1 | SUBROUTINE RADIATION_SCHEME & |
---|
2 | & (YRADIATION,KIDIA, KFDIA, KLON, KLEV, KAEROSOL, & |
---|
3 | & PSOLAR_IRRADIANCE, & |
---|
4 | & PMU0, PTEMPERATURE_SKIN, PALBEDO_DIF, PALBEDO_DIR, & |
---|
5 | & PSPECTRALEMISS, & |
---|
6 | & PCCN_LAND, PCCN_SEA, & |
---|
7 | & PGELAM, PGEMU, PLAND_SEA_MASK, & |
---|
8 | & PPRESSURE, PTEMPERATURE, & |
---|
9 | & PPRESSURE_H, PTEMPERATURE_H, & |
---|
10 | & PQ, PCO2, PCH4, PN2O, PNO2, PCFC11, PCFC12, PHCFC22, PCCL4, PO3, & |
---|
11 | & PCLOUD_FRAC, PQ_LIQUID, PQ_ICE, PQ_RAIN, PQ_SNOW, & |
---|
12 | & PAEROSOL_OLD, PAEROSOL, & |
---|
13 | & PFLUX_SW, PFLUX_LW, PFLUX_SW_CLEAR, PFLUX_LW_CLEAR, & |
---|
14 | & PFLUX_SW_DN, PFLUX_LW_DN, PFLUX_SW_DN_CLEAR, PFLUX_LW_DN_CLEAR, & |
---|
15 | & PFLUX_DIR, PFLUX_DIR_CLEAR, PFLUX_DIR_INTO_SUN, & |
---|
16 | & PFLUX_UV, PFLUX_PAR, PFLUX_PAR_CLEAR, & |
---|
17 | & PFLUX_SW_DN_TOA, PEMIS_OUT, PLWDERIVATIVE, & |
---|
18 | & PSWDIFFUSEBAND, PSWDIRECTBAND) |
---|
19 | |
---|
20 | ! RADIATION_SCHEME - Interface to modular radiation scheme |
---|
21 | |
---|
22 | ! (C) Copyright 2015- ECMWF. |
---|
23 | |
---|
24 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
25 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
26 | |
---|
27 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
28 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
29 | ! nor does it submit to any jurisdiction. |
---|
30 | |
---|
31 | ! PURPOSE |
---|
32 | ! ------- |
---|
33 | ! The modular radiation scheme is contained in a separate |
---|
34 | ! library. This routine puts the the IFS arrays into appropriate |
---|
35 | ! objects, computing the additional data that is required, and sends |
---|
36 | ! it to the radiation scheme. It returns net fluxes and surface |
---|
37 | ! flux components needed by the rest of the model. |
---|
38 | |
---|
39 | ! Lower case is used for variables and types taken from the |
---|
40 | ! radiation library |
---|
41 | |
---|
42 | ! INTERFACE |
---|
43 | ! --------- |
---|
44 | ! RADIATION_SCHEME is called from RADLSWR. The |
---|
45 | ! SETUP_RADIATION_SCHEME routine (in the RADIATION_SETUP module) |
---|
46 | ! populates the YRADIATION object, and should have been run first. |
---|
47 | |
---|
48 | ! AUTHOR |
---|
49 | ! ------ |
---|
50 | ! Robin Hogan, ECMWF |
---|
51 | ! Original: 2015-09-16 |
---|
52 | |
---|
53 | ! MODIFICATIONS |
---|
54 | ! ------------- |
---|
55 | ! 2017-03-03 R. Hogan Read configuration data from YRADIATION object |
---|
56 | ! 2017-05-11 R. Hogan Pass KIDIA,KFDIA to get_layer_mass |
---|
57 | ! 2018-01-11 R. Hogan Capability to scale solar spectrum in each band |
---|
58 | ! 2017-11-11 M. Ahlgrimm add variable FSD for cloud heterogeneity |
---|
59 | ! 2017-11-29 R. Hogan Check fluxes in physical bounds |
---|
60 | ! 2019-01-22 R. Hogan Use fluxes in albedo bands from ecRad |
---|
61 | ! 2019-01-23 R. Hogan Spectral longwave emissivity in NLWEMISS bands |
---|
62 | ! 2019-02-04 R. Hogan Pass out surface longwave downwelling in each emissivity interval |
