1 | ! $Id: flott_gwd_rando_m.F90 5119 2024-07-24 16:46:45Z abarral $ |
---|
2 | |
---|
3 | module FLOTT_GWD_rando_m |
---|
4 | |
---|
5 | IMPLICIT NONE |
---|
6 | |
---|
7 | CONTAINS |
---|
8 | |
---|
9 | SUBROUTINE FLOTT_GWD_rando(DTIME, pp, tt, uu, vv, prec, zustr, zvstr, d_u, & |
---|
10 | d_v, east_gwstress, west_gwstress) |
---|
11 | |
---|
12 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
13 | ! number of gravity waves. |
---|
14 | ! Author: F. Lott |
---|
15 | ! July, 12th, 2012 |
---|
16 | ! Gaussian distribution of the source, source is precipitation |
---|
17 | ! Reference: Lott (JGR, vol 118, page 8897, 2013) |
---|
18 | |
---|
19 | !ONLINE: |
---|
20 | USE dimphy, ONLY: klon, klev |
---|
21 | USE lmdz_assert, ONLY: assert |
---|
22 | USE lmdz_ioipsl_getin_p, ONLY: getin_p |
---|
23 | USE lmdz_vertical_layers, ONLY: presnivs |
---|
24 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
25 | CHARACTER (LEN = 20) :: modname = 'flott_gwd_rando' |
---|
26 | CHARACTER (LEN = 80) :: abort_message |
---|
27 | |
---|
28 | include "YOMCST.h" |
---|
29 | include "clesphys.h" |
---|
30 | ! OFFLINE: |
---|
31 | ! include "dimensions.h" |
---|
32 | ! include "dimphy.h" |
---|
33 | ! END OF DIFFERENCE ONLINE-OFFLINE |
---|
34 | include "YOEGWD.h" |
---|
35 | |
---|
36 | ! 0. DECLARATIONS: |
---|
37 | |
---|
38 | ! 0.1 INPUTS |
---|
39 | REAL, INTENT(IN) :: DTIME ! Time step of the Physics |
---|
40 | REAL, INTENT(IN) :: pp(:, :) ! (KLON, KLEV) Pressure at full levels |
---|
41 | REAL, INTENT(IN) :: prec(:) ! (klon) Precipitation (kg/m^2/s) |
---|
42 | REAL, INTENT(IN) :: TT(:, :) ! (KLON, KLEV) Temp at full levels |
---|
43 | REAL, INTENT(IN) :: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
---|
44 | REAL, INTENT(IN) :: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
---|
45 | |
---|
46 | ! 0.2 OUTPUTS |
---|
47 | REAL, INTENT(OUT) :: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
---|
48 | |
---|
49 | REAL, INTENT(INOUT) :: d_u(:, :), d_v(:, :) |
---|
50 | REAL, INTENT(INOUT) :: east_gwstress(:, :) ! Profile of eastward stress |
---|
51 | REAL, INTENT(INOUT) :: west_gwstress(:, :) ! Profile of westward stress |
---|
52 | |
---|
53 | ! (KLON, KLEV) tendencies on winds |
---|
54 | |
---|
55 | ! O.3 INTERNAL ARRAYS |
---|
56 | REAL BVLOW(klon) |
---|
57 | REAL DZ ! Characteristic depth of the Source |
---|
58 | |
---|
59 | INTEGER II, JJ, LL |
---|
60 | |
---|
61 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
62 | |
---|
63 | REAL DELTAT |
---|
64 | |
---|
65 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
66 | |
---|
67 | INTEGER, PARAMETER :: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
---|
68 | INTEGER JK, JP, JO, JW |
---|
69 | INTEGER, PARAMETER :: NA = 5 !number of realizations to get the phase speed |
---|
70 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
---|
71 | REAL CMAX ! standard deviation of the phase speed distribution |
---|
72 | REAL RUWMAX, SAT ! ONLINE SPECIFIED IN run.def |
---|
73 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
74 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
---|
75 | REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
---|
76 | REAL ZO(NW, KLON) ! Absolute frequency ! |
---|
77 | |
---|
78 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
---|
79 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
---|
80 | |
---|
81 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
---|
82 | REAL WWM(NW, KLON), WWP(NW, KLON) |
---|
83 | |
---|
84 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
---|
85 | |
---|
86 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
---|
87 | ! Fluxes X and Y for each waves at 1/2 Levels |
---|
88 | |
---|
89 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
---|
90 | |
---|
