1 | ! radiation_ecckd.F90 - ecCKD generalized gas optics model |
---|
2 | |
---|
3 | ! (C) Copyright 2020- ECMWF. |
---|
4 | |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! License: see the COPYING file for details |
---|
15 | ! |
---|
16 | |
---|
17 | #include "ecrad_config.h" |
---|
18 | |
---|
19 | module radiation_ecckd |
---|
20 | |
---|
21 | use parkind1, only : jprb |
---|
22 | use radiation_gas_constants |
---|
23 | use radiation_ecckd_gas |
---|
24 | use radiation_spectral_definition, only : spectral_definition_type |
---|
25 | |
---|
26 | implicit none |
---|
27 | |
---|
28 | public |
---|
29 | |
---|
30 | !--------------------------------------------------------------------- |
---|
31 | ! This derived type contains all the data needed to describe a |
---|
32 | ! correlated k-distribution gas optics model created using the ecCKD |
---|
33 | ! tool |
---|
34 | type ckd_model_type |
---|
35 | |
---|
36 | ! Gas information |
---|
37 | |
---|
38 | ! Number of gases |
---|
39 | integer :: ngas = 0 |
---|
40 | ! Array of individual-gas data objects |
---|
41 | type(ckd_gas_type), allocatable :: single_gas(:) |
---|
42 | ! Mapping from the "gas codes" in the radiation_gas_constants |
---|
43 | ! module to an index to the single_gas array, where zero means gas |
---|
44 | ! not present (or part of a composite gas) |
---|
45 | integer :: i_gas_mapping(0:NMaxGases) |
---|
46 | |
---|
47 | ! Coordinates of main look-up table for absorption coeffts |
---|
48 | |
---|
49 | ! Number of pressure and temperature points |
---|
50 | integer :: npress = 0 |
---|
51 | integer :: ntemp = 0 |
---|
52 | ! Natural logarithm of first (lowest) pressure (Pa) and increment |
---|
53 | real(jprb) :: log_pressure1, d_log_pressure |
---|
54 | ! First temperature profile (K), dimensioned (npress) |
---|
55 | real(jprb), allocatable :: temperature1(:) |
---|
56 | ! Temperature increment (K) |
---|
57 | real(jprb) :: d_temperature |
---|
58 | |
---|
59 | ! Look-up table for Planck function |
---|
60 | |
---|
61 | ! Number of entries |
---|
62 | integer :: nplanck = 0 |
---|
63 | ! Temperature of first element of look-up table and increment (K) |
---|
64 | real(jprb), allocatable :: temperature1_planck |
---|
65 | real(jprb), allocatable :: d_temperature_planck |
---|
66 | ! Planck function (black body flux into a horizontal plane) in W |
---|
67 | ! m-2, dimensioned (ng,nplanck) |
---|
68 | real(jprb), allocatable :: planck_function(:,:) |
---|
69 | |
---|
70 | ! Normalized solar irradiance in each g point, dimensioned (ng) |
---|
71 | real(jprb), allocatable :: norm_solar_irradiance(:) |
---|
72 | |
---|
73 | ! Normalized amplitude of variations in the solar irradiance |
---|
74 | ! through the solar cycle in each g point, dimensioned (ng). |
---|
75 | ! Since the user always provides the solar irradiance SI |
---|
76 | ! integrated across the spectrum, this variable must sum to zero: |
---|
77 | ! this ensures that the solar irradiance in each g-point is |
---|
78 | ! SSI=SI*(norm_solar_irradiance + |
---|
79 | ! A*norm_amplitude_solar_irradiance) for any A, where A denotes |
---|
80 | ! the amplitude of deviations from the mean solar spectrum, |
---|
81 | ! typically between -1.0 and 1.0 and provided by |
---|
82 | ! single_level%solar_spectral_multiplier. |
---|
83 | real(jprb), allocatable :: norm_amplitude_solar_irradiance(:) |
---|
84 | |
---|
85 | ! Rayleigh molar scattering coefficient in m2 mol-1 in each g |
---|
86 | ! point |
---|
87 | real(jprb), allocatable :: rayleigh_molar_scat(:) |
---|
88 | |
---|
89 | ! ! Spectral mapping of g points |
---|
90 | |
---|
91 | ! ! Number of wavenumber intervals |
---|
92 | ! integer :: nwav = 0 |
---|
93 | |
---|
94 | ! Number of k terms / g points |
---|
95 | integer :: ng = 0 |
---|
96 | |
---|
97 | ! Spectral definition describing bands and g points |
---|
98 | type(spectral_definition_type) :: spectral_def |
---|
99 | |
---|
100 | ! Shortwave: true, longwave: false |
---|
101 | logical :: is_sw |
---|
102 | |
---|
103 | contains |
---|
104 | |
---|
105 | procedure :: read => read_ckd_model |
---|
106 | procedure :: read_spectral_solar_cycle |
---|
107 | ! Vectorized version of the optical depth look-up performs better on |
---|
108 | ! NEC, but slower on x86 |
---|
109 | #ifdef DWD_VECTOR_OPTIMIZATIONS |
---|
110 | procedure :: calc_optical_depth => calc_optical_depth_ckd_model_vec |
---|
111 | #else |
---|
112 | procedure :: calc_optical_depth => calc_optical_depth_ckd_model |
---|
113 | #endif |
---|
114 | procedure :: print => print_ckd_model |
---|
115 | procedure :: calc_planck_function |
---|
116 | procedure :: calc_incoming_sw |
---|
117 | ! procedure :: deallocate => deallocate_ckd_model |
---|
118 | |
---|
119 | end type ckd_model_type |
---|
120 | |
---|
121 | |
---|
122 | contains |
---|
123 | |
---|
124 | !--------------------------------------------------------------------- |
---|
125 | ! Read a complete ecCKD gas optics model from a NetCDF file |
---|
126 | ! "filename" |
---|
127 | subroutine read_ckd_model(this, filename, iverbose) |
---|
128 | |
---|
129 | #ifdef EASY_NETCDF_READ_MPI |
---|
130 | use easy_netcdf_read_mpi, only : netcdf_file |
---|
131 | #else |
---|
132 | use easy_netcdf, only : netcdf_file |
---|
133 | #endif |
---|
134 | !use radiation_io, only : nulerr, radiation_abort |
---|
135 | use yomhook, only : lhook, dr_hook, jphook |
---|
136 | |
---|
137 | class(ckd_model_type), intent(inout) :: this |
---|
138 | character(len=*), intent(in) :: filename |
---|
139 | integer, optional, intent(in) :: iverbose |
---|
140 | |
---|
141 | type(netcdf_file) :: file |
---|
142 | |
---|
143 | real(jprb), allocatable :: pressure_lut(:) |
---|
