1156 | +rcwdSV*eta_SV(ikl,0)) |
---|
1157 | EExcsv(ikl) = 0. |
---|
1158 | END DO |
---|
1159 | |
---|
1160 | |
---|
1161 | END IF |
---|
1162 | |
---|
1163 | |
---|
1164 | ! Soil Water Balance |
---|
1165 | ! ===================== |
---|
1166 | |
---|
1167 | ! ********** |
---|
1168 | CALL SISVAT_qSo |
---|
1169 | ! #m0. (Wats_0,Wats_1,Wats_d) |
---|
1170 | ! ********** |
---|
1171 | |
---|
1172 | |
---|
1173 | ! Surface Fluxes |
---|
1174 | ! ===================== |
---|
1175 | |
---|
1176 | DO ikl=1,knonv |
---|
1177 | IRdwsv(ikl)=IRd_SV(ikl)*Eso_sv(ikl) ! Downward IR |
---|
1178 | ! IRdwsv(ikl)=tau_sv(ikl) *IRd_SV(ikl)*Eso_sv(ikl) ! Downward IR |
---|
1179 | ! . +(1.0-tau_sv(ikl))*IRd_SV(ikl)*Evg_sv(ikl) ! ! Etienne, remove vegetation component |
---|
1180 | IRupsv(ikl) = IRupsv(ikl) ! Upward IR |
---|
1181 | IRu_SV(ikl) = -IRupsv(ikl) & ! Upward IR |
---|
1182 | +IRd_SV(ikl) & ! (effective) |
---|
1183 | -IRdwsv(ikl) ! (positive) |
---|
1184 | |
---|
1185 | TBr_sv(ikl) =sqrt(sqrt(IRu_SV(ikl)/StefBo)) ! Brightness |
---|
1186 | ! Temperature |
---|
1187 | uts_SV(ikl) = (HSv_sv(ikl) +HSs_sv(ikl)) & ! u*T* |
---|
1188 | /(rhT_SV(ikl) *cp) ! |
---|
1189 | uqs_SV(ikl) = (HLv_sv(ikl) +HLs_sv(ikl)) & ! u*q* |
---|
1190 | /(rhT_SV(ikl) *LhvH2O) ! |
---|
1191 | LMO_SV(ikl) = TaT_SV(ikl)*(us__SV(ikl)**3) & |
---|
1192 | /gravit/uts_SV(ikl)/vonKrm ! MO length |
---|
1193 | |
---|
1194 | |
---|
1195 | ! Surface Temperature |
---|
1196 | ! ^^^^^^^^^^^^^^^^^^^^ |
---|
1197 | |
---|
1198 | IF (iflag_tsurf_inlandsis == 0) THEN |
---|
1199 | |
---|
1200 | Tsrfsv(ikl) =TsisSV(ikl,isnoSV(ikl)) |
---|
1201 | |
---|
1202 | ELSE IF (iflag_tsurf_inlandsis > 0) THEN |
---|
1203 | ! Etienne: extrapolation from the two uppermost levels: |
---|
1204 | |
---|
1205 | IF (isnoSV(ikl) >=2) THEN |
---|
1206 | zm1=-dzsnSV(ikl,isnoSV(ikl))/2. |
---|
1207 | zm2=-(dzsnSV(ikl,isnoSV(ikl)) + dzsnSV(ikl,isnoSV(ikl)-1)/2.) |
---|
1208 | ELSE IF (isnoSV(ikl) == 1) THEN |
---|
1209 | zm1=-dzsnSV(ikl,isnoSV(ikl))/2. |
---|
1210 | zm2=-(dzsnSV(ikl,isnoSV(ikl))+dz_dSV(0)/2.) |
---|
1211 | else |
---|
1212 | zm1=-dz_dSV(0)/2. |
---|
1213 | zm2=-(dz_dSV(0)+dz_dSV(-1)/2.) |
---|
1214 | |
---|
1215 | end if |
---|
1216 | |
---|
1217 | coefslope=(TsisSV(ikl,isnoSV(ikl))-TsisSV(ikl,isnoSV(ikl)-1)) & |
---|
1218 | /(zm1-zm2) |
---|
1219 | Tsrfsv(ikl)=TsisSV(ikl,isnoSV(ikl))+coefslope*(0. - zm1) |
---|
1220 | |
---|
1221 | |
---|
1222 | ELSE !(default) |
---|
1223 | |
---|
1224 | Tsrfsv(ikl) =TsisSV(ikl,isnoSV(ikl)) |
---|
1225 | |
---|
1226 | END IF |
---|
1227 | |
---|
1228 | |
---|
1229 | END DO |
---|
1230 | |
---|
1231 | ! Snow Pack Properties (sphericity, dendricity, size) |
---|