91 | REAL XLAUNCH ! Controle the launching altitude |
---|
92 | REAL XTROP ! SORT of Tropopause altitude |
---|
93 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
---|
94 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
---|
95 | |
---|
96 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
97 | ! for GWs parameterisation apply |
---|
98 | |
---|
99 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
100 | |
---|
101 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
---|
102 | |
---|
103 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
---|
104 | |
---|
105 | REAL H0 ! Characteristic Height of the atmosphere |
---|
106 | REAL PR, TR ! Reference Pressure and Temperature |
---|
107 | |
---|
108 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
---|
109 | |
---|
110 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
---|
111 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
---|
112 | REAL PSEC ! Security to avoid division by 0 pressure |
---|
113 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
114 | REAL BVSEC ! Security to avoid negative BVF |
---|
115 | REAL RAN_NUM_1, RAN_NUM_2, RAN_NUM_3 |
---|
116 | |
---|
117 | REAL, DIMENSION(klev + 1) :: HREF |
---|
118 | |
---|
119 | LOGICAL, SAVE :: gwd_reproductibilite_mpiomp = .TRUE. |
---|
120 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
121 | !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp) |
---|
122 | |
---|
123 | IF (firstcall) THEN |
---|
124 | ! Cle introduite pour resoudre un probleme de non reproductibilite |
---|
125 | ! Le but est de pouvoir tester de revenir a la version precedenete |
---|
126 | ! A eliminer rapidement |
---|
127 | CALL getin_p('gwd_reproductibilite_mpiomp', gwd_reproductibilite_mpiomp) |
---|
128 | IF (NW + 3 * NA>=KLEV) THEN |
---|
129 | abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes' |
---|
130 | CALL abort_physic (modname, abort_message, 1) |
---|
131 | ENDIF |
---|
132 | firstcall = .FALSE. |
---|
133 | ENDIF |
---|
134 | |
---|
135 | |
---|
136 | !----------------------------------------------------------------- |
---|
137 | |
---|
138 | ! 1. INITIALISATIONS |
---|
139 | |
---|
140 | ! 1.1 Basic parameter |
---|
141 | |
---|
142 | ! Are provided from elsewhere (latent heat of vaporization, dry |
---|
143 | ! gaz constant for air, gravity constant, heat capacity of dry air |
---|
144 | ! at constant pressure, earth rotation rate, pi). |
---|
145 | |
---|
146 | ! 1.2 Tuning parameters of V14 |
---|
147 | |
---|
148 | RDISS = 0.5 ! Diffusion parameter |
---|
149 | ! ONLINE |
---|
150 | RUWMAX = GWD_RANDO_RUWMAX |
---|
151 | SAT = gwd_rando_sat |
---|
152 | !END ONLINE |
---|
153 | ! OFFLINE |
---|
154 | ! RUWMAX= 1.75 ! Launched flux |
---|
155 | ! SAT=0.25 ! Saturation parameter |
---|
156 | ! END OFFLINE |
---|
157 | |
---|
158 | PRMAX = 20. / 24. / 3600. |
---|
159 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
---|
160 | |
---|
161 | ! Characteristic depth of the source |
---|
162 | DZ = 1000. |
---|
163 | XLAUNCH = 0.5 ! Parameter that control launching altitude |
---|
164 | XTROP = 0.2 ! Parameter that control tropopause altitude |
---|
165 | DELTAT = 24. * 3600. ! Time scale of the waves (first introduced in 9b) |
---|
166 | ! OFFLINE |
---|
167 | ! DELTAT=DTIME |
---|
168 | ! END OFFLINE |
---|
169 | |
---|
170 | KMIN = 2.E-5 |
---|
171 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
---|
172 | |
---|
173 | KMAX = 1.E-3 ! Max horizontal wavenumber |
---|
174 | CMAX = 30. ! Max phase speed velocity |
---|
175 | |
---|
176 | TR = 240. ! Reference Temperature |
---|
177 | PR = 101300. ! Reference pressure |
---|
178 | H0 = RD * TR / RG ! Characteristic vertical scale height |
---|
179 | |
---|
180 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
---|