144 | real(jprb), allocatable :: temperature_full(:,:) |
---|
145 | real(jprb), allocatable :: temperature_planck(:) |
---|
146 | |
---|
147 | character(len=512) :: constituent_id |
---|
148 | |
---|
149 | integer :: iverbose_local |
---|
150 | |
---|
151 | ! Loop counters |
---|
152 | integer :: jgas, jjgas |
---|
153 | |
---|
154 | integer :: istart, inext, nchar, i_gas_code |
---|
155 | |
---|
156 | real(jphook) :: hook_handle |
---|
157 | |
---|
158 | if (lhook) call dr_hook('radiation_ecckd:read_ckd_model',0,hook_handle) |
---|
159 | |
---|
160 | if (present(iverbose)) then |
---|
161 | iverbose_local = iverbose |
---|
162 | else |
---|
163 | iverbose_local = 3 |
---|
164 | end if |
---|
165 | |
---|
166 | call file%open(trim(filename), iverbose=iverbose_local) |
---|
167 | |
---|
168 | ! Read temperature and pressure coordinate variables |
---|
169 | call file%get('pressure', pressure_lut) |
---|
170 | this%log_pressure1 = log(pressure_lut(1)) |
---|
171 | this%npress = size(pressure_lut) |
---|
172 | this%d_log_pressure = log(pressure_lut(2)) - this%log_pressure1 |
---|
173 | call file%get('temperature', temperature_full) |
---|
174 | allocate(this%temperature1(this%npress)); |
---|
175 | this%temperature1 = temperature_full(:,1) |
---|
176 | this%d_temperature = temperature_full(1,2)-temperature_full(1,1) |
---|
177 | this%ntemp = size(temperature_full,2) |
---|
178 | deallocate(temperature_full) |
---|
179 | |
---|
180 | ! Read Planck function, or solar irradiance and Rayleigh |
---|
181 | ! scattering coefficient |
---|
182 | if (file%exists('solar_irradiance')) then |
---|
183 | this%is_sw = .true. |
---|
184 | call file%get('solar_irradiance', this%norm_solar_irradiance) |
---|
185 | this%norm_solar_irradiance = this%norm_solar_irradiance & |
---|
186 | & / sum(this%norm_solar_irradiance) |
---|
187 | call file%get('rayleigh_molar_scattering_coeff', & |
---|
188 | & this%rayleigh_molar_scat) |
---|
189 | else |
---|
190 | this%is_sw = .false. |
---|
191 | call file%get('temperature_planck', temperature_planck) |
---|
192 | this%nplanck = size(temperature_planck) |
---|
193 | this%temperature1_planck = temperature_planck(1) |
---|
194 | this%d_temperature_planck = temperature_planck(2) - temperature_planck(1) |
---|
195 | deallocate(temperature_planck) |
---|
196 | call file%get('planck_function', this%planck_function) |
---|
197 | end if |
---|
198 | |
---|
199 | ! Read the spectral definition information into a separate |
---|
200 | ! derived type |
---|
201 | call this%spectral_def%read(file); |
---|
202 | this%ng = this%spectral_def%ng |
---|
203 | |
---|
204 | ! Read gases |
---|
205 | call file%get('n_gases', this%ngas) |
---|
206 | allocate(this%single_gas(this%ngas)) |
---|
207 | call file%get_global_attribute('constituent_id', constituent_id) |
---|
208 | nchar = len(trim(constituent_id)) |
---|
209 | istart = 1 |
---|
210 | this%i_gas_mapping = 0 |
---|
211 | DO jgas = 1, this%ngas |
---|
212 | if (jgas < this%ngas) then |
---|
213 | inext = istart + scan(constituent_id(istart:nchar), ' ') |
---|
214 | else |
---|
215 | inext = nchar+2 |
---|
216 | end if |
---|
217 | ! Find gas code |
---|
218 | i_gas_code = 0 |
---|
219 | DO jjgas = 1, NMaxGases |
---|
220 | if (constituent_id(istart:inext-2) == trim(GasLowerCaseName(jjgas))) then |
---|
221 | i_gas_code = jjgas |
---|
222 | exit |
---|
223 | end if |
---|
224 | end do |
---|
225 | ! if (i_gas_code == 0) then |
---|
226 | ! write(nulerr,'(a,a,a)') '*** Error: Gas "', constituent_id(istart:inext-2), & |
---|
227 | ! & '" not understood' |
---|
228 | ! call radiation_abort('Radiation configuration error') |
---|
229 | ! end if |
---|
230 | this%i_gas_mapping(i_gas_code) = jgas; |
---|
231 | call this%single_gas(jgas)%read(file, constituent_id(istart:inext-2), i_gas_code) |
---|
232 | istart = inext |
---|
233 | end do |
---|
234 | |
---|
235 | call file%close() |
---|
236 | |
---|
237 | if (lhook) call dr_hook('radiation_ecckd:read_ckd_model',1,hook_handle) |
---|
238 | |
---|
239 | end subroutine read_ckd_model |
---|
240 | |
---|
241 | !--------------------------------------------------------------------- |
---|
242 | ! Print a description of the correlated k-distribution model to the |
---|
243 | ! "nulout" unit |
---|
244 | subroutine print_ckd_model(this) |
---|
245 | |
---|
246 | use radiation_io, only : nulout |
---|
247 | use radiation_gas_constants |
---|
248 | |
---|
249 | class(ckd_model_type), intent(in) :: this |
---|
250 | |
---|
251 | integer :: jgas |
---|
252 | |
---|
253 | if (this%is_sw) then |
---|
254 | write(nulout,'(a)',advance='no') 'ecCKD shortwave gas optics model: ' |
---|
255 | else |
---|
256 | write(nulout,'(a)',advance='no') 'ecCKD longwave gas optics model: ' |
---|
257 | end if |
---|
258 | |
---|
259 | write(nulout,'(i0,a,i0,a,i0,a,i0,a)') & |
---|
260 | & nint(this%spectral_def%wavenumber1(1)), '-', & |
---|
261 | & nint(this%spectral_def%wavenumber2(size(this%spectral_def%wavenumber2))), & |
---|
262 | & ' cm-1, ', this%ng, ' g-points in ', this%spectral_def%nband, ' bands' |
---|
263 | write(nulout,'(a,i0,a,i0,a,i0,a)') ' Look-up table sizes: ', this%npress, ' pressures, ', & |
---|
264 | & this%ntemp, ' temperatures, ', this%nplanck, ' planck-function entries' |
---|
265 | write(nulout, '(a)') ' Gases:' |
---|
266 | DO jgas = 1,this%ngas |
---|
267 | if (this%single_gas(jgas)%i_gas_code > 0) then |
---|
268 | write(nulout, '(a,a,a)', advance='no') ' ', & |
---|
269 | & trim(GasName(this%single_gas(jgas)%i_gas_code)), ': ' |
---|
270 | else |
---|
271 | write(nulout, '(a)', advance='no') ' Composite of well-mixed background gases: ' |
---|
272 | end if |
---|
273 | select case (this%single_gas(jgas)%i_conc_dependence) |
