[1403] | 1 | ! $Id: fisrtilp_tr.F90 5153 2024-07-31 16:20:03Z abarral $ |
---|
[524] | 2 | |
---|
| 3 | |
---|
[1992] | 4 | SUBROUTINE fisrtilp_tr(dtime, paprs, pplay, t, q, ratqs, d_t, d_q, d_ql, & |
---|
[5144] | 5 | rneb, radliq, rain, snow, pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, & |
---|
| 6 | frac_nucl, prfl, psfl, rhcl) ! relative humidity in clear sky (needed for aer optical |
---|
[1992] | 7 | ! properties; aeropt.F) |
---|
| 8 | |
---|
| 9 | USE dimphy |
---|
[5112] | 10 | USE lmdz_print_control, ONLY: lunout |
---|
[5144] | 11 | USE lmdz_yoethf |
---|
[5153] | 12 | |
---|
[5144] | 13 | USE lmdz_yomcst |
---|
[5143] | 14 | |
---|
[1992] | 15 | IMPLICIT NONE |
---|
[5153] | 16 | INCLUDE "FCTTRE.h" |
---|
[1992] | 17 | ! ====================================================================== |
---|
| 18 | ! Auteur(s): Z.X. Li (LMD/CNRS) |
---|
| 19 | ! Date: le 20 mars 1995 |
---|
| 20 | ! Objet: condensation et precipitation stratiforme. |
---|
| 21 | ! schema de nuage |
---|
| 22 | ! ====================================================================== |
---|
| 23 | ! ====================================================================== |
---|
| 24 | |
---|
| 25 | ! Arguments: |
---|
| 26 | |
---|
| 27 | REAL dtime ! intervalle du temps (s) |
---|
[5144] | 28 | REAL paprs(klon, klev + 1) ! pression a inter-couche |
---|
[1992] | 29 | REAL pplay(klon, klev) ! pression au milieu de couche |
---|
| 30 | REAL t(klon, klev) ! temperature (K) |
---|
| 31 | REAL q(klon, klev) ! humidite specifique (kg/kg) |
---|
| 32 | REAL d_t(klon, klev) ! incrementation de la temperature (K) |
---|
| 33 | REAL d_q(klon, klev) ! incrementation de la vapeur d'eau |
---|
| 34 | REAL d_ql(klon, klev) ! incrementation de l'eau liquide |
---|
| 35 | REAL rneb(klon, klev) ! fraction nuageuse |
---|
| 36 | REAL radliq(klon, klev) ! eau liquide utilisee dans rayonnements |
---|
| 37 | REAL rain(klon) ! pluies (mm/s) |
---|
| 38 | REAL snow(klon) ! neige (mm/s) |
---|
[5144] | 39 | REAL prfl(klon, klev + 1) ! flux d'eau precipitante aux interfaces (kg/m2/s) |
---|
| 40 | REAL psfl(klon, klev + 1) ! flux d'eau precipitante aux interfaces (kg/m2/s) |
---|
[1992] | 41 | |
---|
| 42 | ! jq For aerosol opt properties needed (see aeropt.F) |
---|
| 43 | REAL rhcl(klon, klev) |
---|
| 44 | |
---|
| 45 | ! AA |
---|
| 46 | ! Coeffients de fraction lessivee : pour OFF-LINE |
---|
| 47 | |
---|
| 48 | REAL pfrac_nucl(klon, klev) |
---|
| 49 | REAL pfrac_1nucl(klon, klev) |
---|
| 50 | REAL pfrac_impa(klon, klev) |
---|
| 51 | |