---|
63 | ! 2019-02-07 R. Hogan SPARTACUS cloud size from PARAM_CLOUD_EFFECTIVE_SEPARATION_ETA |
---|
64 | |
---|
65 | !----------------------------------------------------------------------- |
---|
66 | |
---|
67 | ! Modules from ifs or ifsaux libraries |
---|
68 | USE PARKIND1 , ONLY : JPIM, JPRB, JPRD |
---|
69 | USE YOMHOOK , ONLY : LHOOK, DR_HOOK, JPHOOK |
---|
70 | USE YOMCST , ONLY : RPI, RSIGMA ! Stefan-Boltzmann constant |
---|
71 | USE YOMLUN , ONLY : NULERR |
---|
72 | USE RADIATION_SETUP, ONLY : ITYPE_TROP_BG_AER, ITYPE_STRAT_BG_AER, TRADIATION |
---|
73 | |
---|
74 | ! Modules from ecRad radiation library |
---|
75 | USE RADIATION_CONFIG, ONLY : ISOLVERSPARTACUS |
---|
76 | USE RADIATION_SINGLE_LEVEL, ONLY : SINGLE_LEVEL_TYPE |
---|
77 | USE RADIATION_THERMODYNAMICS, ONLY : THERMODYNAMICS_TYPE |
---|
78 | USE RADIATION_GAS, ONLY : GAS_TYPE,& |
---|
79 | & IMASSMIXINGRATIO, IVOLUMEMIXINGRATIO,& |
---|
80 | & IH2O, ICO2, ICH4, IN2O, ICFC11, ICFC12, IHCFC22, ICCL4, IO3, IO2 |
---|
81 | USE RADIATION_CLOUD, ONLY : CLOUD_TYPE |
---|
82 | USE RADIATION_AEROSOL, ONLY : AEROSOL_TYPE |
---|
83 | USE RADIATION_FLUX, ONLY : FLUX_TYPE |
---|
84 | USE RADIATION_INTERFACE, ONLY : RADIATION, SET_GAS_UNITS |
---|
85 | USE RADIATION_SAVE, ONLY : SAVE_INPUTS, SAVE_FLUXES |
---|
86 | |
---|
87 | IMPLICIT NONE |
---|
88 | |
---|
89 | ! INPUT ARGUMENTS |
---|
90 | |
---|
91 | TYPE(TRADIATION), INTENT(IN) :: YRADIATION |
---|
92 | |
---|
93 | ! *** Array dimensions and ranges |
---|
94 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA ! Start column to process |
---|
95 | INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA ! End column to process |
---|
96 | INTEGER(KIND=JPIM),INTENT(IN) :: KLON ! Number of columns |
---|
97 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV ! Number of levels |
---|
98 | INTEGER(KIND=JPIM),INTENT(IN) :: KAEROSOL ! Number of aerosol types |
---|
99 | |
---|
100 | ! *** Single-level fields |
---|
101 | REAL(KIND=JPRB), INTENT(IN) :: PSOLAR_IRRADIANCE ! (W m-2) |
---|
102 | REAL(KIND=JPRB), INTENT(IN) :: PMU0(KLON) ! Cosine of solar zenith ang |
---|
103 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE_SKIN(KLON) ! (K) |
---|
104 | ! Diffuse and direct components of surface shortwave albedo |
---|
105 | REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIF(KLON,YRADIATION%YRERAD%NSW) |
---|
106 | REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIR(KLON,YRADIATION%YRERAD%NSW) |
---|
107 | ! Longwave spectral emissivity |
---|
108 | REAL(KIND=JPRB), INTENT(IN) :: PSPECTRALEMISS(KLON,YRADIATION%YRERAD%NLWEMISS) |
---|
109 | ! Longitude (radians), sine of latitude |
---|
110 | REAL(KIND=JPRB), INTENT(IN) :: PGELAM(KLON) |
---|
111 | REAL(KIND=JPRB), INTENT(IN) :: PGEMU(KLON) |
---|
112 | ! Land-sea mask |
---|
113 | REAL(KIND=JPRB), INTENT(IN) :: PLAND_SEA_MASK(KLON) |
---|
114 | |
---|
115 | ! *** Variables on full levels |
---|
116 | REAL(KIND=JPRB), INTENT(IN) :: PPRESSURE(KLON,KLEV) ! (Pa) |