181 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
---|
182 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
---|
183 | |
---|
184 | IF (1==0) THEN |
---|
185 | !ONLINE |
---|
186 | CALL assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
---|
187 | size(vv, 1), size(zustr), size(zvstr), size(d_u, 1), & |
---|
188 | size(d_v, 1), & |
---|
189 | size(east_gwstress, 1), size(west_gwstress, 1) /), & |
---|
190 | "FLOTT_GWD_RANDO klon") |
---|
191 | CALL assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
---|
192 | size(vv, 2), size(d_u, 2), size(d_v, 2), & |
---|
193 | size(east_gwstress, 2), size(west_gwstress, 2) /), & |
---|
194 | "FLOTT_GWD_RANDO klev") |
---|
195 | !END ONLINE |
---|
196 | ENDIF |
---|
197 | |
---|
198 | IF(DELTAT < DTIME)THEN |
---|
199 | abort_message = 'flott_gwd_rando: deltat < dtime!' |
---|
200 | CALL abort_physic(modname, abort_message, 1) |
---|
201 | ENDIF |
---|
202 | |
---|
203 | IF (KLEV < NW) THEN |
---|
204 | abort_message = 'flott_gwd_rando: you will have problem with random numbers' |
---|
205 | CALL abort_physic(modname, abort_message, 1) |
---|
206 | ENDIF |
---|
207 | |
---|
208 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
209 | |
---|
210 | ! Pressure and Inv of pressure |
---|
211 | DO LL = 2, KLEV |
---|
212 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
213 | end DO |
---|
214 | PH(:, KLEV + 1) = 0. |
---|
215 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
216 | |
---|
217 | ! Launching altitude |
---|
218 | |
---|
219 | !Pour revenir a la version non reproductible en changeant le nombre de process |
---|
220 | IF (gwd_reproductibilite_mpiomp) THEN |
---|
221 | ! Reprend la formule qui calcule PH en fonction de PP=play |
---|
222 | DO LL = 2, KLEV |
---|
223 | HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.) |
---|
224 | end DO |
---|
225 | HREF(KLEV + 1) = 0. |
---|
226 | HREF(1) = 2. * presnivs(1) - HREF(2) |
---|
227 | ELSE |
---|
228 | HREF(1:KLEV) = PH(KLON / 2, 1:KLEV) |
---|
229 | ENDIF |
---|
230 | |
---|
231 | LAUNCH = 0 |
---|
232 | LTROP = 0 |
---|
233 | DO LL = 1, KLEV |
---|
234 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
---|
235 | ENDDO |
---|
236 | DO LL = 1, KLEV |
---|
237 | IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL |
---|
238 | ENDDO |
---|
239 | !LAUNCH=22 ; LTROP=33 |
---|
240 | ! PRINT*,'LAUNCH=',LAUNCH,'LTROP=',LTROP |
---|
241 | |
---|
242 | ! Log pressure vert. coordinate |
---|
243 | DO LL = 1, KLEV + 1 |
---|
244 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
245 | end DO |
---|
246 | |
---|
247 | ! BV frequency |
---|
248 | DO LL = 2, KLEV |
---|
249 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
---|
250 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
251 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
---|
252 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
---|
253 | end DO |
---|
254 | BVLOW(:) = 0.5 * (TT(:, LTROP) + TT(:, LAUNCH)) & |
---|
255 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP) & |
---|
256 | - TT(:, LAUNCH)) / (ZH(:, LTROP) - ZH(:, LAUNCH)) * RD / H0 |
---|
257 | |
---|
258 | UH(:, 1) = UH(:, 2) |
---|
259 | UH(:, KLEV + 1) = UH(:, KLEV) |
---|
260 | BV(:, 1) = UH(:, 2) |
---|
261 | BV(:, KLEV + 1) = UH(:, KLEV) |
---|
262 | ! SMOOTHING THE BV HELPS |
---|
263 | DO LL = 2, KLEV |
---|
264 | BV(:, LL) = (UH(:, LL + 1) + 2. * UH(:, LL) + UH(:, LL - 1)) / 4. |
---|
265 | end DO |
---|
266 | |
---|
267 | BV = MAX(SQRT(MAX(BV, 0.)), BVSEC) |
---|
268 | BVLOW = MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
---|
269 | |
---|
270 | |
---|
271 | ! WINDS |
---|
272 | DO LL = 2, KLEV |
---|
273 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
274 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
275 | end DO |
---|
