1 | SUBROUTINE ener_conserv(klon, klev, pdtphys, & |
---|
2 | puo, pvo, pto, qx, ivap, iliq, isol, & |
---|
3 | pun, pvn, ptn, pqn, pqln, pqsn, dtke, masse, exner, d_t_ec) |
---|
4 | |
---|
5 | !============================================================= |
---|
6 | ! Energy conservation |
---|
7 | ! Based on the TKE equation |
---|
8 | ! The M2 and N2 terms at the origin of TKE production are |
---|
9 | ! concerted into heating in the d_t_ec term |
---|
10 | ! Option 1 is the standard |
---|
11 | ! 101 is for M2 term only |
---|
12 | ! 101 for N2 term only |
---|
13 | ! -1 is a previours treatment for kinetic energy only |
---|
14 | ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 |
---|
15 | !============================================================= |
---|
16 | |
---|
17 | !============================================================= |
---|
18 | ! Declarations |
---|
19 | !============================================================= |
---|
20 | |
---|
21 | ! From module |
---|
22 | USE phys_local_var_mod, ONLY: d_u_vdf, d_v_vdf, d_t_vdf, d_u_ajs, d_v_ajs, d_t_ajs, & |
---|
23 | d_u_con, d_v_con, d_t_con, d_t_diss |
---|
24 | USE phys_local_var_mod, ONLY: d_t_eva, d_t_lsc, d_q_eva, d_q_lsc |
---|
25 | USE phys_local_var_mod, ONLY: d_u_oro, d_v_oro, d_u_lif, d_v_lif |
---|
26 | USE phys_local_var_mod, ONLY: du_gwd_hines, dv_gwd_hines, dv_gwd_front, dv_gwd_rando |
---|
27 | USE phys_state_var_mod, ONLY: du_gwd_front, du_gwd_rando |
---|
28 | USE phys_output_var_mod, ONLY: bils_ec, bils_ech, bils_tke, bils_kinetic, bils_enthalp, bils_latent, bils_diss |
---|
29 | USE add_phys_tend_mod, ONLY: fl_cor_ebil |
---|
30 | USE infotrac_phy, ONLY: nqtot |
---|
31 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
32 | USE lmdz_clesphys |
---|
33 | USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree |
---|
34 | USE lmdz_yoethf |
---|
35 | USE lmdz_yomcst |
---|
36 | |
---|
37 | IMPLICIT NONE |
---|
38 | |
---|
39 | ! Arguments |
---|
40 | INTEGER, INTENT(IN) :: klon, klev |
---|
41 | REAL, INTENT(IN) :: pdtphys |
---|
42 | REAL, DIMENSION(klon, klev), INTENT(IN) :: puo, pvo, pto |
---|
43 | REAL, DIMENSION(klon, klev, nqtot), INTENT(IN) :: qx |
---|
44 | INTEGER, INTENT(IN) :: ivap, iliq, isol |
---|
45 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pun, pvn, ptn, pqn, pqln, pqsn |
---|
46 | REAL, DIMENSION(klon, klev), INTENT(IN) :: masse, exner |
---|
47 | REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: dtke |
---|
48 | |
---|
49 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_t_ec |
---|
50 | |
---|
51 | ! Local |
---|
52 | INTEGER k, i |
---|
53 | REAL, DIMENSION(klon, klev + 1) :: fluxu, fluxv, fluxt |
---|
54 | REAL, DIMENSION(klon, klev + 1) :: dddu, dddv, dddt |
---|
55 | REAL, DIMENSION(klon, klev) :: d_u, d_v, d_t, zv, zu, d_t_ech, pqo, pql0, pqs0 |
---|
56 | REAL ZRCPD |
---|
57 | |
---|
58 | CHARACTER*80 abort_message |
---|
59 | CHARACTER*20 :: modname |
---|
60 | |
---|
61 | modname = 'ener_conser' |
---|
62 | d_t_ec(:, :) = 0. |
---|
63 | |
---|
64 | IF(ivap == 0) CALL abort_physic (modname, 'can''t run without water vapour', 1) |