---|
117 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE(KLON,KLEV) ! (K) |
---|
118 | ! *** Variables on half levels |
---|
119 | REAL(KIND=JPRB), INTENT(IN) :: PPRESSURE_H(KLON,KLEV+1) ! (Pa) |
---|
120 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE_H(KLON,KLEV+1) ! (K) |
---|
121 | |
---|
122 | ! *** Gas mass mixing ratios on full levels |
---|
123 | REAL(KIND=JPRB), INTENT(IN) :: PQ(KLON,KLEV) |
---|
124 | REAL(KIND=JPRB), INTENT(IN) :: PCO2(KLON,KLEV) |
---|
125 | REAL(KIND=JPRB), INTENT(IN) :: PCH4(KLON,KLEV) |
---|
126 | REAL(KIND=JPRB), INTENT(IN) :: PN2O(KLON,KLEV) |
---|
127 | REAL(KIND=JPRB), INTENT(IN) :: PNO2(KLON,KLEV) |
---|
128 | REAL(KIND=JPRB), INTENT(IN) :: PCFC11(KLON,KLEV) |
---|
129 | REAL(KIND=JPRB), INTENT(IN) :: PCFC12(KLON,KLEV) |
---|
130 | REAL(KIND=JPRB), INTENT(IN) :: PHCFC22(KLON,KLEV) |
---|
131 | REAL(KIND=JPRB), INTENT(IN) :: PCCL4(KLON,KLEV) |
---|
132 | REAL(KIND=JPRB), INTENT(IN) :: PO3(KLON,KLEV) |
---|
133 | |
---|
134 | ! *** Cloud fraction and hydrometeor mass mixing ratios |
---|
135 | REAL(KIND=JPRB), INTENT(IN) :: PCLOUD_FRAC(KLON,KLEV) |
---|
136 | REAL(KIND=JPRB), INTENT(IN) :: PQ_LIQUID(KLON,KLEV) |
---|
137 | REAL(KIND=JPRB), INTENT(IN) :: PQ_ICE(KLON,KLEV) |
---|
138 | REAL(KIND=JPRB), INTENT(IN) :: PQ_RAIN(KLON,KLEV) |
---|
139 | REAL(KIND=JPRB), INTENT(IN) :: PQ_SNOW(KLON,KLEV) |
---|
140 | |
---|
141 | ! *** Aerosol mass mixing ratios |
---|
142 | REAL(KIND=JPRB), INTENT(IN) :: PAEROSOL_OLD(KLON,6,KLEV) |
---|
143 | REAL(KIND=JPRB), INTENT(IN) :: PAEROSOL(KLON,KLEV,KAEROSOL) |
---|
144 | |
---|
145 | REAL(KIND=JPRB), INTENT(IN) :: PCCN_LAND(KLON) |
---|
146 | REAL(KIND=JPRB), INTENT(IN) :: PCCN_SEA(KLON) |
---|
147 | |
---|
148 | ! OUTPUT ARGUMENTS |
---|
149 | |
---|
150 | ! *** Net fluxes on half-levels (W m-2) |
---|
151 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW(KLON,KLEV+1) |
---|
152 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW(KLON,KLEV+1) |
---|
153 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_CLEAR(KLON,KLEV+1) |
---|
154 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_CLEAR(KLON,KLEV+1) |
---|
155 | |
---|
156 | ! *** Surface flux components (W m-2) |
---|
157 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN(KLON) |
---|
158 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_DN(KLON) |
---|
159 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN_CLEAR(KLON) |
---|
160 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_DN_CLEAR(KLON) |
---|
161 | ! Direct component of surface flux into horizontal plane |
---|
162 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR(KLON) |
---|
163 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR_CLEAR(KLON) |
---|
164 | ! As PFLUX_DIR but into a plane perpendicular to the sun |
---|
165 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR_INTO_SUN(KLON) |
---|
166 | |
---|
167 | ! *** Ultraviolet and photosynthetically active radiation (W m-2) |
---|