276 | UH(:, 1) = 0. |
---|
277 | VH(:, 1) = 0. |
---|
278 | UH(:, KLEV + 1) = UU(:, KLEV) |
---|
279 | VH(:, KLEV + 1) = VV(:, KLEV) |
---|
280 | |
---|
281 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
---|
282 | |
---|
283 | ! The mod functions of weird arguments are used to produce the |
---|
284 | ! waves characteristics in an almost stochastic way |
---|
285 | |
---|
286 | DO JW = 1, NW |
---|
287 | ! Angle |
---|
288 | DO II = 1, KLON |
---|
289 | ! Angle (0 or PI so far) |
---|
290 | RAN_NUM_1 = MOD(TT(II, JW) * 10., 1.) |
---|
291 | RAN_NUM_2 = MOD(TT(II, JW) * 100., 1.) |
---|
292 | ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.) & |
---|
293 | * RPI / 2. |
---|
294 | ! Horizontal wavenumber amplitude |
---|
295 | ZK(JW, II) = KMIN + (KMAX - KMIN) * RAN_NUM_2 |
---|
296 | ! Horizontal phase speed |
---|
297 | CPHA = 0. |
---|
298 | DO JJ = 1, NA |
---|
299 | RAN_NUM_3 = MOD(TT(II, JW + 3 * JJ)**2, 1.) |
---|
300 | CPHA = CPHA + & |
---|
301 | CMAX * 2. * (RAN_NUM_3 - 0.5) * SQRT(3.) / SQRT(NA * 1.) |
---|
302 | END DO |
---|
303 | IF (CPHA<0.) THEN |
---|
304 | CPHA = -1. * CPHA |
---|
305 | ZP(JW, II) = ZP(JW, II) + RPI |
---|
306 | ENDIF |
---|
307 | ! Absolute frequency is imposed |
---|
308 | ZO(JW, II) = CPHA * ZK(JW, II) |
---|
309 | ! Intrinsic frequency is imposed |
---|
310 | ZO(JW, II) = ZO(JW, II) & |
---|
311 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
312 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
313 | ! Momentum flux at launch lev |
---|
314 | RUW0(JW, II) = RUWMAX |
---|
315 | ENDDO |
---|
316 | ENDDO |
---|
317 | |
---|
318 | ! 4. COMPUTE THE FLUXES |
---|
319 | |
---|
320 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
321 | ! the correct value to the imposed fluxes. |
---|
322 | |
---|
323 | DO JW = 1, NW |
---|
324 | |
---|
325 | ! Evaluate intrinsic frequency at launching altitude: |
---|
326 | ZOP(JW, :) = ZO(JW, :) & |
---|
327 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
328 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
329 | |
---|
330 | ! VERSION WITH CONVECTIVE SOURCE |
---|
331 | |
---|
332 | ! Vertical velocity at launch level, value to ensure the |
---|
333 | ! imposed factor related to the convective forcing: |
---|
334 | ! precipitations. |
---|
335 | |
---|
336 | ! tanh limitation to values above prmax: |
---|
337 | WWP(JW, :) = RUW0(JW, :) & |
---|
338 | * (RD / RCPD / H0 * RLVTT * PRMAX * TANH(PREC(:) / PRMAX))**2 |
---|
339 | |
---|
340 | ! Factor related to the characteristics of the waves: |
---|
341 | WWP(JW, :) = WWP(JW, :) * ZK(JW, :)**3 / KMIN / BVLOW(:) & |
---|
342 | / MAX(ABS(ZOP(JW, :)), ZOISEC)**3 |
---|
343 | |
---|
344 | ! Moderation by the depth of the source (dz here): |
---|
345 | WWP(JW, :) = WWP(JW, :) & |
---|
346 | * EXP(- BVLOW(:)**2 / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 * ZK(JW, :)**2 & |
---|
347 | * DZ**2) |
---|
348 | |
---|
349 | ! Put the stress in the right direction: |
---|
350 | RUWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
---|
351 | * BV(:, LAUNCH) * COS(ZP(JW, :)) * WWP(JW, :)**2 |
---|
352 | RVWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
---|
353 | * BV(:, LAUNCH) * SIN(ZP(JW, :)) * WWP(JW, :)**2 |
---|
354 | end DO |
---|
355 | |
---|
356 | |
---|
357 | ! 4.2 Uniform values below the launching altitude |
---|
358 | |
---|
359 | DO LL = 1, LAUNCH |
---|
360 | RUW(:, LL) = 0 |
---|
361 | RVW(:, LL) = 0 |
---|
362 | DO JW = 1, NW |
---|
363 | RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
---|
364 | RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
---|
365 | end DO |
---|
366 | end DO |
---|
367 | |
---|
368 | ! 4.3 Loop over altitudes, with passage from one level to the next |
---|
369 | ! done by i) conserving the EP flux, ii) dissipating a little, |
