| 1 | ! $Id: flott_gwd_rando_m.F90 5119 2024-07-24 16:46:45Z abarral $ |
|---|
| 2 | |
|---|
| 3 | module FLOTT_GWD_rando_m |
|---|
| 4 | |
|---|
| 5 | IMPLICIT NONE |
|---|
| 6 | |
|---|
| 7 | CONTAINS |
|---|
| 8 | |
|---|
| 9 | SUBROUTINE FLOTT_GWD_rando(DTIME, pp, tt, uu, vv, prec, zustr, zvstr, d_u, & |
|---|
| 10 | d_v, east_gwstress, west_gwstress) |
|---|
| 11 | |
|---|
| 12 | ! Parametrization of the momentum flux deposition due to a discrete |
|---|
| 13 | ! number of gravity waves. |
|---|
| 14 | ! Author: F. Lott |
|---|
| 15 | ! July, 12th, 2012 |
|---|
| 16 | ! Gaussian distribution of the source, source is precipitation |
|---|
| 17 | ! Reference: Lott (JGR, vol 118, page 8897, 2013) |
|---|
| 18 | |
|---|
| 19 | !ONLINE: |
|---|
| 20 | USE dimphy, ONLY: klon, klev |
|---|
| 21 | USE lmdz_assert, ONLY: assert |
|---|
| 22 | USE lmdz_ioipsl_getin_p, ONLY: getin_p |
|---|
| 23 | USE lmdz_vertical_layers, ONLY: presnivs |
|---|
| 24 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 25 | CHARACTER (LEN = 20) :: modname = 'flott_gwd_rando' |
|---|
| 26 | CHARACTER (LEN = 80) :: abort_message |
|---|
| 27 | |
|---|
| 28 | include "YOMCST.h" |
|---|
| 29 | include "clesphys.h" |
|---|
| 30 | ! OFFLINE: |
|---|
| 31 | ! include "dimensions.h" |
|---|
| 32 | ! include "dimphy.h" |
|---|
| 33 | ! END OF DIFFERENCE ONLINE-OFFLINE |
|---|
| 34 | include "YOEGWD.h" |
|---|
| 35 | |
|---|
| 36 | ! 0. DECLARATIONS: |
|---|
| 37 | |
|---|
| 38 | ! 0.1 INPUTS |
|---|
| 39 | REAL, INTENT(IN) :: DTIME ! Time step of the Physics |
|---|
| 40 | REAL, INTENT(IN) :: pp(:, :) ! (KLON, KLEV) Pressure at full levels |
|---|
| 41 | REAL, INTENT(IN) :: prec(:) ! (klon) Precipitation (kg/m^2/s) |
|---|
| 42 | REAL, INTENT(IN) :: TT(:, :) ! (KLON, KLEV) Temp at full levels |
|---|
| 43 | REAL, INTENT(IN) :: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
|---|
| 44 | REAL, INTENT(IN) :: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
|---|
| 45 | |
|---|
| 46 | ! 0.2 OUTPUTS |
|---|
| 47 | REAL, INTENT(OUT) :: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
|---|
| 48 | |
|---|
| 49 | REAL, INTENT(INOUT) :: d_u(:, :), d_v(:, :) |
|---|
| 50 | REAL, INTENT(INOUT) :: east_gwstress(:, :) ! Profile of eastward stress |
|---|
| 51 | REAL, INTENT(INOUT) :: west_gwstress(:, :) ! Profile of westward stress |
|---|
| 52 | |
|---|
| 53 | ! (KLON, KLEV) tendencies on winds |
|---|
| 54 | |
|---|
| 55 | ! O.3 INTERNAL ARRAYS |
|---|
| 56 | REAL BVLOW(klon) |
|---|
| 57 | REAL DZ ! Characteristic depth of the Source |
|---|
| 58 | |
|---|
| 59 | INTEGER II, JJ, LL |
|---|
| 60 | |
|---|
| 61 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
|---|
| 62 | |
|---|
| 63 | REAL DELTAT |
|---|
| 64 | |
|---|
| 65 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
|---|
| 66 | |
|---|
| 67 | INTEGER, PARAMETER :: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
|---|
| 68 | INTEGER JK, JP, JO, JW |
|---|
| 69 | INTEGER, PARAMETER :: NA = 5 !number of realizations to get the phase speed |
|---|
| 70 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
|---|
| 71 | REAL CMAX ! standard deviation of the phase speed distribution |
|---|
| 72 | REAL RUWMAX, SAT ! ONLINE SPECIFIED IN run.def |
|---|
| 73 | REAL CPHA ! absolute PHASE VELOCITY frequency |
|---|
| 74 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
|---|
| 75 | REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