---|
| 52 | ! Fraction d'aerosols lessivee par impaction et par nucleation |
---|
| 53 | ! POur ON-LINE |
---|
| 54 | |
---|
| 55 | REAL frac_impa(klon, klev) |
---|
| 56 | REAL frac_nucl(klon, klev) |
---|
| 57 | ! AA |
---|
| 58 | |
---|
| 59 | ! Options du programme: |
---|
| 60 | |
---|
| 61 | REAL seuil_neb ! un nuage existe vraiment au-dela |
---|
[5144] | 62 | PARAMETER (seuil_neb = 0.001) |
---|
[1992] | 63 | REAL ct ! inverse du temps pour qu'un nuage precipite |
---|
[5144] | 64 | PARAMETER (ct = 1. / 1800.) |
---|
[1992] | 65 | REAL cl ! seuil de precipitation |
---|
[5144] | 66 | PARAMETER (cl = 2.6E-4) |
---|
[1992] | 67 | ! cc PARAMETER (cl=2.3e-4) |
---|
| 68 | ! cc PARAMETER (cl=2.0e-4) |
---|
| 69 | INTEGER ninter ! sous-intervals pour la precipitation |
---|
[5144] | 70 | PARAMETER (ninter = 5) |
---|
[1992] | 71 | LOGICAL evap_prec ! evaporation de la pluie |
---|
[5144] | 72 | PARAMETER (evap_prec = .TRUE.) |
---|
[1992] | 73 | REAL coef_eva |
---|
[5144] | 74 | PARAMETER (coef_eva = 2.0E-05) |
---|
[1992] | 75 | LOGICAL calcrat ! calculer ratqs au lieu de fixer sa valeur |
---|
| 76 | REAL ratqs(klon, klev) ! determine la largeur de distribution de vapeur |
---|
[5144] | 77 | PARAMETER (calcrat = .TRUE.) |
---|
[1992] | 78 | REAL zx_min, rat_max |
---|
[5144] | 79 | PARAMETER (zx_min = 1.0, rat_max = 0.01) |
---|
[1992] | 80 | REAL zx_max, rat_min |
---|
[5144] | 81 | PARAMETER (zx_max = 0.1, rat_min = 0.3) |
---|
[1992] | 82 | REAL zx |
---|
| 83 | |
---|
| 84 | LOGICAL cpartiel ! condensation partielle |
---|
[5144] | 85 | PARAMETER (cpartiel = .TRUE.) |
---|
[1992] | 86 | REAL t_coup |
---|
[5144] | 87 | PARAMETER (t_coup = 234.0) |
---|
[1992] | 88 | |
---|
| 89 | ! Variables locales: |
---|
| 90 | |
---|
| 91 | INTEGER i, k, n, kk |
---|
| 92 | REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 |
---|
| 93 | REAL zrfl(klon), zrfln(klon), zqev, zqevt |
---|
| 94 | REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon), zdelq |
---|
| 95 | REAL ztglace, zt(klon) |
---|
| 96 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 97 | REAL zdz(klon), zrho(klon), ztot(klon), zrhol(klon) |
---|
| 98 | REAL zchau(klon), zfroi(klon), zfice(klon), zneb(klon) |
---|
| 99 | |
---|
| 100 | LOGICAL appel1er |
---|
| 101 | SAVE appel1er |
---|
| 102 | !$OMP THREADPRIVATE(appel1er) |
---|
| 103 | |
---|
| 104 | ! --------------------------------------------------------------- |
---|
| 105 | |
---|
| 106 | ! AA Variables traceurs: |
---|
| 107 | ! AA Provisoire !!! Parametres alpha du lessivage |