---|
274 | case (IConcDependenceNone) |
---|
275 | write(nulout, '(a)') 'no concentration dependence' |
---|
276 | case (IConcDependenceLinear) |
---|
277 | write(nulout, '(a)') 'linear concentration dependence' |
---|
278 | case (IConcDependenceRelativeLinear) |
---|
279 | write(nulout, '(a,e14.6)') 'linear concentration dependence relative to a mole fraction of ', & |
---|
280 | & this%single_gas(jgas)%reference_mole_frac |
---|
281 | case (IConcDependenceLUT) |
---|
282 | write(nulout, '(a,i0,a,e14.6,a,e13.6)') 'look-up table with ', this%single_gas(jgas)%n_mole_frac, & |
---|
283 | & ' log-spaced mole fractions in range ', exp(this%single_gas(jgas)%log_mole_frac1), & |
---|
284 | & ' to ', exp(this%single_gas(jgas)%log_mole_frac1 & |
---|
285 | & + this%single_gas(jgas)%n_mole_frac*this%single_gas(jgas)%d_log_mole_frac) |
---|
286 | end select |
---|
287 | end do |
---|
288 | |
---|
289 | end subroutine print_ckd_model |
---|
290 | |
---|
291 | |
---|
292 | !--------------------------------------------------------------------- |
---|
293 | ! Read the amplitude of the spectral variations associated with the |
---|
294 | ! solar cycle and map to g-points |
---|
295 | subroutine read_spectral_solar_cycle(this, filename, iverbose, use_updated_solar_spectrum) |
---|
296 | |
---|
297 | #ifdef EASY_NETCDF_READ_MPI |
---|
298 | use easy_netcdf_read_mpi, only : netcdf_file |
---|
299 | #else |
---|
300 | use easy_netcdf, only : netcdf_file |
---|
301 | #endif |
---|
302 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
303 | use yomhook, only : lhook, dr_hook, jphook |
---|
304 | |
---|
305 | ! Reference total solar irradiance (W m-2) |
---|
306 | real(jprb), parameter :: ReferenceTSI = 1361.0_jprb |
---|
307 | |
---|
308 | class(ckd_model_type), intent(inout) :: this |
---|
309 | character(len=*), intent(in) :: filename |
---|
310 | integer, optional, intent(in) :: iverbose |
---|
311 | ! Do we update the mean solar spectral irradiance for each g-point |
---|
312 | ! based on the contents of the file? |
---|
313 | logical, optional, intent(in) :: use_updated_solar_spectrum |
---|
314 | |
---|
315 | type(netcdf_file) :: file |
---|
316 | |
---|
317 | ! Solar spectral irradiance, its amplitude and wavenumber |
---|
318 | ! coordinate variable, read from NetCDF file |
---|
319 | real(jprb), allocatable :: wavenumber(:) ! cm-1 |
---|
320 | real(jprb), allocatable :: ssi(:) ! W m-2 cm |
---|
321 | real(jprb), allocatable :: ssi_amplitude(:) ! W m-2 cm |
---|
322 | |
---|
323 | ! As above but on the wavenumber grid delimited by |
---|
324 | ! this%wavenumber1 and this%wavenumber2 |
---|
325 | real(jprb), allocatable :: ssi_grid(:) |
---|
326 | real(jprb), allocatable :: ssi_amplitude_grid(:) |
---|
327 | real(jprb), allocatable :: wavenumber_grid(:) |
---|
328 | |
---|
329 | ! Old normalized solar irradiance in case it gets changed and we |
---|
330 | ! need to report the amplitude of the change |
---|
331 | real(jprb), allocatable :: old_norm_solar_irradiance(:) |
---|
332 | |
---|
333 | real(jprb) :: dwav_grid |
---|
334 | |
---|
335 | ! Number of input wavenumbers, and number on ecCKD model's grid |
---|
336 | integer :: nwav, nwav_grid |
---|
337 | ! Corresponding loop indices |
---|
338 | integer :: jwav, jwav_grid, jg |
---|
339 | |
---|
340 | integer :: iband |
---|
341 | |
---|
342 | integer :: iverbose_local |
---|
343 | |
---|
344 | real(jphook) :: hook_handle |
---|
345 | |
---|
346 | if (lhook) call dr_hook('radiation_ecckd:read_spectral_solar_cycle',0,hook_handle) |
---|
347 | |
---|
348 | if (present(iverbose)) then |
---|
349 | iverbose_local = iverbose |
---|
350 | else |
---|
351 | iverbose_local = 3 |
---|
352 | end if |
---|
353 | |
---|
354 | call file%open(trim(filename), iverbose=iverbose_local) |
---|
355 | |
---|
356 | call file%get('wavenumber', wavenumber) |
---|
357 | call file%get('mean_solar_spectral_irradiance', ssi) |
---|
358 | call file%get('ssi_solar_cycle_amplitude', ssi_amplitude) |
---|
359 | |
---|
360 | call file%close() |
---|
361 | |
---|
362 | nwav = size(wavenumber) |
---|
363 | |
---|
364 | nwav_grid = size(this%spectral_def%wavenumber1) |
---|
365 | allocate(ssi_grid(nwav_grid)) |
---|
366 | allocate(ssi_amplitude_grid(nwav_grid)) |
---|
367 | allocate(wavenumber_grid(nwav_grid)) |
---|
368 | wavenumber_grid = 0.5_jprb * (this%spectral_def%wavenumber1+this%spectral_def%wavenumber2) |
---|
369 | dwav_grid = this%spectral_def%wavenumber2(1)-this%spectral_def%wavenumber1(1) |
---|
370 | |
---|
371 | ssi_grid = 0.0_jprb |
---|
372 | ssi_amplitude_grid = 0.0_jprb |
---|
373 | |
---|
374 | ! Interpolate input SSI to regular wavenumber grid |
---|
375 | DO jwav_grid = 1,nwav_grid |
---|
376 | DO jwav = 1,nwav-1 |
---|
377 | if (wavenumber(jwav) < wavenumber_grid(jwav_grid) & |
---|
378 | & .and. wavenumber(jwav+1) >= wavenumber_grid(jwav_grid)) then |
---|
379 | ! Linear interpolation - this is not perfect |
---|
380 | ssi_grid(jwav_grid) = (ssi(jwav)*(wavenumber(jwav+1)-wavenumber_grid(jwav_grid)) & |
---|
381 | & +ssi(jwav+1)*(wavenumber_grid(jwav_grid)-wavenumber(jwav))) & |
---|
382 | & * dwav_grid / (wavenumber(jwav+1)-wavenumber(jwav)) |
---|
383 | ssi_amplitude_grid(jwav_grid) = (ssi_amplitude(jwav)*(wavenumber(jwav+1)-wavenumber_grid(jwav_grid)) & |
---|
384 | & +ssi_amplitude(jwav+1)*(wavenumber_grid(jwav_grid)-wavenumber(jwav))) & |
---|
385 | & * dwav_grid / (wavenumber(jwav+1)-wavenumber(jwav)) |
---|
386 | exit |
---|
387 | end if |
---|
388 | end do |
---|
389 | end do |
---|
390 | |
---|
391 | ! Optionally update the solar irradiances in each g-point, and the |
---|
392 | ! spectral solar irradiance on the wavenumber grid corresponding |
---|