1232 | ! =================================================== |
---|
1233 | |
---|
1234 | IF (SnoMod) THEN |
---|
1235 | |
---|
1236 | IF (discret_xf .AND. klonv==1) THEN |
---|
1237 | IF(isnoSV(1)>=1) THEN |
---|
1238 | ! + ********** |
---|
1239 | CALL SISVAT_GSn |
---|
1240 | ! + ********** |
---|
1241 | ENDIF |
---|
1242 | else |
---|
1243 | ! + ********** |
---|
1244 | CALL SISVAT_GSn |
---|
1245 | ! + ********** |
---|
1246 | ENDIF |
---|
1247 | |
---|
1248 | |
---|
1249 | END IF |
---|
1250 | |
---|
1251 | |
---|
1252 | ! Roughness Length for next time step |
---|
1253 | !==================================== |
---|
1254 | |
---|
1255 | ! Note that in INLANDSIS, we treat only ice covered surfaces so calculation |
---|
1256 | ! of z0 is much simpler (no subgrid fraction of ocean or land) |
---|
1257 | ! old calculations are commented below |
---|
1258 | |
---|
1259 | |
---|
1260 | ! +--Roughness Length for Momentum |
---|
1261 | ! + ----------------------------- |
---|
1262 | |
---|
1263 | ! ETIENNE WARNING: changes have been made wrt original SISVAT |
---|
1264 | |
---|
1265 | ! +--Land+Sea-Ice / Ice-free Sea Mask |
---|
1266 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1267 | DO ikl=1,knonv |
---|
1268 | IcIndx(ikl) = 0 |
---|
1269 | ENDDO |
---|
1270 | DO isn=1,nsno |
---|
1271 | DO ikl=1,knonv |
---|
1272 | |
---|
1273 | IcIndx(ikl) = max(IcIndx(ikl), & |
---|
1274 | isn*max(0, & |
---|
1275 | sign(1, & |
---|
1276 | int(ro__SV(ikl,isn)-900.)))) |
---|
1277 | ENDDO |
---|
1278 | ENDDO |
---|
1279 | |
---|
1280 | DO ikl=1,knonv |
---|
1281 | LISmsk = 1. ! in inlandsis, land only |
---|
1282 | IceMsk = max(0,sign(1 ,IcIndx(ikl)-1) ) |
---|
1283 | SnoMsk = max(min(isnoSV(ikl)-iiceSV(ikl),1),0) |
---|
1284 | |
---|
1285 | |
---|
1286 | ! +--Z0 Smooth Regime over Snow (Andreas 1995, CRREL Report 95-16, p. 8) |
---|
1287 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1288 | Z0m_nu = 5.e-5 ! z0s~(10-d)*exp(-vonkar/sqrt(1.1e-03)) |
---|
1289 | |
---|
1290 | ! +--Z0 Saltat.Regime over Snow (Gallee et al., 2001, BLM 99 (19) p.11) |
---|
1291 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1292 | |
---|
1293 | u2star = us__SV(ikl) *us__SV(ikl) |
---|
1294 | Z0mBSn = u2star *0.536e-3 - 61.8e-6 |
---|
1295 | Z0mBSn = max(Z0mBS0 ,Z0mBSn) |
---|
1296 | |
---|
1297 | ! +--Z0 Smooth + Saltat. Regime |
---|
1298 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1299 | Z0enSV(ikl) = Z0m_nu & |
---|
1300 | + Z0mBSn |
---|
1301 | |
---|
1302 | |
---|
1303 | ! Calculation of snow roughness length |
---|
1304 | !===================================== |
---|
1305 | IF (iflag_z0m_snow == 0) THEN |
---|
1306 | |
---|
1307 | Z0m_Sn=prescribed_z0m_snow |
---|
1308 | |
---|