|---|
| 76 | REAL ZO(NW, KLON) ! Absolute frequency ! |
|---|
| 77 | |
|---|
| 78 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
|---|
| 79 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
|---|
| 80 | |
|---|
| 81 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
|---|
| 82 | REAL WWM(NW, KLON), WWP(NW, KLON) |
|---|
| 83 | |
|---|
| 84 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
|---|
| 85 | |
|---|
| 86 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
|---|
| 87 | ! Fluxes X and Y for each waves at 1/2 Levels |
|---|
| 88 | |
|---|
| 89 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
|---|
| 90 | |
|---|
| 91 | REAL XLAUNCH ! Controle the launching altitude |
|---|
| 92 | REAL XTROP ! SORT of Tropopause altitude |
|---|
| 93 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
|---|
| 94 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
|---|
| 95 | |
|---|
| 96 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
|---|
| 97 | ! for GWs parameterisation apply |
|---|
| 98 | |
|---|
| 99 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
|---|
| 100 | |
|---|
| 101 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
|---|
| 102 | |
|---|
| 103 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
|---|
| 104 | |
|---|
| 105 | REAL H0 ! Characteristic Height of the atmosphere |
|---|
| 106 | REAL PR, TR ! Reference Pressure and Temperature |
|---|
| 107 | |
|---|
| 108 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
|---|
| 109 | |
|---|
| 110 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
|---|
| 111 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
|---|
| 112 | REAL PSEC ! Security to avoid division by 0 pressure |
|---|
| 113 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
|---|
| 114 | REAL BVSEC ! Security to avoid negative BVF |
|---|
| 115 | REAL RAN_NUM_1, RAN_NUM_2, RAN_NUM_3 |
|---|
| 116 | |
|---|
| 117 | REAL, DIMENSION(klev + 1) :: HREF |
|---|
| 118 | |
|---|
| 119 | LOGICAL, SAVE :: gwd_reproductibilite_mpiomp = .TRUE. |
|---|
| 120 | LOGICAL, SAVE :: firstcall = .TRUE. |
|---|
| 121 | !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp) |
|---|
| 122 | |
|---|
| 123 | IF (firstcall) THEN |
|---|
| 124 | ! Cle introduite pour resoudre un probleme de non reproductibilite |
|---|
| 125 | ! Le but est de pouvoir tester de revenir a la version precedenete |
|---|
| 126 | ! A eliminer rapidement |
|---|
| 127 | CALL getin_p('gwd_reproductibilite_mpiomp', gwd_reproductibilite_mpiomp) |
|---|
| 128 | IF (NW + 3 * NA>=KLEV) THEN |
|---|
| 129 | abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes' |
|---|
| 130 | CALL abort_physic (modname, abort_message, 1) |
|---|
| 131 | ENDIF |
|---|
| 132 | firstcall = .FALSE. |
|---|
| 133 | ENDIF |
|---|
| 134 | |
|---|
| 135 | |
|---|
| 136 | !----------------------------------------------------------------- |
|---|
| 137 | |
|---|
| 138 | ! 1. INITIALISATIONS |
|---|
| 139 | |
|---|
| 140 | ! 1.1 Basic parameter |
|---|
| 141 | |
|---|
| 142 | ! Are provided from elsewhere (latent heat of vaporization, dry |
|---|
| 143 | ! gaz constant for air, gravity constant, heat capacity of dry air |
|---|
| 144 | ! at constant pressure, earth rotation rate, pi). |
|---|
| 145 | |
|---|
| 146 | ! 1.2 Tuning parameters of V14 |
|---|
| 147 | |
|---|
| 148 | RDISS = 0.5 ! Diffusion parameter |
|---|