393 | ! to gpoint_fraction |
---|
394 | allocate(old_norm_solar_irradiance(nwav_grid)) |
---|
395 | old_norm_solar_irradiance = this%norm_solar_irradiance |
---|
396 | if (present(use_updated_solar_spectrum)) then |
---|
397 | if (use_updated_solar_spectrum) then |
---|
398 | if (.not. allocated(this%spectral_def%solar_spectral_irradiance)) then |
---|
399 | write(nulerr,'(a)') 'Cannot use_updated_solar_spectrum unless gas optics model is from ecCKD >= 1.4' |
---|
400 | call radiation_abort() |
---|
401 | end if |
---|
402 | this%norm_solar_irradiance = old_norm_solar_irradiance & |
---|
403 | & * matmul(ssi_grid,this%spectral_def%gpoint_fraction) & |
---|
404 | & / matmul(this%spectral_def%solar_spectral_irradiance,this%spectral_def%gpoint_fraction) |
---|
405 | this%norm_solar_irradiance = this%norm_solar_irradiance / sum(this%norm_solar_irradiance) |
---|
406 | this%spectral_def%solar_spectral_irradiance = ssi_grid |
---|
407 | end if |
---|
408 | end if |
---|
409 | |
---|
410 | ! Map on to g-points |
---|
411 | this%norm_amplitude_solar_irradiance & |
---|
412 | & = this%norm_solar_irradiance & |
---|
413 | & * matmul(ssi_amplitude_grid, this%spectral_def%gpoint_fraction) & |
---|
414 | & / matmul(ssi_grid,this%spectral_def%gpoint_fraction) |
---|
415 | |
---|
416 | ! Remove the mean from the solar-cycle fluctuations, since the |
---|
417 | ! user will scale with total solar irradiance |
---|
418 | this%norm_amplitude_solar_irradiance & |
---|
419 | & = (this%norm_solar_irradiance+this%norm_amplitude_solar_irradiance) & |
---|
420 | & / sum(this%norm_solar_irradiance+this%norm_amplitude_solar_irradiance) & |
---|
421 | & - this%norm_solar_irradiance |
---|
422 | |
---|
423 | ! Print the spectral solar irradiance per g point, and solar cycle amplitude |
---|
424 | if (iverbose_local >= 2) then |
---|
425 | write(nulout,'(a,f6.1,a)') 'G-point, solar irradiance for nominal TSI = ', & |
---|
426 | & ReferenceTSI, ' W m-2, solar cycle amplitude (at solar maximum), update to original solar irradiance' |
---|
427 | iband = 0 |
---|
428 | DO jg = 1,this%ng |
---|
429 | if (this%spectral_def%i_band_number(jg) > iband) then |
---|
430 | iband = this%spectral_def%i_band_number(jg) |
---|
431 | write(nulout, '(i2,f10.4,f7.3,a,f8.4,a,i2,a,f7.1,a,f7.1,a)') & |
---|
432 | & jg, ReferenceTSI*this%norm_solar_irradiance(jg), & |
---|
433 | & 100.0_jprb * this%norm_amplitude_solar_irradiance(jg) & |
---|
434 | & / this%norm_solar_irradiance(jg), '% ', & |
---|
435 | & 100.0_jprb * (this%norm_solar_irradiance(jg) & |
---|
436 | & / old_norm_solar_irradiance(jg) - 1.0_jprb), '% Band ', iband, ': ', & |
---|
437 | & this%spectral_def%wavenumber1_band(iband), '-', & |
---|
438 | & this%spectral_def%wavenumber2_band(iband), ' cm-1' |
---|
439 | else |
---|
440 | write(nulout, '(i2,f10.4,f7.3,a,f8.4,a)') jg, ReferenceTSI*this%norm_solar_irradiance(jg), & |
---|
441 | & 100.0_jprb * this%norm_amplitude_solar_irradiance(jg) & |
---|
442 | & / this%norm_solar_irradiance(jg), '% ', & |
---|
443 | & 100.0_jprb * (this%norm_solar_irradiance(jg) & |
---|
444 | & / old_norm_solar_irradiance(jg) - 1.0_jprb), '%' |
---|
445 | end if |
---|
446 | end do |
---|
447 | end if |
---|
448 | |
---|
449 | if (lhook) call dr_hook('radiation_ecckd:read_spectral_solar_cycle',1,hook_handle) |
---|
450 | |
---|
451 | end subroutine read_spectral_solar_cycle |
---|
452 | |
---|
453 | |
---|
454 | !--------------------------------------------------------------------- |
---|
455 | ! Compute layerwise optical depth for each g point for ncol columns |
---|
456 | ! at nlev layers |
---|
457 | subroutine calc_optical_depth_ckd_model(this, ncol, nlev, istartcol, iendcol, nmaxgas, & |
---|
458 | & pressure_hl, temperature_fl, mole_fraction_fl, & |
---|
459 | & optical_depth_fl, rayleigh_od_fl, concentration_scaling) |
---|
460 | |
---|
461 | use yomhook, only : lhook, dr_hook, jphook |
---|
462 | use radiation_constants, only : AccelDueToGravity |
---|
463 | |
---|
464 | ! Input variables |
---|
465 | |
---|
466 | class(ckd_model_type), intent(in), target :: this |
---|
467 | ! Number of columns, levels and input gases |
---|
468 | integer, intent(in) :: ncol, nlev, nmaxgas, istartcol, iendcol |
---|
469 | ! Pressure at half levels (Pa), dimensioned (ncol,nlev+1) |
---|
470 | real(jprb), intent(in) :: pressure_hl(ncol,nlev+1) |
---|
471 | ! Temperature at full levels (K), dimensioned (ncol,nlev) |
---|
472 | real(jprb), intent(in) :: temperature_fl(istartcol:iendcol,nlev) |
---|
473 | ! Gas mole fractions at full levels (mol mol-1), dimensioned (ncol,nlev,nmaxgas) |
---|
474 | real(jprb), intent(in) :: mole_fraction_fl(ncol,nlev,nmaxgas) |
---|
475 | ! Optional concentration scaling of each gas |
---|
476 | real(jprb), optional, intent(in) :: concentration_scaling(nmaxgas) |
---|
477 | |
---|
478 | ! Output variables |
---|
479 | |
---|
480 | ! Layer absorption optical depth for each g point |
---|
481 | real(jprb), intent(out) :: optical_depth_fl(this%ng,nlev,istartcol:iendcol) |
---|
482 | ! In the shortwave only, the Rayleigh scattering optical depth |
---|
483 | real(jprb), optional, intent(out) :: rayleigh_od_fl(this%ng,nlev,istartcol:iendcol) |
---|
484 | |
---|
485 | ! Local variables |
---|
486 | |
---|
487 | real(jprb), pointer :: molar_abs(:,:,:), molar_abs_conc(:,:,:,:) |
---|
488 | |
---|
489 | ! Natural logarithm of pressure at full levels |
---|
490 | real(jprb) :: log_pressure_fl(nlev) |
---|
491 | |
---|
492 | ! Optical depth of single gas at one point in space versus |
---|
493 | ! spectral interval |
---|
494 | !real(jprb) :: od_single_gas(this%ng) |
---|
495 | |
---|
496 | real(jprb) :: multiplier(nlev), simple_multiplier(nlev), global_multiplier, temperature1 |