---|
65 | IF(iliq == 0) CALL abort_physic (modname, 'can''t run without liquid water', 1) |
---|
66 | pqo = qx(:, :, ivap) |
---|
67 | pql0 = qx(:, :, iliq) |
---|
68 | IF(isol /= 0) pqs0 = qx(:, :, isol) |
---|
69 | |
---|
70 | IF (iflag_ener_conserv==-1) THEN |
---|
71 | !+jld ec_conser |
---|
72 | DO k = 1, klev |
---|
73 | DO i = 1, klon |
---|
74 | IF (fl_cor_ebil > 0) THEN |
---|
75 | ZRCPD = RCPD * (1.0 + RVTMP2 * (pqn(i, k) + pqln(i, k) + pqsn(i, k))) |
---|
76 | ELSE |
---|
77 | ZRCPD = RCPD * (1.0 + RVTMP2 * pqn(i, k)) |
---|
78 | ENDIF |
---|
79 | d_t_ec(i, k) = 0.5 / ZRCPD & |
---|
80 | * (puo(i, k)**2 + pvo(i, k)**2 - pun(i, k)**2 - pvn(i, k)**2) |
---|
81 | ENDDO |
---|
82 | ENDDO |
---|
83 | !-jld ec_conser |
---|
84 | |
---|
85 | ELSEIF (iflag_ener_conserv>=1) THEN |
---|
86 | |
---|
87 | IF (iflag_ener_conserv<=2) THEN |
---|
88 | ! PRINT*,'ener_conserv pbl=',iflag_pbl |
---|
89 | IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv |
---|
90 | d_t(:, :) = d_t_ajs(:, :) ! d_t_ajs = adjust + thermals |
---|
91 | d_u(:, :) = d_u_ajs(:, :) + d_u_con(:, :) |
---|
92 | d_v(:, :) = d_v_ajs(:, :) + d_v_con(:, :) |
---|
93 | ELSE |
---|
94 | d_t(:, :) = d_t_vdf(:, :) + d_t_ajs(:, :) ! d_t_ajs = adjust + thermals |
---|
95 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) |
---|
96 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) |
---|
97 | ENDIF |
---|
98 | ELSEIF (iflag_ener_conserv==101) THEN |
---|
99 | d_t(:, :) = 0. |
---|
100 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) |
---|
101 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) |
---|
102 | ELSEIF (iflag_ener_conserv==110) THEN |
---|
103 | d_t(:, :) = d_t_vdf(:, :) + d_t_ajs(:, :) |
---|
104 | d_u(:, :) = 0. |
---|
105 | d_v(:, :) = 0. |
---|
106 | |
---|
107 | ELSEIF (iflag_ener_conserv==3) THEN |
---|
108 | d_t(:, :) = 0. |
---|
109 | d_u(:, :) = 0. |
---|
110 | d_v(:, :) = 0. |
---|
111 | ELSEIF (iflag_ener_conserv==4) THEN |
---|
112 | d_t(:, :) = 0. |
---|
113 | d_u(:, :) = d_u_vdf(:, :) |
---|
114 | d_v(:, :) = d_v_vdf(:, :) |
---|
115 | ELSEIF (iflag_ener_conserv==5) THEN |
---|
116 | d_t(:, :) = d_t_vdf(:, :) |
---|
117 | d_u(:, :) = d_u_vdf(:, :) |
---|
118 | d_v(:, :) = d_v_vdf(:, :) |
---|
119 | ELSEIF (iflag_ener_conserv==6) THEN |
---|
120 | d_t(:, :) = d_t_vdf(:, :) |
---|
121 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) |
---|
122 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) |
---|
123 | ELSEIF (iflag_ener_conserv==7) THEN |
---|
124 | d_t(:, :) = d_t_vdf(:, :) + d_t_ajs(:, :) |
---|
125 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) |
---|
126 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) |
---|
127 | ELSEIF (iflag_ener_conserv==8) THEN |
---|
128 | d_t(:, :) = d_t_vdf(:, :) |
---|
129 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) |
---|
130 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) |
---|
131 | ELSEIF (iflag_ener_conserv==9) THEN |
---|
132 | d_t(:, :) = d_t_vdf(:, :) |
---|
133 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) + d_u_oro(:, :) |
---|