| 149 | ! ONLINE |
|---|
| 150 | RUWMAX = GWD_RANDO_RUWMAX |
|---|
| 151 | SAT = gwd_rando_sat |
|---|
| 152 | !END ONLINE |
|---|
| 153 | ! OFFLINE |
|---|
| 154 | ! RUWMAX= 1.75 ! Launched flux |
|---|
| 155 | ! SAT=0.25 ! Saturation parameter |
|---|
| 156 | ! END OFFLINE |
|---|
| 157 | |
|---|
| 158 | PRMAX = 20. / 24. / 3600. |
|---|
| 159 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
|---|
| 160 | |
|---|
| 161 | ! Characteristic depth of the source |
|---|
| 162 | DZ = 1000. |
|---|
| 163 | XLAUNCH = 0.5 ! Parameter that control launching altitude |
|---|
| 164 | XTROP = 0.2 ! Parameter that control tropopause altitude |
|---|
| 165 | DELTAT = 24. * 3600. ! Time scale of the waves (first introduced in 9b) |
|---|
| 166 | ! OFFLINE |
|---|
| 167 | ! DELTAT=DTIME |
|---|
| 168 | ! END OFFLINE |
|---|
| 169 | |
|---|
| 170 | KMIN = 2.E-5 |
|---|
| 171 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
|---|
| 172 | |
|---|
| 173 | KMAX = 1.E-3 ! Max horizontal wavenumber |
|---|
| 174 | CMAX = 30. ! Max phase speed velocity |
|---|
| 175 | |
|---|
| 176 | TR = 240. ! Reference Temperature |
|---|
| 177 | PR = 101300. ! Reference pressure |
|---|
| 178 | H0 = RD * TR / RG ! Characteristic vertical scale height |
|---|
| 179 | |
|---|
| 180 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
|---|
| 181 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
|---|
| 182 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
|---|
| 183 | |
|---|
| 184 | IF (1==0) THEN |
|---|
| 185 | !ONLINE |
|---|
| 186 | CALL assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
|---|
| 187 | size(vv, 1), size(zustr), size(zvstr), size(d_u, 1), & |
|---|
| 188 | size(d_v, 1), & |
|---|
| 189 | size(east_gwstress, 1), size(west_gwstress, 1) /), & |
|---|
| 190 | "FLOTT_GWD_RANDO klon") |
|---|
| 191 | CALL assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
|---|
| 192 | size(vv, 2), size(d_u, 2), size(d_v, 2), & |
|---|
| 193 | size(east_gwstress, 2), size(west_gwstress, 2) /), & |
|---|
| 194 | "FLOTT_GWD_RANDO klev") |
|---|
| 195 | !END ONLINE |
|---|
| 196 | ENDIF |
|---|
| 197 | |
|---|
| 198 | IF(DELTAT < DTIME)THEN |
|---|
| 199 | abort_message = 'flott_gwd_rando: deltat < dtime!' |
|---|
| 200 | CALL abort_physic(modname, abort_message, 1) |
|---|
| 201 | ENDIF |
|---|
| 202 | |
|---|
| 203 | IF (KLEV < NW) THEN |
|---|
| 204 | abort_message = 'flott_gwd_rando: you will have problem with random numbers' |
|---|
| 205 | CALL abort_physic(modname, abort_message, 1) |
|---|
| 206 | ENDIF |
|---|
| 207 | |
|---|
| 208 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
|---|
| 209 | |
|---|
| 210 | ! Pressure and Inv of pressure |
|---|
| 211 | DO LL = 2, KLEV |
|---|
| 212 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
|---|
| 213 | end DO |
|---|
| 214 | PH(:, KLEV + 1) = 0. |
|---|
| 215 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
|---|
| 216 | |
|---|
| 217 | ! Launching altitude |
|---|
| 218 | |
|---|
| 219 | !Pour revenir a la version non reproductible en changeant le nombre de process |
|---|
| 220 | IF (gwd_reproductibilite_mpiomp) THEN |
|---|
| 221 | ! Reprend la formule qui calcule PH en fonction de PP=play |
|---|
| 222 | DO LL = 2, KLEV |
|---|
| 223 | HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.) |
|---|
| 224 | end DO |
|---|
| 225 | HREF(KLEV + 1) = 0. |
|---|
| 226 | HREF(1) = 2. * presnivs(1) - HREF(2) |