---|
| 108 | ! AA A priori on a 4 scavenging # possibles |
---|
| 109 | |
---|
| 110 | REAL a_tr_sca(4) |
---|
| 111 | SAVE a_tr_sca |
---|
| 112 | !$OMP THREADPRIVATE(a_tr_sca) |
---|
| 113 | |
---|
| 114 | ! Variables intermediaires |
---|
| 115 | |
---|
| 116 | REAL zalpha_tr |
---|
| 117 | REAL zfrac_lessi |
---|
| 118 | REAL zprec_cond(klon) |
---|
| 119 | ! AA |
---|
| 120 | ! --------------------------------------------------------------- |
---|
| 121 | |
---|
| 122 | ! Fonctions en ligne: |
---|
| 123 | |
---|
| 124 | REAL fallv ! vitesse de chute pour crystaux de glace |
---|
| 125 | REAL zzz |
---|
[5144] | 126 | DATA appel1er/.TRUE./ |
---|
| 127 | fallv(zzz) = 3.29 / 2.0 * ((zzz)**0.16) |
---|
[1992] | 128 | ! cc fallv (zzz) = 3.29/3.0 * ((zzz)**0.16) |
---|
| 129 | ! cc fallv (zzz) = 3.29 * ((zzz)**0.16) |
---|
| 130 | |
---|
| 131 | IF (appel1er) THEN |
---|
| 132 | |
---|
| 133 | WRITE (lunout, *) 'fisrtilp, calcrat:', calcrat |
---|
| 134 | WRITE (lunout, *) 'fisrtilp, ninter:', ninter |
---|
| 135 | WRITE (lunout, *) 'fisrtilp, evap_prec:', evap_prec |
---|
| 136 | WRITE (lunout, *) 'fisrtilp, cpartiel:', cpartiel |
---|
[5144] | 137 | IF (abs(dtime / real(ninter) - 360.0)>0.001) THEN |
---|
[1992] | 138 | WRITE (lunout, *) 'fisrtilp: Ce n est pas prevu, voir Z.X.Li', dtime |
---|
| 139 | WRITE (lunout, *) 'Je prefere un sous-intervalle de 6 minutes' |
---|
| 140 | CALL abort |
---|
| 141 | END IF |
---|
| 142 | appel1er = .FALSE. |
---|
| 143 | |
---|
| 144 | ! AA initialiation provisoire |
---|
| 145 | a_tr_sca(1) = -0.5 |
---|
| 146 | a_tr_sca(2) = -0.5 |
---|
| 147 | a_tr_sca(3) = -0.5 |
---|
| 148 | a_tr_sca(4) = -0.5 |
---|
| 149 | |
---|
| 150 | ! AA Initialisation a 1 des coefs des fractions lessivees |
---|
| 151 | |
---|
| 152 | DO k = 1, klev |
---|
[524] | 153 | DO i = 1, klon |
---|
[1992] | 154 | pfrac_nucl(i, k) = 1. |
---|
| 155 | pfrac_1nucl(i, k) = 1. |
---|
| 156 | pfrac_impa(i, k) = 1. |
---|
| 157 | END DO |
---|
| 158 | END DO |
---|
[524] | 159 | |
---|
[1992] | 160 | END IF ! test sur appel1er |
---|
| 161 | |
---|
| 162 | ! MAf Initialisation a 0 de zoliq |
---|
| 163 | DO i = 1, klon |
---|
| 164 | zoliq(i) = 0. |
---|
| 165 | END DO |
---|
| 166 | ! Determiner les nuages froids par leur temperature |
---|
| 167 | |
---|
| 168 | ztglace = rtt - 15.0 |
---|
| 169 | nexpo = 6 |
---|
| 170 | ! cc nexpo = 1 |
---|
| 171 | |
---|
| 172 | ! Initialiser les sorties: |
---|
| 173 | |
---|
| 174 | DO k = 1, klev + 1 |
---|
| 175 | DO i = 1, klon |
---|
| 176 | prfl(i, k) = 0.0 |