134 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) + d_v_oro(:, :) |
---|
135 | ELSEIF (iflag_ener_conserv==10) THEN |
---|
136 | d_t(:, :) = d_t_vdf(:, :) |
---|
137 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) + d_u_oro(:, :) + d_u_lif(:, :) |
---|
138 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) + d_v_oro(:, :) + d_v_lif(:, :) |
---|
139 | ELSEIF (iflag_ener_conserv==11) THEN |
---|
140 | d_t(:, :) = d_t_vdf(:, :) |
---|
141 | d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) + d_u_oro(:, :) + d_u_lif(:, :) |
---|
142 | d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) + d_v_oro(:, :) + d_v_lif(:, :) |
---|
143 | IF (ok_hines) THEN |
---|
144 | d_u_vdf(:, :) = d_u_vdf(:, :) + du_gwd_hines(:, :) |
---|
145 | d_v_vdf(:, :) = d_v_vdf(:, :) + dv_gwd_hines(:, :) |
---|
146 | ENDIF |
---|
147 | IF (.NOT. ok_hines .AND. ok_gwd_rando) THEN |
---|
148 | d_u_vdf(:, :) = d_u_vdf(:, :) + du_gwd_front(:, :) |
---|
149 | d_v_vdf(:, :) = d_v_vdf(:, :) + dv_gwd_front(:, :) |
---|
150 | ENDIF |
---|
151 | IF (ok_gwd_rando) THEN |
---|
152 | d_u_vdf(:, :) = d_u_vdf(:, :) + du_gwd_rando(:, :) |
---|
153 | d_v_vdf(:, :) = d_v_vdf(:, :) + dv_gwd_rando(:, :) |
---|
154 | ENDIF |
---|
155 | ELSE |
---|
156 | abort_message = 'iflag_ener_conserv non prevu' |
---|
157 | CALL abort_physic (modname, abort_message, 1) |
---|
158 | ENDIF |
---|
159 | |
---|
160 | !---------------------------------------------------------------------------- |
---|
161 | ! Two options wether we consider time integration in the energy conservation |
---|
162 | !---------------------------------------------------------------------------- |
---|
163 | |
---|
164 | IF (iflag_ener_conserv==2) THEN |
---|
165 | zu(:, :) = puo(:, :) |
---|
166 | zv(:, :) = pvo(:, :) |
---|
167 | else |
---|
168 | IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN |
---|
169 | zu(:, :) = puo(:, :) + d_u_vdf(:, :) + 0.5 * d_u(:, :) |
---|
170 | zv(:, :) = pvo(:, :) + d_v_vdf(:, :) + 0.5 * d_v(:, :) |
---|
171 | ELSE |
---|
172 | zu(:, :) = puo(:, :) + 0.5 * d_u(:, :) |
---|
173 | zv(:, :) = pvo(:, :) + 0.5 * d_v(:, :) |
---|
174 | ENDIF |
---|
175 | endif |
---|
176 | |
---|
177 | fluxu(:, klev + 1) = 0. |
---|
178 | fluxv(:, klev + 1) = 0. |
---|
179 | fluxt(:, klev + 1) = 0. |
---|
180 | |
---|
181 | DO k = klev, 1, -1 |
---|
182 | fluxu(:, k) = fluxu(:, k + 1) + masse(:, k) * d_u(:, k) |
---|
183 | fluxv(:, k) = fluxv(:, k + 1) + masse(:, k) * d_v(:, k) |
---|
184 | fluxt(:, k) = fluxt(:, k + 1) + masse(:, k) * d_t(:, k) / exner(:, k) |
---|
185 | enddo |
---|
186 | |
---|
187 | dddu(:, 1) = 2 * zu(:, 1) * fluxu(:, 1) |
---|
188 | dddv(:, 1) = 2 * zv(:, 1) * fluxv(:, 1) |
---|
189 | dddt(:, 1) = (exner(:, 1) - 1.) * fluxt(:, 1) |
---|
190 | |
---|
191 | DO k = 2, klev |
---|
192 | dddu(:, k) = (zu(:, k) - zu(:, k - 1)) * fluxu(:, k) |
---|
193 | dddv(:, k) = (zv(:, k) - zv(:, k - 1)) * fluxv(:, k) |
---|
194 | dddt(:, k) = (exner(:, k) - exner(:, k - 1)) * fluxt(:, k) |
---|
195 | enddo |
---|
196 | dddu(:, klev + 1) = 0. |
---|
197 | dddv(:, klev + 1) = 0. |
---|
198 | dddt(:, klev + 1) = 0. |
---|