168 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_UV(KLON) |
---|
169 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_PAR(KLON) |
---|
170 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_PAR_CLEAR(KLON) |
---|
171 | |
---|
172 | ! *** Other single-level diagnostics |
---|
173 | ! Top-of-atmosphere incident solar flux (W m-2) |
---|
174 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN_TOA(KLON) |
---|
175 | ! Diagnosed longwave surface emissivity across the whole spectrum |
---|
176 | REAL(KIND=JPRB), INTENT(OUT) :: PEMIS_OUT(KLON) |
---|
177 | |
---|
178 | ! Partial derivative of total-sky longwave upward flux at each level |
---|
179 | ! with respect to upward flux at surface, used to correct heating |
---|
180 | ! rates at gridpoints/timesteps between calls to the full radiation |
---|
181 | ! scheme. Note that this version uses the convention of level index |
---|
182 | ! increasing downwards, unlike the local variable ZLwDerivative that |
---|
183 | ! is returned from the LW radiation scheme. |
---|
184 | REAL(KIND=JPRB), INTENT(OUT) :: PLWDERIVATIVE(KLON,KLEV+1) |
---|
185 | |
---|
186 | ! Surface diffuse and direct downwelling shortwave flux in each |
---|
187 | ! shortwave albedo band, used in RADINTG to update the surface fluxes |
---|
188 | ! accounting for high-resolution albedo information |
---|
189 | REAL(KIND=JPRB), INTENT(OUT) :: PSWDIFFUSEBAND(KLON,YRADIATION%YRERAD%NSW) |
---|
190 | REAL(KIND=JPRB), INTENT(OUT) :: PSWDIRECTBAND (KLON,YRADIATION%YRERAD%NSW) |
---|
191 | |
---|
192 | ! LOCAL VARIABLES |
---|
193 | TYPE(SINGLE_LEVEL_TYPE) :: SINGLE_LEVEL |
---|
194 | TYPE(THERMODYNAMICS_TYPE) :: THERMODYNAMICS |
---|
195 | TYPE(GAS_TYPE) :: GAS |
---|
196 | TYPE(CLOUD_TYPE) :: YLCLOUD |
---|
197 | TYPE(AEROSOL_TYPE) :: AEROSOL |
---|
198 | TYPE(FLUX_TYPE) :: FLUX |
---|
199 | |
---|
200 | ! Cloud effective radii in microns |
---|
201 | REAL(KIND=JPRB) :: ZRE_LIQUID_UM(KLON,KLEV) |
---|
202 | REAL(KIND=JPRB) :: ZRE_ICE_UM(KLON,KLEV) |
---|
203 | |
---|
204 | ! Cloud overlap decorrelation length for cloud boundaries in km |
---|
205 | REAL(KIND=JPRB) :: ZDECORR_LEN_KM(KLON) |
---|
206 | |
---|
207 | ! Ratio of cloud overlap decorrelation length for cloud water |
---|
208 | ! inhomogeneities to that for cloud boundaries (typically 0.5) |
---|
209 | REAL(KIND=JPRB) :: ZDECORR_LEN_RATIO |
---|
210 | |
---|
211 | ! The surface net longwave flux if the surface was a black body, used |
---|
212 | ! to compute the effective broadband surface emissivity |
---|
213 | REAL(KIND=JPRB) :: ZBLACK_BODY_NET_LW(KIDIA:KFDIA) |
---|
214 | |
---|
215 | ! Layer mass in kg m-2 |
---|
216 | REAL(KIND=JPRB) :: ZLAYER_MASS(KIDIA:KFDIA,KLEV) |
---|
217 | |
---|
218 | ! Time integers |
---|
219 | ! INTEGER(KIND=JPIM) :: ITIM, IDAY |
---|
220 | |
---|
221 | ! Loop indices |
---|
222 | INTEGER(KIND=JPIM) :: JLON, JLEV, JBAND, JAER |
---|
223 | |
---|
224 | ! Have any fluxes been returned that are out of a physically |
---|