1309 | ELSE IF (iflag_z0m_snow == 1) THEN |
---|
1310 | |
---|
1311 | Z0m_Sn=Z0enSV(ikl) |
---|
1312 | |
---|
1313 | ELSE IF (iflag_z0m_snow == 2) THEN |
---|
1314 | |
---|
1315 | ! +--Rough Snow Surface Roughness Length (Variable Sastrugi Height) |
---|
1316 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1317 | A_Fact = 1.0000 ! Andreas et al., 2004, p.4 |
---|
1318 | ! ams.confex.com/ams/pdfpapers/68601.pdf |
---|
1319 | |
---|
1320 | ! Parameterization of z0 dependance on Temperature (C. Amory, 2017) |
---|
1321 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1322 | ! Z0=f(T) deduced from observations, Adelie Land, dec2012-dec2013 |
---|
1323 | |
---|
1324 | |
---|
1325 | coefa = 0.1658 !0.1862 !Ant |
---|
1326 | coefb = -50.3869 !-55.7718 !Ant |
---|
1327 | ta1 = 253.15 !255. Ant |
---|
1328 | ta2 = 273.15 |
---|
1329 | ta3 = 273.15+3 |
---|
1330 | z01 = exp(coefa*ta1 + coefb) !~0.2 ! ~0.25 mm |
---|
1331 | z02 = exp(coefa*ta2 + coefb) !~6 !~7 mm |
---|
1332 | z03 = z01 |
---|
1333 | coefc = log(z03/z02)/(ta3-ta2) |
---|
1334 | coefd = log(z03)-coefc*ta3 |
---|
1335 | |
---|
1336 | IF (TaT_SV(ikl) < ta1) THEN |
---|
1337 | Z0_obs = z01 |
---|
1338 | ELSE IF (TaT_SV(ikl)>=ta1 .AND. TaT_SV(ikl)<ta2) THEN |
---|
1339 | Z0_obs = exp(coefa*TaT_SV(ikl) + coefb) |
---|
1340 | ELSE IF (TaT_SV(ikl)>=ta2 .AND. TaT_SV(ikl)<ta3) THEN |
---|
1341 | ! if st > 0, melting induce smooth surface |
---|
1342 | Z0_obs = exp(coefc*TaT_SV(ikl) + coefd) |
---|
1343 | else |
---|
1344 | Z0_obs = z03 |
---|
1345 | endif |
---|
1346 | |
---|
1347 | Z0m_Sn=Z0_obs |
---|
1348 | |
---|
1349 | |
---|
1350 | ELSE |
---|
1351 | |
---|
1352 | Z0m_Sn=0.500e-3 ! default=0.500e-3m (tuning of MAR) |
---|
1353 | |
---|
1354 | ENDIF |
---|
1355 | |
---|
1356 | |
---|
1357 | |
---|
1358 | ! param = Z0_obs/1. ! param(s) | 1.(m/s)=TUNING |
---|
1359 | ! #SZ Z0Sa_N = (us__SV(ikl) -0.2)*param ! 0.0001=TUNING |
---|
1360 | ! #SZ. * max(zero,sign(unun,TfSnow-eps9 |
---|
1361 | ! #SZ. -TsisSV(ikl , isnoSV(ikl)))) |
---|
1362 | !!#SZ Z0SaSi = max(zero,sign(unun,Z0Sa_N ))! 1 if erosion |
---|
1363 | ! #SZ Z0SaSi = max(zero,sign(unun,zero -eps9 -uss_SV(ikl)))! |
---|
1364 | ! #SZ Z0Sa_N = max(zero, Z0Sa_N) |
---|
1365 | ! #SZ Z0SaSV(ikl) = |
---|
1366 | ! #SZ. max(Z0SaSV(ikl) ,Z0SaSV(ikl) |
---|
1367 | ! #SZ. + Z0SaSi*(Z0Sa_N-Z0SaSV(ikl))*exp(-dt__SV/43200.)) |
---|
1368 | ! #SZ. - min(dz0_SV(ikl) , Z0SaSV(ikl)) |
---|
1369 | |
---|
1370 | ! #SZ A_Fact = Z0SaSV(ikl) * 5.0/0.15 ! A=5 if h~10cm |
---|
1371 | ! +... CAUTION: The influence of the sastrugi direction is not yet included |
---|
1372 | |
---|
1373 | ! #SZ Z0m_Sn = Z0SaSV(ikl) ! |
---|
1374 | ! #SZ. - Z0m_nu ! |
---|
1375 | |
---|