---|
| 177 | psfl(i, k) = 0.0 |
---|
| 178 | END DO |
---|
| 179 | END DO |
---|
| 180 | |
---|
| 181 | DO k = 1, klev |
---|
| 182 | DO i = 1, klon |
---|
| 183 | d_t(i, k) = 0.0 |
---|
| 184 | d_q(i, k) = 0.0 |
---|
| 185 | d_ql(i, k) = 0.0 |
---|
| 186 | rneb(i, k) = 0.0 |
---|
| 187 | radliq(i, k) = 0.0 |
---|
| 188 | frac_nucl(i, k) = 1. |
---|
| 189 | frac_impa(i, k) = 1. |
---|
| 190 | END DO |
---|
| 191 | END DO |
---|
| 192 | DO i = 1, klon |
---|
| 193 | rain(i) = 0.0 |
---|
| 194 | snow(i) = 0.0 |
---|
| 195 | END DO |
---|
| 196 | |
---|
| 197 | ! Initialiser le flux de precipitation a zero |
---|
| 198 | |
---|
| 199 | DO i = 1, klon |
---|
| 200 | zrfl(i) = 0.0 |
---|
| 201 | zneb(i) = seuil_neb |
---|
| 202 | END DO |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | ! AA Pour plus de securite |
---|
| 206 | |
---|
| 207 | zalpha_tr = 0. |
---|
| 208 | zfrac_lessi = 0. |
---|
| 209 | |
---|
| 210 | ! AA---------------------------------------------------------- |
---|
| 211 | |
---|
| 212 | ! Boucle verticale (du haut vers le bas) |
---|
| 213 | |
---|
| 214 | DO k = klev, 1, -1 |
---|
| 215 | |
---|
| 216 | ! AA---------------------------------------------------------- |
---|
| 217 | |
---|
| 218 | DO i = 1, klon |
---|
| 219 | zt(i) = t(i, k) |
---|
| 220 | zq(i) = q(i, k) |
---|
| 221 | END DO |
---|
| 222 | |
---|
| 223 | ! Calculer l'evaporation de la precipitation |
---|
| 224 | |
---|
| 225 | IF (evap_prec) THEN |
---|
[524] | 226 | DO i = 1, klon |
---|
[1992] | 227 | IF (zrfl(i)>0.) THEN |
---|
| 228 | IF (thermcep) THEN |
---|
[5144] | 229 | zdelta = max(0., sign(1., rtt - zt(i))) |
---|
| 230 | zqs(i) = r2es * foeew(zt(i), zdelta) / pplay(i, k) |
---|
[1992] | 231 | zqs(i) = min(0.5, zqs(i)) |
---|
[5144] | 232 | zcor = 1. / (1. - retv * zqs(i)) |
---|
| 233 | zqs(i) = zqs(i) * zcor |
---|
[1992] | 234 | ELSE |
---|
| 235 | IF (zt(i)<t_coup) THEN |
---|
[5144] | 236 | zqs(i) = qsats(zt(i)) / pplay(i, k) |
---|
[1992] | 237 | ELSE |
---|
[5144] | 238 | zqs(i) = qsatl(zt(i)) / pplay(i, k) |
---|
[1992] | 239 | END IF |
---|
| 240 | END IF |
---|
[5144] | 241 | zqev = max(0.0, (zqs(i) - zq(i)) * zneb(i)) |
---|
| 242 | zqevt = coef_eva * (1.0 - zq(i) / zqs(i)) * sqrt(zrfl(i)) * & |
---|
| 243 | (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * rd / rg |
---|
| 244 | zqevt = max(0.0, min(zqevt, zrfl(i))) * rg * dtime / & |
---|
| 245 | (paprs(i, k) - paprs(i, k + 1)) |
---|
[1992] | 246 | zqev = min(zqev, zqevt) |
---|
[5144] | 247 | zrfln(i) = zrfl(i) - zqev * (paprs(i, k) - paprs(i, k + 1)) / rg / dtime |