---|
497 | real(jprb) :: scaling |
---|
498 | |
---|
499 | ! Indices and weights in temperature, pressure and concentration interpolation |
---|
500 | real(jprb) :: pindex1, tindex1, cindex1 |
---|
501 | real(jprb) :: pw1(nlev), pw2(nlev), tw1(nlev), tw2(nlev), cw1(nlev), cw2(nlev) |
---|
502 | integer :: ip1(nlev), it1(nlev), ic1(nlev) |
---|
503 | |
---|
504 | ! Natural logarithm of mole fraction at one point |
---|
505 | real(jprb) :: log_conc |
---|
506 | |
---|
507 | ! Minimum mole fraction in look-up-table |
---|
508 | real(jprb) :: mole_frac1 |
---|
509 | |
---|
510 | integer :: jcol, jlev, jgas, igascode |
---|
511 | |
---|
512 | real(jphook) :: hook_handle |
---|
513 | |
---|
514 | if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth',0,hook_handle) |
---|
515 | |
---|
516 | global_multiplier = 1.0_jprb / (AccelDueToGravity * 0.001_jprb * AirMolarMass) |
---|
517 | |
---|
518 | DO jcol = istartcol,iendcol |
---|
519 | |
---|
520 | log_pressure_fl = log(0.5_jprb * (pressure_hl(jcol,1:nlev)+pressure_hl(jcol,2:nlev+1))) |
---|
521 | |
---|
522 | DO jlev = 1,nlev |
---|
523 | ! Find interpolation points in pressure |
---|
524 | pindex1 = (log_pressure_fl(jlev)-this%log_pressure1) & |
---|
525 | & / this%d_log_pressure |
---|
526 | pindex1 = 1.0_jprb + max(0.0_jprb, min(pindex1, this%npress-1.0001_jprb)) |
---|
527 | ip1(jlev) = int(pindex1) |
---|
528 | pw2(jlev) = pindex1 - ip1(jlev) |
---|
529 | pw1(jlev) = 1.0_jprb - pw2(jlev) |
---|
530 | |
---|
531 | ! Find interpolation points in temperature |
---|
532 | temperature1 = pw1(jlev)*this%temperature1(ip1(jlev)) & |
---|
533 | & + pw2(jlev)*this%temperature1(ip1(jlev)+1) |
---|
534 | tindex1 = (temperature_fl(jcol,jlev) - temperature1) & |
---|
535 | & / this%d_temperature |
---|
536 | tindex1 = 1.0_jprb + max(0.0_jprb, min(tindex1, this%ntemp-1.0001_jprb)) |
---|
537 | it1(jlev) = int(tindex1) |
---|
538 | tw2(jlev) = tindex1 - it1(jlev) |
---|
539 | tw1(jlev) = 1.0_jprb - tw2(jlev) |
---|
540 | |
---|
541 | ! Concentration multiplier |
---|
542 | simple_multiplier(jlev) = global_multiplier & |
---|
543 | & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) |
---|
544 | end do |
---|
545 | |
---|
546 | optical_depth_fl(:,:,jcol) = 0.0_jprb |
---|
547 | |
---|
548 | DO jgas = 1,this%ngas |
---|
549 | |
---|
550 | associate (single_gas => this%single_gas(jgas)) |
---|
551 | igascode = this%single_gas(jgas)%i_gas_code |
---|
552 | |
---|
553 | select case (single_gas%i_conc_dependence) |
---|
554 | |
---|
555 | case (IConcDependenceLinear) |
---|
556 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
557 | multiplier = simple_multiplier * mole_fraction_fl(jcol,:,igascode) |
---|
558 | |
---|
559 | if (present(concentration_scaling)) then |
---|
560 | multiplier = multiplier * concentration_scaling(igascode) |
---|
561 | end if |
---|
562 | |
---|
563 | DO jlev = 1,nlev |
---|
564 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
565 | & + (multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & |
---|
566 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & |
---|
567 | & + (multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & |
---|
568 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) |
---|
569 | end do |
---|
570 | |
---|
571 | case (IConcDependenceRelativeLinear) |
---|
572 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
573 | |
---|
574 | if (present(concentration_scaling)) then |
---|
575 | multiplier = simple_multiplier & |
---|
576 | & * (mole_fraction_fl(jcol,:,igascode)*concentration_scaling(igascode) & |
---|
577 | & - single_gas%reference_mole_frac) |
---|
578 | else |
---|
579 | multiplier = simple_multiplier * (mole_fraction_fl(jcol,:,igascode) & |
---|
580 | & - single_gas%reference_mole_frac) |
---|
581 | end if |
---|
582 | |
---|
583 | DO jlev = 1,nlev |
---|
584 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
585 | & + (multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & |
---|
586 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & |
---|
587 | & + (multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & |
---|
588 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) |
---|
589 | end do |
---|
590 | |
---|
591 | case (IConcDependenceNone) |
---|
592 | ! Composite gases |
---|
593 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
594 | DO jlev = 1,nlev |
---|
595 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
596 | & + (simple_multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & |
---|
597 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & |
---|
598 | & + (simple_multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & |
---|
599 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) |
---|
600 | end do |
---|
601 | |
---|
602 | case (IConcDependenceLUT) |
---|
603 | |
---|
604 | if (present(concentration_scaling)) then |
---|
605 | scaling = concentration_scaling(igascode) |
---|
606 | else |
---|
607 | scaling = 1.0_jprb |
---|
608 | end if |
---|
609 | |
---|
610 | ! Logarithmic interpolation in concentration space |
---|
611 | molar_abs_conc => this%single_gas(jgas)%molar_abs_conc |
---|
612 | mole_frac1 = exp(single_gas%log_mole_frac1) |
---|
613 | DO jlev = 1,nlev |
---|
614 | ! Take care of mole_fraction == 0 |
---|
615 | log_conc = log(max(mole_fraction_fl(jcol,jlev,igascode)*scaling, mole_frac1)) |
---|
616 | cindex1 = (log_conc - single_gas%log_mole_frac1) / single_gas%d_log_mole_frac |
---|
617 | cindex1 = 1.0_jprb + max(0.0_jprb, min(cindex1, single_gas%n_mole_frac-1.0001_jprb)) |
---|
618 | ic1(jlev) = int(cindex1) |
---|
619 | cw2(jlev) = cindex1 - ic1(jlev) |
---|
620 | cw1(jlev) = 1.0_jprb - cw2(jlev) |
---|
621 | end do |