1376 | ! +--Z0 Saltat.Regime over Snow (Shao & Lin, 1999, BLM 91 (46) p.222) |
---|
1377 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1378 | ! #ZN sqrrZ0 = usthSV(ikl)/max( us__SV(ikl),0.001) |
---|
1379 | ! #ZN sqrrZ0 = min( sqrrZ0 ,0.999) |
---|
1380 | ! #ZN Z0mBSn = 0.55 *0.55 *exp(-sqrrZ0 *sqrrZ0) |
---|
1381 | ! #ZN. *us__SV(ikl)* us__SV(ikl)*grvinv*0.5 |
---|
1382 | |
---|
1383 | ! +--Z0 Smooth + Saltat. Regime (Shao & Lin, 1999, BLM 91 (46) p.222) |
---|
1384 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1385 | ! #ZN Z0enSV(ikl) = (Z0m_nu ** sqrrZ0 ) |
---|
1386 | ! #ZN. * (Z0mBSn **(1.-sqrrZ0)) |
---|
1387 | ! #ZN Z0enSV(ikl) = max(Z0enSV(ikl), Z0m_nu) |
---|
1388 | |
---|
1389 | |
---|
1390 | ! +--Z0 Smooth Regime over Snow (Andreas etAl., 2004 |
---|
1391 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1392 | ! #ZA Z0m_nu = 0.135*akmol / max(us__SV(ikl) , epsi) |
---|
1393 | |
---|
1394 | ! +--Z0 Saltat.Regime over Snow (Andreas etAl., 2004 |
---|
1395 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1396 | ! #ZA Z0mBSn = 0.035*u2star *grvinv |
---|
1397 | |
---|
1398 | ! +--Z0 Smooth + Saltat. Regime (Andreas etAl., 2004 |
---|
1399 | ! ( used by Erosion) ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1400 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1401 | ! #ZA Z0enSV(ikl) = Z0m_nu |
---|
1402 | ! #ZA. + Z0mBSn |
---|
1403 | |
---|
1404 | ! +--Z0 Rough Regime over Snow (Andreas etAl., 2004 |
---|
1405 | ! + (.NOT. used by Erosion) ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1406 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1407 | !!#ZA u2star = (us__SV(ikl) -0.1800) / 0.1 |
---|
1408 | !!#ZA Z0m_Sn =A_Fact*Z0mBSn *exp(-u2star*u2star) |
---|
1409 | ! #ZA Z0m_90 =(10.-0.025*VVs_SV(ikl)/5.) |
---|
1410 | ! #ZA. *exp(-0.4/sqrt(.00275+.00001*max(0.,VVs_SV(ikl)-5.))) |
---|
1411 | ! #ZA Z0m_Sn = DDs_SV(ikl)* Z0m_90 / 45. |
---|
1412 | ! #ZA. - DDs_SV(ikl)*DDs_SV(ikl)* Z0m_90 /(90.*90.) |
---|
1413 | |
---|
1414 | |
---|
1415 | |
---|
1416 | |
---|
1417 | ! +--Z0 (Erosion) over Snow (instantaneous) |
---|
1418 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1419 | Z0e_SV(ikl) = Z0enSV(ikl) |
---|
1420 | |
---|
1421 | ! +--Momentum Roughness Length (Etienne: changes wrt original SISVAT) |
---|
1422 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1423 | Z0mnSV(ikl) = Z0m_nu *(1-SnoMsk) & ! Ice z0 |
---|
1424 | + (Z0m_Sn)*SnoMsk ! Snow Sastrugi Form and Snow Erosion |
---|
1425 | |
---|
1426 | |
---|
1427 | ! +--GIS Roughness Length |
---|
1428 | ! + ^^^^^^^^^^^^^^^^^^^^^ |
---|
1429 | ! #GL Z0mnSV(ikl) = |
---|
1430 | ! #GL. (1-LSmask(ikl)) * Z0mnSV(ikl) |
---|
1431 | ! #GL. + LSmask(ikl) * max(Z0mnSV(ikl),max(Z0_GIM, |