---|
| 248 | zq(i) = zq(i) - (zrfln(i) - zrfl(i)) * (rg / (paprs(i, k) - paprs(i, & |
---|
| 249 | k + 1))) * dtime |
---|
| 250 | zt(i) = zt(i) + (zrfln(i) - zrfl(i)) * (rg / (paprs(i, k) - paprs(i, & |
---|
| 251 | k + 1))) * dtime * rlvtt / rcpd / (1.0 + rvtmp2 * zq(i)) |
---|
[1992] | 252 | zrfl(i) = zrfln(i) |
---|
| 253 | END IF |
---|
| 254 | END DO |
---|
| 255 | END IF |
---|
| 256 | |
---|
| 257 | ! Calculer Qs et L/Cp*dQs/dT: |
---|
| 258 | |
---|
| 259 | IF (thermcep) THEN |
---|
[524] | 260 | DO i = 1, klon |
---|
[5144] | 261 | zdelta = max(0., sign(1., rtt - zt(i))) |
---|
| 262 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
| 263 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zq(i)) |
---|
| 264 | zqs(i) = r2es * foeew(zt(i), zdelta) / pplay(i, k) |
---|
[1992] | 265 | zqs(i) = min(0.5, zqs(i)) |
---|
[5144] | 266 | zcor = 1. / (1. - retv * zqs(i)) |
---|
| 267 | zqs(i) = zqs(i) * zcor |
---|
[1992] | 268 | zdqs(i) = foede(zt(i), zdelta, zcvm5, zqs(i), zcor) |
---|
| 269 | END DO |
---|
| 270 | ELSE |
---|
[524] | 271 | DO i = 1, klon |
---|
[1992] | 272 | IF (zt(i)<t_coup) THEN |
---|
[5144] | 273 | zqs(i) = qsats(zt(i)) / pplay(i, k) |
---|
[1992] | 274 | zdqs(i) = dqsats(zt(i), zqs(i)) |
---|
| 275 | ELSE |
---|
[5144] | 276 | zqs(i) = qsatl(zt(i)) / pplay(i, k) |
---|
[1992] | 277 | zdqs(i) = dqsatl(zt(i), zqs(i)) |
---|
| 278 | END IF |
---|
| 279 | END DO |
---|
| 280 | END IF |
---|
[524] | 281 | |
---|
[1992] | 282 | ! Determiner la condensation partielle et calculer la quantite |
---|
| 283 | ! de l'eau condensee: |
---|
[524] | 284 | |
---|
[1992] | 285 | IF (cpartiel) THEN |
---|
[524] | 286 | DO i = 1, klon |
---|
[1992] | 287 | |
---|
[5144] | 288 | zdelq = ratqs(i, k) * zq(i) |
---|
| 289 | rneb(i, k) = (zq(i) + zdelq - zqs(i)) / (2.0 * zdelq) |
---|
| 290 | zqn(i) = (zq(i) + zdelq + zqs(i)) / 2.0 |
---|
| 291 | IF (rneb(i, k)<=0.0) zqn(i) = 0.0 |
---|
| 292 | IF (rneb(i, k)>=1.0) zqn(i) = zq(i) |
---|
| 293 | rneb(i, k) = max(0.0, min(1.0, rneb(i, k))) |
---|
| 294 | zcond(i) = max(0.0, zqn(i) - zqs(i)) * rneb(i, k) / (1. + zdqs(i)) |
---|
[1992] | 295 | |
---|
| 296 | ! --Olivier |
---|
[5144] | 297 | rhcl(i, k) = (zqs(i) + zq(i) - zdelq) / 2. / zqs(i) |
---|
| 298 | IF (rneb(i, k)<=0.0) rhcl(i, k) = zq(i) / zqs(i) |
---|
| 299 | IF (rneb(i, k)>=1.0) rhcl(i, k) = 1.0 |
---|
[1992] | 300 | ! --fin |
---|
| 301 | |
---|
| 302 | END DO |
---|
| 303 | ELSE |
---|
[524] | 304 | DO i = 1, klon |
---|
[1992] | 305 | IF (zq(i)>zqs(i)) THEN |
---|