---|
622 | ! od_single_gas = cw1 * (tw1 * (pw1 * molar_abs_conc(:,ip1,it1,ic1) & |
---|
623 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1,ic1)) & |
---|
624 | ! & +tw2 * (pw1 * molar_abs_conc(:,ip1,it1+1,ic1) & |
---|
625 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1+1,ic1))) & |
---|
626 | ! & +cw2 * (tw1 * (pw1 * molar_abs_conc(:,ip1,it1,ic1+1) & |
---|
627 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1,ic1+1)) & |
---|
628 | ! & +tw2 * (pw1 * molar_abs_conc(:,ip1,it1+1,ic1+1) & |
---|
629 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1+1,ic1+1))) |
---|
630 | DO jlev = 1,nlev |
---|
631 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
632 | & + (simple_multiplier(jlev) * mole_fraction_fl(jcol,jlev,igascode) * scaling) * ( & |
---|
633 | & (cw1(jlev) * tw1(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev),ic1(jlev)) & |
---|
634 | & +(cw1(jlev) * tw1(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev),ic1(jlev)) & |
---|
635 | & +(cw1(jlev) * tw2(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev)+1,ic1(jlev)) & |
---|
636 | & +(cw1(jlev) * tw2(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev)+1,ic1(jlev)) & |
---|
637 | & +(cw2(jlev) * tw1(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev),ic1(jlev)+1) & |
---|
638 | & +(cw2(jlev) * tw1(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev),ic1(jlev)+1) & |
---|
639 | & +(cw2(jlev) * tw2(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev)+1,ic1(jlev)+1) & |
---|
640 | & +(cw2(jlev) * tw2(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev)+1,ic1(jlev)+1)) |
---|
641 | end do |
---|
642 | end select |
---|
643 | |
---|
644 | end associate |
---|
645 | |
---|
646 | end do |
---|
647 | |
---|
648 | ! Ensure the optical depth is not negative |
---|
649 | optical_depth_fl(:,:,jcol) = max(0.0_jprb, optical_depth_fl(:,:,jcol)) |
---|
650 | |
---|
651 | ! Rayleigh scattering |
---|
652 | if (this%is_sw .and. present(rayleigh_od_fl)) then |
---|
653 | DO jlev = 1,nlev |
---|
654 | rayleigh_od_fl(:,jlev,jcol) = global_multiplier & |
---|
655 | & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) * this%rayleigh_molar_scat |
---|
656 | end do |
---|
657 | end if |
---|
658 | |
---|
659 | end do |
---|
660 | |
---|
661 | if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth',1,hook_handle) |
---|
662 | |
---|
663 | end subroutine calc_optical_depth_ckd_model |
---|
664 | |
---|
665 | |
---|
666 | !--------------------------------------------------------------------- |
---|
667 | ! Vectorized variant of above routine |
---|
668 | subroutine calc_optical_depth_ckd_model_vec(this, ncol, nlev, istartcol, iendcol, nmaxgas, & |
---|
669 | & pressure_hl, temperature_fl, mole_fraction_fl, & |
---|
670 | & optical_depth_fl, rayleigh_od_fl) |
---|
671 | |
---|
672 | use yomhook, only : lhook, dr_hook, jphook |
---|
673 | use radiation_constants, only : AccelDueToGravity |
---|
674 | |
---|
675 | ! Input variables |
---|
676 | |
---|
677 | class(ckd_model_type), intent(in), target :: this |
---|
678 | ! Number of columns, levels and input gases |
---|
679 | integer, intent(in) :: ncol, nlev, nmaxgas, istartcol, iendcol |
---|
680 | ! Pressure at half levels (Pa), dimensioned (ncol,nlev+1) |
---|
681 | real(jprb), intent(in) :: pressure_hl(ncol,nlev+1) |
---|
682 | ! Temperature at full levels (K), dimensioned (ncol,nlev) |
---|
683 | real(jprb), intent(in) :: temperature_fl(istartcol:iendcol,nlev) |
---|
684 | ! Gas mole fractions at full levels (mol mol-1), dimensioned (ncol,nlev,nmaxgas) |
---|
685 | real(jprb), intent(in) :: mole_fraction_fl(ncol,nlev,nmaxgas) |
---|
686 | |
---|
687 | ! Output variables |
---|
688 | |
---|
689 | ! Layer absorption optical depth for each g point |
---|
690 | real(jprb), intent(out) :: optical_depth_fl(this%ng,nlev,istartcol:iendcol) |
---|
691 | ! In the shortwave only, the Rayleigh scattering optical depth |
---|
692 | real(jprb), optional, intent(out) :: rayleigh_od_fl(this%ng,nlev,istartcol:iendcol) |
---|
693 | |
---|
694 | ! Local variables |
---|
695 | |
---|
696 | real(jprb), pointer :: molar_abs(:,:,:), molar_abs_conc(:,:,:,:) |
---|
697 | |
---|
698 | ! Natural logarithm of pressure at full levels |
---|
699 | real(jprb) :: log_pressure_fl |
---|
700 | |
---|
701 | ! Optical depth of single gas at one point in space versus |
---|
702 | ! spectral interval |
---|
703 | !real(jprb) :: od_single_gas(this%ng) |
---|
704 | |
---|
705 | real(jprb) :: multiplier, simple_multiplier(ncol,nlev), global_multiplier, temperature1 |
---|
706 | |
---|
707 | ! Indices and weights in temperature, pressure and concentration interpolation |
---|
708 | real(jprb) :: pindex1, tindex1, cindex1 |
---|
709 | real(jprb) :: pw1(ncol,nlev), pw2(ncol,nlev), tw1(ncol,nlev), tw2(ncol,nlev), cw1(ncol,nlev), cw2(ncol,nlev) |
---|
710 | integer :: ip1(ncol,nlev), it1(ncol,nlev), ic1(ncol,nlev) |
---|
711 | |
---|
712 | ! Natural logarithm of mole fraction at one point |
---|
713 | real(jprb) :: log_conc |
---|
714 | |
---|
715 | ! Minimum mole fraction in look-up-table |
---|
716 | real(jprb) :: mole_frac1 |
---|
717 | |
---|
718 | ! Layer absorption optical depth for each g point (memory layout adjusted to vectorization) |
---|
719 | real(jprb) :: od_fl(ncol,this%ng,nlev) |
---|
720 | |
---|
721 | integer :: jcol, jlev, jgas, igascode, jg |
---|
722 | |
---|
723 | real(jphook) :: hook_handle |
---|
724 | |
---|
725 | if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth_vec',0,hook_handle) |
---|
726 | |
---|
727 | global_multiplier = 1.0_jprb / (AccelDueToGravity * 0.001_jprb * AirMolarMass) |
---|
728 | |
---|
729 | od_fl(:,:,:) = 0.0_jprb |
---|
730 | |
---|