199 | |
---|
200 | DO k = 1, klev |
---|
201 | d_t_ech(:, k) = -(rcpd * (dddt(:, k) + dddt(:, k + 1))) / (2. * rcpd * masse(:, k)) |
---|
202 | d_t_ec(:, k) = -(dddu(:, k) + dddu(:, k + 1) + dddv(:, k) + dddv(:, k + 1)) / (2. * rcpd * masse(:, k)) + d_t_ech(:, k) |
---|
203 | enddo |
---|
204 | |
---|
205 | ENDIF |
---|
206 | |
---|
207 | !================================================================ |
---|
208 | ! Computation of integrated enthalpie and kinetic energy variation |
---|
209 | ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 |
---|
210 | ! bils_ec : energie conservation term |
---|
211 | ! bils_ech : part of this term linked to temperature |
---|
212 | ! bils_tke : change of TKE |
---|
213 | ! bils_diss : dissipation of TKE (when activated) |
---|
214 | ! bils_kinetic : change of kinetic energie of the column |
---|
215 | ! bils_enthalp : change of enthalpie |
---|
216 | ! bils_latent : change of latent heat. Computed between |
---|
217 | ! after reevaporation (at the beginning of the physics) |
---|
218 | ! and before large scale condensation (fisrtilp) |
---|
219 | !================================================================ |
---|
220 | |
---|
221 | bils_ec(:) = 0. |
---|
222 | bils_ech(:) = 0. |
---|
223 | bils_tke(:) = 0. |
---|
224 | bils_diss(:) = 0. |
---|
225 | bils_kinetic(:) = 0. |
---|
226 | bils_enthalp(:) = 0. |
---|
227 | bils_latent(:) = 0. |
---|
228 | DO k = 1, klev |
---|
229 | bils_ec(:) = bils_ec(:) - d_t_ec(:, k) * masse(:, k) |
---|
230 | bils_diss(:) = bils_diss(:) - d_t_diss(:, k) * masse(:, k) |
---|
231 | bils_kinetic(:) = bils_kinetic(:) + masse(:, k) * & |
---|
232 | (pun(:, k) * pun(:, k) + pvn(:, k) * pvn(:, k) & |
---|
233 | - puo(:, k) * puo(:, k) - pvo(:, k) * pvo(:, k)) |
---|
234 | bils_enthalp(:) = & |
---|
235 | bils_enthalp(:) + masse(:, k) * (ptn(:, k) - pto(:, k) + d_t_ec(:, k) - d_t_eva(:, k) - d_t_lsc(:, k)) |
---|
236 | ! & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)) |
---|
237 | bils_latent(:) = bils_latent(:) + masse(:, k) * & |
---|
238 | ! & (pqn(:,k)-pqo(:,k)) |
---|
239 | (pqn(:, k) - pqo(:, k) - d_q_eva(:, k) - d_q_lsc(:, k)) |
---|
240 | ENDDO |
---|
241 | bils_ec(:) = rcpd * bils_ec(:) / pdtphys |
---|
242 | bils_diss(:) = rcpd * bils_diss(:) / pdtphys |
---|
243 | bils_kinetic(:) = 0.5 * bils_kinetic(:) / pdtphys |
---|
244 | bils_enthalp(:) = rcpd * bils_enthalp(:) / pdtphys |
---|
245 | bils_latent(:) = rlvtt * bils_latent(:) / pdtphys |
---|
246 | !jyg< |
---|
247 | IF (iflag_pbl > 1) THEN |
---|
248 | DO k = 1, klev |
---|
249 | bils_tke(:) = bils_tke(:) + 0.5 * (dtke(:, k) + dtke(:, k + 1)) * masse(:, k) |
---|
250 | ENDDO |
---|
251 | bils_tke(:) = bils_tke(:) / pdtphys |
---|
252 | ENDIF ! (iflag_pbl > 1) |
---|
253 | !>jyg |
---|
254 | |
---|
255 | IF (iflag_ener_conserv>=1) THEN |
---|
256 | bils_ech(:) = 0. |
---|
257 | DO k = 1, klev |
---|
258 | bils_ech(:) = bils_ech(:) - d_t_ech(:, k) * masse(:, k) |
---|
259 | ENDDO |
---|
260 | bils_ech(:) = rcpd * bils_ech(:) / pdtphys |
---|
261 | ENDIF |
---|
262 | |
---|
263 | RETURN |
---|
264 | |
---|
265 | END |
---|