| 306 | rneb(i, k) = 1.0 |
---|
| 307 | ELSE |
---|
| 308 | rneb(i, k) = 0.0 |
---|
| 309 | END IF |
---|
[5144] | 310 | zcond(i) = max(0.0, zq(i) - zqs(i)) / (1. + zdqs(i)) |
---|
[1992] | 311 | END DO |
---|
| 312 | END IF |
---|
| 313 | |
---|
| 314 | DO i = 1, klon |
---|
| 315 | zq(i) = zq(i) - zcond(i) |
---|
[5144] | 316 | zt(i) = zt(i) + zcond(i) * rlvtt / rcpd |
---|
[1992] | 317 | END DO |
---|
| 318 | |
---|
| 319 | ! Partager l'eau condensee en precipitation et eau liquide nuageuse |
---|
| 320 | |
---|
| 321 | DO i = 1, klon |
---|
[5144] | 322 | IF (rneb(i, k)>0.0) THEN |
---|
[1992] | 323 | zoliq(i) = zcond(i) |
---|
[5144] | 324 | zrho(i) = pplay(i, k) / zt(i) / rd |
---|
| 325 | zdz(i) = (paprs(i, k) - paprs(i, k + 1)) / (zrho(i) * rg) |
---|
| 326 | zfice(i) = 1.0 - (zt(i) - ztglace) / (273.13 - ztglace) |
---|
| 327 | zfice(i) = min(max(zfice(i), 0.0), 1.0) |
---|
[1992] | 328 | zfice(i) = zfice(i)**nexpo |
---|
[5144] | 329 | zneb(i) = max(rneb(i, k), seuil_neb) |
---|
| 330 | radliq(i, k) = zoliq(i) / real(ninter + 1) |
---|
[1992] | 331 | END IF |
---|
| 332 | END DO |
---|
| 333 | |
---|
| 334 | DO n = 1, ninter |
---|
[524] | 335 | DO i = 1, klon |
---|
[5144] | 336 | IF (rneb(i, k)>0.0) THEN |
---|
| 337 | zchau(i) = ct * dtime / real(ninter) * zoliq(i) * & |
---|
| 338 | (1.0 - exp(-(zoliq(i) / zneb(i) / cl)**2)) * (1. - zfice(i)) |
---|
| 339 | zrhol(i) = zrho(i) * zoliq(i) / zneb(i) |
---|
| 340 | zfroi(i) = dtime / real(ninter) / zdz(i) * zoliq(i) * fallv(zrhol(i)) * & |
---|
| 341 | zfice(i) |
---|
[1992] | 342 | ztot(i) = zchau(i) + zfroi(i) |
---|
| 343 | IF (zneb(i)==seuil_neb) ztot(i) = 0.0 |
---|
[5144] | 344 | ztot(i) = min(max(ztot(i), 0.0), zoliq(i)) |
---|
| 345 | zoliq(i) = max(zoliq(i) - ztot(i), 0.0) |
---|
| 346 | radliq(i, k) = radliq(i, k) + zoliq(i) / real(ninter + 1) |
---|
[1992] | 347 | END IF |
---|
| 348 | END DO |
---|
| 349 | END DO |
---|
| 350 | |
---|
| 351 | DO i = 1, klon |
---|
[5144] | 352 | IF (rneb(i, k)>0.0) THEN |
---|
[1992] | 353 | d_ql(i, k) = zoliq(i) |
---|
[5144] | 354 | zrfl(i) = zrfl(i) + max(zcond(i) - zoliq(i), 0.0) * (paprs(i, k) - paprs(i, k & |
---|
| 355 | + 1)) / (rg * dtime) |
---|
[1992] | 356 | END IF |
---|
| 357 | IF (zt(i)<rtt) THEN |
---|
| 358 | psfl(i, k) = zrfl(i) |
---|
[524] | 359 | ELSE |
---|
[1992] | 360 | prfl(i, k) = zrfl(i) |
---|
| 361 | END IF |
---|
| 362 | END DO |
---|
| 363 | |
---|
| 364 | ! Calculer les tendances de q et de t: |
---|
| 365 | |
---|
| 366 | DO i = 1, klon |
---|
| 367 | d_q(i, k) = zq(i) - q(i, k) |