|---|
| 227 | ELSE |
|---|
| 228 | HREF(1:KLEV) = PH(KLON / 2, 1:KLEV) |
|---|
| 229 | ENDIF |
|---|
| 230 | |
|---|
| 231 | LAUNCH = 0 |
|---|
| 232 | LTROP = 0 |
|---|
| 233 | DO LL = 1, KLEV |
|---|
| 234 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
|---|
| 235 | ENDDO |
|---|
| 236 | DO LL = 1, KLEV |
|---|
| 237 | IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL |
|---|
| 238 | ENDDO |
|---|
| 239 | !LAUNCH=22 ; LTROP=33 |
|---|
| 240 | ! PRINT*,'LAUNCH=',LAUNCH,'LTROP=',LTROP |
|---|
| 241 | |
|---|
| 242 | ! Log pressure vert. coordinate |
|---|
| 243 | DO LL = 1, KLEV + 1 |
|---|
| 244 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
|---|
| 245 | end DO |
|---|
| 246 | |
|---|
| 247 | ! BV frequency |
|---|
| 248 | DO LL = 2, KLEV |
|---|
| 249 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
|---|
| 250 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
|---|
| 251 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
|---|
| 252 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
|---|
| 253 | end DO |
|---|
| 254 | BVLOW(:) = 0.5 * (TT(:, LTROP) + TT(:, LAUNCH)) & |
|---|
| 255 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP) & |
|---|
| 256 | - TT(:, LAUNCH)) / (ZH(:, LTROP) - ZH(:, LAUNCH)) * RD / H0 |
|---|
| 257 | |
|---|
| 258 | UH(:, 1) = UH(:, 2) |
|---|
| 259 | UH(:, KLEV + 1) = UH(:, KLEV) |
|---|
| 260 | BV(:, 1) = UH(:, 2) |
|---|
| 261 | BV(:, KLEV + 1) = UH(:, KLEV) |
|---|
| 262 | ! SMOOTHING THE BV HELPS |
|---|
| 263 | DO LL = 2, KLEV |
|---|
| 264 | BV(:, LL) = (UH(:, LL + 1) + 2. * UH(:, LL) + UH(:, LL - 1)) / 4. |
|---|
| 265 | end DO |
|---|
| 266 | |
|---|
| 267 | BV = MAX(SQRT(MAX(BV, 0.)), BVSEC) |
|---|
| 268 | BVLOW = MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
|---|
| 269 | |
|---|
| 270 | |
|---|
| 271 | ! WINDS |
|---|
| 272 | DO LL = 2, KLEV |
|---|
| 273 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
|---|
| 274 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
|---|
| 275 | end DO |
|---|
| 276 | UH(:, 1) = 0. |
|---|
| 277 | VH(:, 1) = 0. |
|---|
| 278 | UH(:, KLEV + 1) = UU(:, KLEV) |
|---|
| 279 | VH(:, KLEV + 1) = VV(:, KLEV) |
|---|
| 280 | |
|---|
| 281 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
|---|
| 282 | |
|---|
| 283 | ! The mod functions of weird arguments are used to produce the |
|---|
| 284 | ! waves characteristics in an almost stochastic way |
|---|
| 285 | |
|---|
| 286 | DO JW = 1, NW |
|---|
| 287 | ! Angle |
|---|
| 288 | DO II = 1, KLON |
|---|
| 289 | ! Angle (0 or PI so far) |
|---|
| 290 | RAN_NUM_1 = MOD(TT(II, JW) * 10., 1.) |
|---|
| 291 | RAN_NUM_2 = MOD(TT(II, JW) * 100., 1.) |
|---|
| 292 | ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.) & |
|---|
| 293 | * RPI / 2. |
|---|
| 294 | ! Horizontal wavenumber amplitude |
|---|
| 295 | ZK(JW, II) = KMIN + (KMAX - KMIN) * RAN_NUM_2 |
|---|
| 296 | ! Horizontal phase speed |
|---|
| 297 | CPHA = 0. |
|---|
| 298 | DO JJ = 1, NA |
|---|
| 299 | RAN_NUM_3 = MOD(TT(II, JW + 3 * JJ)**2, 1.) |
|---|
| 300 | CPHA = CPHA + & |
|---|
| 301 | CMAX * 2. * (RAN_NUM_3 - 0.5) * SQRT(3.) / SQRT(NA * 1.) |
|---|
| 302 | END DO |
|---|
| 303 | IF (CPHA<0.) THEN |
|---|
| 304 | CPHA = -1. * CPHA |
|---|
| 305 | ZP(JW, II) = ZP(JW, II) + RPI |
|---|
| 306 | ENDIF |
|---|
| 307 | ! Absolute frequency is imposed |
|---|
| 308 | ZO(JW, II) = CPHA * ZK(JW, II) |