731 | DO jlev = 1,nlev |
---|
732 | DO jcol = istartcol,iendcol |
---|
733 | |
---|
734 | log_pressure_fl = log(0.5_jprb * (pressure_hl(jcol,jlev)+pressure_hl(jcol,jlev+1))) |
---|
735 | |
---|
736 | ! Find interpolation points in pressure |
---|
737 | pindex1 = (log_pressure_fl-this%log_pressure1) & |
---|
738 | & / this%d_log_pressure |
---|
739 | pindex1 = 1.0_jprb + max(0.0_jprb, min(pindex1, this%npress-1.0001_jprb)) |
---|
740 | ip1(jcol,jlev) = int(pindex1) |
---|
741 | pw2(jcol,jlev) = pindex1 - ip1(jcol,jlev) |
---|
742 | pw1(jcol,jlev) = 1.0_jprb - pw2(jcol,jlev) |
---|
743 | |
---|
744 | ! Find interpolation points in temperature |
---|
745 | temperature1 = pw1(jcol,jlev)*this%temperature1(ip1(jcol,jlev)) & |
---|
746 | & + pw2(jcol,jlev)*this%temperature1(ip1(jcol,jlev)+1) |
---|
747 | tindex1 = (temperature_fl(jcol,jlev) - temperature1) & |
---|
748 | & / this%d_temperature |
---|
749 | tindex1 = 1.0_jprb + max(0.0_jprb, min(tindex1, this%ntemp-1.0001_jprb)) |
---|
750 | it1(jcol,jlev) = int(tindex1) |
---|
751 | tw2(jcol,jlev) = tindex1 - it1(jcol,jlev) |
---|
752 | tw1(jcol,jlev) = 1.0_jprb - tw2(jcol,jlev) |
---|
753 | |
---|
754 | ! Concentration multiplier |
---|
755 | simple_multiplier(jcol,jlev) = global_multiplier & |
---|
756 | & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) |
---|
757 | end do |
---|
758 | end do |
---|
759 | |
---|
760 | DO jgas = 1,this%ngas |
---|
761 | |
---|
762 | associate (single_gas => this%single_gas(jgas)) |
---|
763 | igascode = this%single_gas(jgas)%i_gas_code |
---|
764 | |
---|
765 | select case (single_gas%i_conc_dependence) |
---|
766 | |
---|
767 | case (IConcDependenceLinear) |
---|
768 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
769 | |
---|
770 | DO jlev = 1,nlev |
---|
771 | DO jg = 1, this%ng |
---|
772 | DO jcol = istartcol,iendcol |
---|
773 | multiplier = simple_multiplier(jcol,jlev) * mole_fraction_fl(jcol,jlev,igascode) |
---|
774 | |
---|
775 | od_fl(jcol,jg,jlev) = od_fl(jcol,jg,jlev) & |
---|
776 | & + (multiplier*tw1(jcol,jlev)) * (pw1(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev),it1(jcol,jlev)) & |
---|
777 | & +pw2(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev)+1,it1(jcol,jlev))) & |
---|
778 | & + (multiplier*tw2(jcol,jlev)) * (pw1(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev),it1(jcol,jlev)+1) & |
---|
779 | & +pw2(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev)+1,it1(jcol,jlev)+1)) |
---|
780 | end do |
---|
781 | end do |
---|
782 | end do |
---|
783 | |
---|
784 | case (IConcDependenceRelativeLinear) |
---|
785 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
786 | |
---|
787 | DO jlev = 1,nlev |
---|
788 | DO jg = 1, this%ng |
---|
789 | DO jcol = istartcol,iendcol |
---|
790 | multiplier = simple_multiplier(jcol,jlev) * (mole_fraction_fl(jcol,jlev,igascode) & |
---|
791 | & - single_gas%reference_mole_frac) |
---|
792 | |
---|
793 | od_fl(jcol,jg,jlev) = od_fl(jcol,jg,jlev) & |
---|
794 | & + (multiplier*tw1(jcol,jlev)) * (pw1(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev),it1(jcol,jlev)) & |
---|
795 | & +pw2(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev)+1,it1(jcol,jlev))) & |
---|
796 | & + (multiplier*tw2(jcol,jlev)) * (pw1(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev),it1(jcol,jlev)+1) & |
---|
797 | & +pw2(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev)+1,it1(jcol,jlev)+1)) |
---|
798 | end do |
---|
799 | end do |
---|
800 | end do |
---|
801 | |
---|
802 | case (IConcDependenceNone) |
---|
803 | ! Composite gases |
---|
804 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
805 | |
---|
806 | DO jlev = 1,nlev |
---|
807 | DO jg = 1, this%ng |
---|
808 | DO jcol = istartcol,iendcol |
---|
809 | od_fl(jcol,jg,jlev) = od_fl(jcol,jg,jlev) & |
---|
810 | & + (simple_multiplier(jcol,jlev)*tw1(jcol,jlev)) * & |
---|
811 | & (pw1(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev),it1(jcol,jlev)) & |
---|
812 | & +pw2(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev)+1,it1(jcol,jlev))) & |
---|
813 | & + (simple_multiplier(jcol,jlev)*tw2(jcol,jlev)) * & |
---|
814 | & (pw1(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev),it1(jcol,jlev)+1) & |
---|
815 | & +pw2(jcol,jlev) * molar_abs(jg,ip1(jcol,jlev)+1,it1(jcol,jlev)+1)) |
---|
816 | end do |
---|
817 | end do |
---|
818 | end do |
---|
819 | |
---|
820 | case (IConcDependenceLUT) |
---|
821 | ! Logarithmic interpolation in concentration space |
---|
822 | molar_abs_conc => this%single_gas(jgas)%molar_abs_conc |
---|
823 | mole_frac1 = exp(single_gas%log_mole_frac1) |
---|
824 | |
---|
825 | DO jlev = 1,nlev |
---|
826 | DO jcol = istartcol,iendcol |
---|
827 | ! Take care of mole_fraction == 0 |
---|
828 | log_conc = log(max(mole_fraction_fl(jcol,jlev,igascode), mole_frac1)) |
---|
829 | cindex1 = (log_conc - single_gas%log_mole_frac1) / single_gas%d_log_mole_frac |
---|
830 | cindex1 = 1.0_jprb + max(0.0_jprb, min(cindex1, single_gas%n_mole_frac-1.0001_jprb)) |
---|
831 | ic1(jcol,jlev) = int(cindex1) |
---|
832 | cw2(jcol,jlev) = cindex1 - ic1(jcol,jlev) |
---|
833 | cw1(jcol,jlev) = 1.0_jprb - cw2(jcol,jlev) |
---|
834 | end do |
---|
835 | end do |
---|
836 | |
---|
837 | DO jlev = 1,nlev |
---|
838 | DO jg = 1, this%ng |
---|
839 | !NEC$ select_vector |
---|
840 | DO jcol = istartcol,iendcol |
---|
841 | |
---|
842 | od_fl(jcol,jg,jlev) = od_fl(jcol,jg,jlev) & |
---|
843 | & + (simple_multiplier(jcol,jlev) * mole_fraction_fl(jcol,jlev,igascode)) * ( & |
---|
844 | & (cw1(jcol,jlev) * tw1(jcol,jlev) * pw1(jcol,jlev)) * & |
---|
845 | & molar_abs_conc(jg,ip1(jcol,jlev),it1(jcol,jlev),ic1(jcol,jlev)) & |
---|
846 | & +(cw1(jcol,jlev) * tw1(jcol,jlev) * pw2(jcol,jlev)) * & |