---|
| 368 | d_t(i, k) = zt(i) - t(i, k) |
---|
| 369 | END DO |
---|
| 370 | |
---|
| 371 | ! AA--------------- Calcul du lessivage stratiforme ------------- |
---|
| 372 | |
---|
| 373 | DO i = 1, klon |
---|
| 374 | |
---|
[5144] | 375 | zprec_cond(i) = max(zcond(i) - zoliq(i), 0.0) * (paprs(i, k) - paprs(i, k + 1)) / & |
---|
| 376 | rg |
---|
| 377 | IF (rneb(i, k)>0.0 .AND. zprec_cond(i)>0.) THEN |
---|
[1992] | 378 | ! AA lessivage nucleation LMD5 dans la couche elle-meme |
---|
[5144] | 379 | IF (t(i, k)>=ztglace) THEN |
---|
[1992] | 380 | zalpha_tr = a_tr_sca(3) |
---|
| 381 | ELSE |
---|
| 382 | zalpha_tr = a_tr_sca(4) |
---|
| 383 | END IF |
---|
[5144] | 384 | zfrac_lessi = 1. - exp(zalpha_tr * zprec_cond(i) / zneb(i)) |
---|
| 385 | pfrac_nucl(i, k) = pfrac_nucl(i, k) * (1. - zneb(i) * zfrac_lessi) |
---|
| 386 | frac_nucl(i, k) = 1. - zneb(i) * zfrac_lessi |
---|
[1992] | 387 | |
---|
| 388 | ! nucleation avec un facteur -1 au lieu de -0.5 |
---|
[5144] | 389 | zfrac_lessi = 1. - exp(-zprec_cond(i) / zneb(i)) |
---|
| 390 | pfrac_1nucl(i, k) = pfrac_1nucl(i, k) * (1. - zneb(i) * zfrac_lessi) |
---|
[1992] | 391 | END IF |
---|
| 392 | |
---|
| 393 | END DO ! boucle sur i |
---|
| 394 | |
---|
| 395 | ! AA Lessivage par impaction dans les couches en-dessous |
---|
| 396 | DO kk = k - 1, 1, -1 |
---|
[524] | 397 | DO i = 1, klon |
---|
[5144] | 398 | IF (rneb(i, k)>0.0 .AND. zprec_cond(i)>0.) THEN |
---|
| 399 | IF (t(i, kk)>=ztglace) THEN |
---|
[1992] | 400 | zalpha_tr = a_tr_sca(1) |
---|
| 401 | ELSE |
---|
| 402 | zalpha_tr = a_tr_sca(2) |
---|
| 403 | END IF |
---|
[5144] | 404 | zfrac_lessi = 1. - exp(zalpha_tr * zprec_cond(i) / zneb(i)) |
---|
| 405 | pfrac_impa(i, kk) = pfrac_impa(i, kk) * (1. - zneb(i) * zfrac_lessi) |
---|
| 406 | frac_impa(i, kk) = 1. - zneb(i) * zfrac_lessi |
---|
[1992] | 407 | END IF |
---|
| 408 | END DO |
---|
| 409 | END DO |
---|
[524] | 410 | |
---|
[1992] | 411 | ! AA---------------------------------------------------------- |
---|
| 412 | ! FIN DE BOUCLE SUR K |
---|
| 413 | END DO |
---|
| 414 | |
---|
| 415 | ! AA----------------------------------------------------------- |
---|
| 416 | |
---|
| 417 | ! Pluie ou neige au sol selon la temperature de la 1ere couche |
---|
| 418 | |
---|
| 419 | DO i = 1, klon |
---|
[5144] | 420 | IF ((t(i, 1) + d_t(i, 1))<rtt) THEN |
---|
[1992] | 421 | snow(i) = zrfl(i) |
---|
| 422 | ELSE |
---|
| 423 | rain(i) = zrfl(i) |
---|
| 424 | END IF |
---|
| 425 | END DO |
---|
| 426 | |
---|
| 427 | END SUBROUTINE fisrtilp_tr |
---|