|---|
| 309 | ! Intrinsic frequency is imposed |
|---|
| 310 | ZO(JW, II) = ZO(JW, II) & |
|---|
| 311 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
|---|
| 312 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
|---|
| 313 | ! Momentum flux at launch lev |
|---|
| 314 | RUW0(JW, II) = RUWMAX |
|---|
| 315 | ENDDO |
|---|
| 316 | ENDDO |
|---|
| 317 | |
|---|
| 318 | ! 4. COMPUTE THE FLUXES |
|---|
| 319 | |
|---|
| 320 | ! 4.1 Vertical velocity at launching altitude to ensure |
|---|
| 321 | ! the correct value to the imposed fluxes. |
|---|
| 322 | |
|---|
| 323 | DO JW = 1, NW |
|---|
| 324 | |
|---|
| 325 | ! Evaluate intrinsic frequency at launching altitude: |
|---|
| 326 | ZOP(JW, :) = ZO(JW, :) & |
|---|
| 327 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
|---|
| 328 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
|---|
| 329 | |
|---|
| 330 | ! VERSION WITH CONVECTIVE SOURCE |
|---|
| 331 | |
|---|
| 332 | ! Vertical velocity at launch level, value to ensure the |
|---|
| 333 | ! imposed factor related to the convective forcing: |
|---|
| 334 | ! precipitations. |
|---|
| 335 | |
|---|
| 336 | ! tanh limitation to values above prmax: |
|---|
| 337 | WWP(JW, :) = RUW0(JW, :) & |
|---|
| 338 | * (RD / RCPD / H0 * RLVTT * PRMAX * TANH(PREC(:) / PRMAX))**2 |
|---|
| 339 | |
|---|
| 340 | ! Factor related to the characteristics of the waves: |
|---|
| 341 | WWP(JW, :) = WWP(JW, :) * ZK(JW, :)**3 / KMIN / BVLOW(:) & |
|---|
| 342 | / MAX(ABS(ZOP(JW, :)), ZOISEC)**3 |
|---|
| 343 | |
|---|
| 344 | ! Moderation by the depth of the source (dz here): |
|---|
| 345 | WWP(JW, :) = WWP(JW, :) & |
|---|
| 346 | * EXP(- BVLOW(:)**2 / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 * ZK(JW, :)**2 & |
|---|
| 347 | * DZ**2) |
|---|
| 348 | |
|---|
| 349 | ! Put the stress in the right direction: |
|---|
| 350 | RUWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
|---|
| 351 | * BV(:, LAUNCH) * COS(ZP(JW, :)) * WWP(JW, :)**2 |
|---|
| 352 | RVWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
|---|
| 353 | * BV(:, LAUNCH) * SIN(ZP(JW, :)) * WWP(JW, :)**2 |
|---|
| 354 | end DO |
|---|
| 355 | |
|---|
| 356 | |
|---|
| 357 | ! 4.2 Uniform values below the launching altitude |
|---|
| 358 | |
|---|
| 359 | DO LL = 1, LAUNCH |
|---|
| 360 | RUW(:, LL) = 0 |
|---|
| 361 | RVW(:, LL) = 0 |
|---|
| 362 | DO JW = 1, NW |
|---|
| 363 | RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
|---|
| 364 | RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
|---|
| 365 | end DO |
|---|
| 366 | end DO |
|---|
| 367 | |
|---|
| 368 | ! 4.3 Loop over altitudes, with passage from one level to the next |
|---|
| 369 | ! done by i) conserving the EP flux, ii) dissipating a little, |
|---|
| 370 | ! iii) testing critical levels, and vi) testing the breaking. |
|---|
| 371 | |
|---|
| 372 | DO LL = LAUNCH, KLEV - 1 |
|---|
| 373 | ! Warning: all the physics is here (passage from one level |
|---|
| 374 | ! to the next) |
|---|
| 375 | DO JW = 1, NW |
|---|
| 376 | ZOM(JW, :) = ZOP(JW, :) |
|---|
| 377 | WWM(JW, :) = WWP(JW, :) |
|---|
| 378 | ! Intrinsic Frequency |
|---|
| 379 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
|---|
| 380 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
|---|
| 381 | |
|---|
| 382 | ! No breaking (Eq.6) |
|---|
| 383 | ! Dissipation (Eq. 8) |
|---|
| 384 | WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) & |