---|
847 | & molar_abs_conc(jg,ip1(jcol,jlev)+1,it1(jcol,jlev),ic1(jcol,jlev)) & |
---|
848 | & +(cw1(jcol,jlev) * tw2(jcol,jlev) * pw1(jcol,jlev)) * & |
---|
849 | & molar_abs_conc(jg,ip1(jcol,jlev),it1(jcol,jlev)+1,ic1(jcol,jlev)) & |
---|
850 | & +(cw1(jcol,jlev) * tw2(jcol,jlev) * pw2(jcol,jlev)) * & |
---|
851 | & molar_abs_conc(jg,ip1(jcol,jlev)+1,it1(jcol,jlev)+1,ic1(jcol,jlev)) & |
---|
852 | & +(cw2(jcol,jlev) * tw1(jcol,jlev) * pw1(jcol,jlev)) * & |
---|
853 | & molar_abs_conc(jg,ip1(jcol,jlev),it1(jcol,jlev),ic1(jcol,jlev)+1) & |
---|
854 | & +(cw2(jcol,jlev) * tw1(jcol,jlev) * pw2(jcol,jlev)) * & |
---|
855 | & molar_abs_conc(jg,ip1(jcol,jlev)+1,it1(jcol,jlev),ic1(jcol,jlev)+1) & |
---|
856 | & +(cw2(jcol,jlev) * tw2(jcol,jlev) * pw1(jcol,jlev)) * & |
---|
857 | & molar_abs_conc(jg,ip1(jcol,jlev),it1(jcol,jlev)+1,ic1(jcol,jlev)+1) & |
---|
858 | & +(cw2(jcol,jlev) * tw2(jcol,jlev) * pw2(jcol,jlev)) * & |
---|
859 | & molar_abs_conc(jg,ip1(jcol,jlev)+1,it1(jcol,jlev)+1,ic1(jcol,jlev)+1)) |
---|
860 | end do |
---|
861 | end do |
---|
862 | end do |
---|
863 | end select |
---|
864 | |
---|
865 | end associate |
---|
866 | |
---|
867 | ! Ensure the optical depth is not negative |
---|
868 | DO jcol = istartcol,iendcol |
---|
869 | DO jlev = 1,nlev |
---|
870 | DO jg = 1, this%ng |
---|
871 | optical_depth_fl(jg,jlev,jcol) = max(0.0_jprb, od_fl(jcol,jg,jlev)) |
---|
872 | end do |
---|
873 | end do |
---|
874 | end do |
---|
875 | |
---|
876 | ! Rayleigh scattering |
---|
877 | if (this%is_sw .and. present(rayleigh_od_fl)) then |
---|
878 | DO jcol = istartcol,iendcol |
---|
879 | DO jlev = 1,nlev |
---|
880 | DO jg = 1, this%ng |
---|
881 | rayleigh_od_fl(jg,jlev,jcol) = global_multiplier & |
---|
882 | & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) * this%rayleigh_molar_scat(jg) |
---|
883 | end do |
---|
884 | end do |
---|
885 | end do |
---|
886 | end if |
---|
887 | |
---|
888 | end do |
---|
889 | |
---|
890 | if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth_vec',1,hook_handle) |
---|
891 | |
---|
892 | end subroutine calc_optical_depth_ckd_model_vec |
---|
893 | |
---|
894 | |
---|
895 | !--------------------------------------------------------------------- |
---|
896 | ! Calculate the Planck function integrated across each of the g |
---|
897 | ! points of this correlated k-distribution model, for a given |
---|
898 | ! temperature, where Planck function is defined as the flux emitted |
---|
899 | ! by a black body (rather than radiance) |
---|
900 | subroutine calc_planck_function(this, nt, temperature, planck) |
---|
901 | |
---|
902 | class(ckd_model_type), intent(in) :: this |
---|
903 | integer, intent(in) :: nt |
---|
904 | real(jprb), intent(in) :: temperature(:) ! K |
---|
905 | real(jprb), intent(out) :: planck(this%ng,nt) ! W m-2 |
---|
906 | |
---|
907 | real(jprb) :: tindex1, tw1, tw2 |
---|
908 | integer :: it1, jt |
---|
909 | |
---|
910 | DO jt = 1,nt |
---|
911 | tindex1 = (temperature(jt) - this%temperature1_planck) & |
---|
912 | & * (1.0_jprb / this%d_temperature_planck) |
---|
913 | if (tindex1 >= 0) then |
---|
914 | ! Normal interpolation, and extrapolation for high temperatures |
---|
915 | tindex1 = 1.0_jprb + tindex1 |
---|
916 | it1 = min(int(tindex1), this%nplanck-1) |
---|
917 | tw2 = tindex1 - it1 |
---|
918 | tw1 = 1.0_jprb - tw2 |
---|
919 | planck(:,jt) = tw1 * this%planck_function(:,it1) & |
---|
920 | & + tw2 * this%planck_function(:,it1+1) |
---|
921 | else |
---|
922 | ! Interpolate linearly to zero |
---|
923 | planck(:,jt) = this%planck_function(:,1) & |
---|
924 | & * (temperature(jt)/this%temperature1_planck) |
---|
925 | end if |
---|
926 | end do |
---|
927 | |
---|
928 | end subroutine calc_planck_function |
---|
929 | |
---|
930 | |
---|
931 | !--------------------------------------------------------------------- |
---|
932 | ! Return the spectral solar irradiance integrated over each g point |
---|
933 | ! of a solar correlated k-distribution model, given the |
---|
934 | ! total_solar_irradiance |
---|
935 | subroutine calc_incoming_sw(this, total_solar_irradiance, & |
---|
936 | & spectral_solar_irradiance, & |
---|
937 | & solar_spectral_multiplier) |
---|
938 | |
---|
939 | use radiation_io, only : nulerr, radiation_abort |
---|
940 | |
---|
941 | class(ckd_model_type), intent(in) :: this |
---|
942 | real(jprb), intent(in) :: total_solar_irradiance ! W m-2 |
---|
943 | real(jprb), intent(inout) :: spectral_solar_irradiance(:,:) ! W m-2 |
---|
944 | real(jprb), optional, intent(in) :: solar_spectral_multiplier |
---|
945 | |
---|
946 | if (.not. present(solar_spectral_multiplier)) then |
---|
947 | spectral_solar_irradiance & |
---|
948 | & = spread(total_solar_irradiance * this%norm_solar_irradiance, & |
---|
949 | & 2, size(spectral_solar_irradiance,2)) |
---|
950 | else if (allocated(this%norm_amplitude_solar_irradiance)) then |
---|
951 | spectral_solar_irradiance & |
---|
952 | & = spread(total_solar_irradiance * (this%norm_solar_irradiance & |
---|
953 | & + solar_spectral_multiplier*this%norm_amplitude_solar_irradiance), & |
---|
954 | & 2, size(spectral_solar_irradiance,2)) |
---|
955 | else if (solar_spectral_multiplier == 0.0_jprb) then |
---|
956 | spectral_solar_irradiance & |
---|
957 | & = spread(total_solar_irradiance * this%norm_solar_irradiance, & |
---|
958 | & 2, size(spectral_solar_irradiance,2)) |
---|
959 | else |
---|
960 | write(nulerr, '(a)') '*** Error in calc_incoming_sw: no information present on solar cycle' |
---|
961 | call radiation_abort() |
---|
962 | end if |
---|
963 | |
---|
964 | end subroutine calc_incoming_sw |
---|
965 | |
---|
966 | end module radiation_ecckd |
---|