---|
370 | ! iii) testing critical levels, and vi) testing the breaking. |
---|
371 | |
---|
372 | DO LL = LAUNCH, KLEV - 1 |
---|
373 | ! Warning: all the physics is here (passage from one level |
---|
374 | ! to the next) |
---|
375 | DO JW = 1, NW |
---|
376 | ZOM(JW, :) = ZOP(JW, :) |
---|
377 | WWM(JW, :) = WWP(JW, :) |
---|
378 | ! Intrinsic Frequency |
---|
379 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
---|
380 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
---|
381 | |
---|
382 | ! No breaking (Eq.6) |
---|
383 | ! Dissipation (Eq. 8) |
---|
384 | WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) & |
---|
385 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
386 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
---|
387 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
---|
388 | |
---|
389 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
390 | ! Saturation (Eq. 12) |
---|
391 | WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
---|
392 | SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
---|
393 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & |
---|
394 | * SAT**2 / ZK(JW, :)**4) |
---|
395 | end DO |
---|
396 | |
---|
397 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
---|
398 | ! the stress |
---|
399 | |
---|
400 | DO JW = 1, NW |
---|
401 | RUWP(JW, :) = SIGN(1., ZOP(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :) |
---|
402 | RVWP(JW, :) = SIGN(1., ZOP(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :) |
---|
403 | end DO |
---|
404 | |
---|
405 | RUW(:, LL + 1) = 0. |
---|
406 | RVW(:, LL + 1) = 0. |
---|
407 | |
---|
408 | DO JW = 1, NW |
---|
409 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
---|
410 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
---|
411 | EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LL) + MAX(0., RUWP(JW, :)) / FLOAT(NW) |
---|
412 | WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LL) + MIN(0., RUWP(JW, :)) / FLOAT(NW) |
---|
413 | end DO |
---|
414 | end DO |
---|
415 | ! OFFLINE ONLY |
---|
416 | ! PRINT *,'SAT PROFILE:' |
---|
417 | ! DO LL=1,KLEV |
---|
418 | ! PRINT *,ZH(KLON/2,LL)/1000.,SAT*(2.+TANH(ZH(KLON/2,LL)/H0-8.)) |
---|
419 | ! ENDDO |
---|
420 | |
---|
421 | ! 5 CALCUL DES TENDANCES: |
---|
422 | |
---|
423 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
---|
424 | |
---|
425 | RUW(:, KLEV + 1) = 0. |
---|
426 | RVW(:, KLEV + 1) = 0. |
---|
427 | RUW(:, 1) = RUW(:, LAUNCH) |
---|
428 | RVW(:, 1) = RVW(:, LAUNCH) |
---|
429 | DO LL = 1, LAUNCH |
---|
430 | RUW(:, LL) = RUW(:, LAUNCH + 1) |
---|
431 | RVW(:, LL) = RVW(:, LAUNCH + 1) |
---|
432 | EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LAUNCH) |
---|
433 | WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LAUNCH) |
---|
434 | end DO |
---|
435 | |
---|
436 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
437 | DO LL = 1, KLEV |
---|
438 | D_U(:, LL) = (1. - DTIME / DELTAT) * D_U(:, LL) + DTIME / DELTAT / REAL(NW) * & |
---|
439 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
---|
440 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
441 | ! NO AR-1 FOR MERIDIONAL TENDENCIES |
---|
442 | D_V(:, LL) = 1. / REAL(NW) * & |
---|
443 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
---|
444 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
445 | ENDDO |
---|
446 | |
---|
447 | ! Cosmetic: evaluation of the cumulated stress |
---|
448 | ZUSTR = 0. |
---|
449 | ZVSTR = 0. |
---|
450 | DO LL = 1, KLEV |
---|
451 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME |
---|
452 | ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME |
---|
453 | ENDDO |
---|
454 | |
---|
455 | END SUBROUTINE FLOTT_GWD_RANDO |
---|
456 | |
---|
457 | END MODULE FLOTT_GWD_rando_m |
---|