|---|
| 385 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
|---|
| 386 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
|---|
| 387 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
|---|
| 388 | |
|---|
| 389 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
|---|
| 390 | ! Saturation (Eq. 12) |
|---|
| 391 | WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
|---|
| 392 | SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
|---|
| 393 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & |
|---|
| 394 | * SAT**2 / ZK(JW, :)**4) |
|---|
| 395 | end DO |
|---|
| 396 | |
|---|
| 397 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
|---|
| 398 | ! the stress |
|---|
| 399 | |
|---|
| 400 | DO JW = 1, NW |
|---|
| 401 | RUWP(JW, :) = SIGN(1., ZOP(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :) |
|---|
| 402 | RVWP(JW, :) = SIGN(1., ZOP(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :) |
|---|
| 403 | end DO |
|---|
| 404 | |
|---|
| 405 | RUW(:, LL + 1) = 0. |
|---|
| 406 | RVW(:, LL + 1) = 0. |
|---|
| 407 | |
|---|
| 408 | DO JW = 1, NW |
|---|
| 409 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
|---|
| 410 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
|---|
| 411 | EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LL) + MAX(0., RUWP(JW, :)) / FLOAT(NW) |
|---|
| 412 | WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LL) + MIN(0., RUWP(JW, :)) / FLOAT(NW) |
|---|
| 413 | end DO |
|---|
| 414 | end DO |
|---|
| 415 | ! OFFLINE ONLY |
|---|
| 416 | ! PRINT *,'SAT PROFILE:' |
|---|
| 417 | ! DO LL=1,KLEV |
|---|
| 418 | ! PRINT *,ZH(KLON/2,LL)/1000.,SAT*(2.+TANH(ZH(KLON/2,LL)/H0-8.)) |
|---|
| 419 | ! ENDDO |
|---|
| 420 | |
|---|
| 421 | ! 5 CALCUL DES TENDANCES: |
|---|
| 422 | |
|---|
| 423 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
|---|
| 424 | |
|---|
| 425 | RUW(:, KLEV + 1) = 0. |
|---|
| 426 | RVW(:, KLEV + 1) = 0. |
|---|
| 427 | RUW(:, 1) = RUW(:, LAUNCH) |
|---|
| 428 | RVW(:, 1) = RVW(:, LAUNCH) |
|---|
| 429 | DO LL = 1, LAUNCH |
|---|
| 430 | RUW(:, LL) = RUW(:, LAUNCH + 1) |
|---|
| 431 | RVW(:, LL) = RVW(:, LAUNCH + 1) |
|---|
| 432 | EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LAUNCH) |
|---|
| 433 | WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LAUNCH) |
|---|
| 434 | end DO |
|---|
| 435 | |
|---|
| 436 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
|---|
| 437 | DO LL = 1, KLEV |
|---|
| 438 | D_U(:, LL) = (1. - DTIME / DELTAT) * D_U(:, LL) + DTIME / DELTAT / REAL(NW) * & |
|---|
| 439 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
|---|
| 440 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
|---|
| 441 | ! NO AR-1 FOR MERIDIONAL TENDENCIES |
|---|
| 442 | D_V(:, LL) = 1. / REAL(NW) * & |
|---|
| 443 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
|---|
| 444 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
|---|
| 445 | ENDDO |
|---|
| 446 | |
|---|
| 447 | ! Cosmetic: evaluation of the cumulated stress |
|---|
| 448 | ZUSTR = 0. |
|---|
| 449 | ZVSTR = 0. |
|---|
| 450 | DO LL = 1, KLEV |
|---|
| 451 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME |
|---|
| 452 | ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME |
|---|
| 453 | ENDDO |
|---|
| 454 | |
|---|
| 455 | END SUBROUTINE FLOTT_GWD_RANDO |
|---|
| 456 | |
|---|
| 457 | END MODULE FLOTT_GWD_rando_m |
|---|