---|
1432 | ! #GL. Z0_GIM+ |
---|
1433 | ! #GL. (0.0032-Z0_GIM)*(ro__SV(ikl,isnoSV(ikl))-600.) ! |
---|
1434 | ! #GL. /(920.00 -600.))) ! |
---|
1435 | |
---|
1436 | ! +--Mom. Roughness Length, Instantaneous |
---|
1437 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1438 | Z0m_SV(ikl) = Z0mnSV(ikl) ! Z0mnSV instant. |
---|
1439 | |
---|
1440 | |
---|
1441 | ! +--Roughness Length for Scalars |
---|
1442 | ! + ---------------------------- |
---|
1443 | |
---|
1444 | Z0hnSV(ikl) = Z0mnSV(ikl)/ 7.4 |
---|
1445 | |
---|
1446 | IF (is_ok_z0h_rn) THEN |
---|
1447 | |
---|
1448 | rstar = Z0mnSV(ikl) * us__SV(ikl) / akmol |
---|
1449 | rstar = max(epsi,min(rstar,R_1000)) |
---|
1450 | alors = log(rstar) |
---|
1451 | rstar0 = 1.250e0 * max(zero,sign(unun,0.135e0 - rstar)) & |
---|
1452 | +(1. - max(zero,sign(unun,0.135e0 - rstar))) & |
---|
1453 | *(0.149e0 * max(zero,sign(unun,2.500e0 - rstar)) & |
---|
1454 | + 0.317e0 & |
---|
1455 | *(1. - max(zero,sign(unun,2.500e0 - rstar)))) |
---|
1456 | rstar1 = 0. * max(zero,sign(unun,0.135e0 - rstar)) & |
---|
1457 | +(1. - max(zero,sign(unun,0.135e0 - rstar))) & |
---|
1458 | *(-0.55e0 * max(zero,sign(unun,2.500e0 - rstar)) & |
---|
1459 | - 0.565 & |
---|
1460 | *(1. - max(zero,sign(unun,2.500e0 - rstar)))) |
---|
1461 | rstar2 = 0. * max(zero,sign(unun,0.135e0 - rstar)) & |
---|
1462 | +(1. - max(zero,sign(unun,0.135e0 - rstar))) & |
---|
1463 | *(0. * max(zero,sign(unun,2.500e0 - rstar)) & |
---|
1464 | - 0.183 & |
---|
1465 | *(unun - max(zero,sign(unun,2.500e0 - rstar)))) |
---|
1466 | |
---|
1467 | |
---|
1468 | |
---|
1469 | !XF #RN (is_ok_z0h_rn) does not work well over bare ice |
---|
1470 | !XF MAR is then too warm and not enough melt |
---|
1471 | |
---|
1472 | IF(ro__SV(ikl,isnoSV(ikl))>50 & |
---|
1473 | .AND.ro__SV(ikl,isnoSV(ikl))<roSdSV)THEN |
---|
1474 | Z0hnSV(ikl) = max(zero & |
---|
1475 | , sign(unun,zzsnsv(ikl,isnoSV(ikl))-epsi)) & |
---|
1476 | * exp(rstar0+rstar1*alors+rstar2*alors*alors) & |
---|
1477 | * 0.001e0 + Z0hnSV(ikl) * ( 1. - max(zero & |
---|
1478 | , sign(unun,zzsnsv(ikl,isnoSV(ikl))-epsi))) |
---|
1479 | |
---|
1480 | endif |
---|
1481 | |
---|
1482 | |
---|
1483 | ENDIF |
---|
1484 | |
---|
1485 | Z0h_SV(ikl) = Z0hnSV(ikl) |
---|
1486 | |
---|
1487 | |
---|
1488 | ! #MT Z0m_SV(ikl) = max(2.0e-6 ,Z0m_SV(ikl)) ! Min Z0_m (Garrat Scheme) |
---|
1489 | ! Z0m_SV(ikl) = min(Z0m_SV(ikl),za__SV(ikl)*0.3333) |
---|
1490 | |
---|
1491 | |
---|
1492 | END DO |
---|
1493 | |
---|
1494 | |
---|
1495 | |
---|
1496 | END SUBROUTINE inlandsis |
---|
1497 | |
---|
1498 | |
---|
1499 | |
---|
1500 | |
---|
1501 | |
---|
1502 | |
---|
1503 | |
---|
1504 | |
---|
1505 | |
---|
1506 | |
---|
1507 | |
---|