225 | ! reasonable range? This integer stores the number of blocks of fluxes |
---|
226 | ! that have contained a bad value so far, for this task. NetCDF files |
---|
227 | ! will be written up to the value of NAERAD:NDUMPBADINPUTS. |
---|
228 | INTEGER(KIND=JPIM), SAVE :: N_BAD_FLUXES = 0 |
---|
229 | |
---|
230 | ! For debugging it can be useful to save input profiles and output |
---|
231 | ! fluxes without the condition that the fluxes are out of a reasonable |
---|
232 | ! range. NetCDF files will be written up to the value of |
---|
233 | ! NAERAD:NDUMPINPUTS. |
---|
234 | INTEGER(KIND=JPIM), SAVE :: N_OUTPUT_FLUXES = 0 |
---|
235 | |
---|
236 | ! NetCDF file name in case of bad fluxes |
---|
237 | CHARACTER(LEN=512) :: CL_FILE_NAME |
---|
238 | |
---|
239 | REAL(KIND=JPHOOK) :: ZHOOK_HANDLE |
---|
240 | |
---|
241 | ! Dummy from YOMCT3 |
---|
242 | ! INTEGER(KIND=JPIM) :: NSTEP = 0 |
---|
243 | |
---|
244 | ! Dummy from MPL_MYRANK_MOD |
---|
245 | INTEGER(KIND=JPIM) :: MPL_MYRANK |
---|
246 | MPL_MYRANK() = 1 |
---|
247 | |
---|
248 | ! Import time functions for iseed calculation |
---|
249 | #include "fcttim.func.h" |
---|
250 | |
---|
251 | #include "liquid_effective_radius.intfb.h" |
---|
252 | #include "ice_effective_radius.intfb.h" |
---|
253 | #include "cloud_overlap_decorr_len.intfb.h" |
---|
254 | !#include "satur.intfb.h" |
---|
255 | !#include "abor1.intfb.h" |
---|
256 | |
---|
257 | IF (LHOOK) CALL DR_HOOK('RADIATION_SCHEME',0,ZHOOK_HANDLE) |
---|
258 | |
---|
259 | ASSOCIATE(YRERAD =>YRADIATION%YRERAD, & |
---|
260 | & RAD_CONFIG=>YRADIATION%RAD_CONFIG, & |
---|
261 | & NWEIGHT_UV=>YRADIATION%NWEIGHT_UV, & |
---|
262 | & IBAND_UV =>YRADIATION%IBAND_UV(:), & |
---|
263 | & WEIGHT_UV =>YRADIATION%WEIGHT_UV(:), & |
---|
264 | & NWEIGHT_PAR=>YRADIATION%NWEIGHT_PAR, & |
---|
265 | & IBAND_PAR =>YRADIATION%IBAND_PAR(:), & |
---|
266 | & WEIGHT_PAR=>YRADIATION%WEIGHT_PAR(:), & |
---|
267 | & TROP_BG_AER_MASS_EXT=>YRADIATION%TROP_BG_AER_MASS_EXT, & |
---|
268 | & STRAT_BG_AER_MASS_EXT=>YRADIATION%STRAT_BG_AER_MASS_EXT) |
---|
269 | ! Allocate memory in radiation objects |
---|
270 | CALL SINGLE_LEVEL%ALLOCATE(KLON, YRERAD%NSW, YRERAD%NLWEMISS, & |
---|
271 | & USE_SW_ALBEDO_DIRECT=.TRUE.) |
---|
272 | CALL THERMODYNAMICS%ALLOCATE(KLON, KLEV, USE_H2O_SAT=.TRUE.) |
---|
273 | CALL GAS%ALLOCATE(KLON, KLEV) |
---|
274 | CALL YLCLOUD%ALLOCATE(KLON, KLEV) |
---|
275 | IF (YRERAD%NAERMACC == 1) THEN |
---|
276 | CALL AEROSOL%ALLOCATE(KLON, 1, KLEV, KAEROSOL) ! MACC aerosols |
---|
277 | ELSE |
---|
278 | CALL AEROSOL%ALLOCATE(KLON, 1, KLEV, 6) ! Tegen climatology |
---|
279 | ENDIF |
---|
280 | CALL FLUX%ALLOCATE(RAD_CONFIG, 1, KLON, KLEV) |
---|
281 | |
---|
282 | ! Set thermodynamic profiles: simply copy over the half-level |
---|
283 | ! pressure and temperature |
---|
284 | THERMODYNAMICS%PRESSURE_HL (KIDIA:KFDIA,:) = PPRESSURE_H (KIDIA:KFDIA,:) |
---|
285 | THERMODYNAMICS%TEMPERATURE_HL(KIDIA:KFDIA,:) = PTEMPERATURE_H(KIDIA:KFDIA,:) |
---|
286 | |
---|
287 | ! IFS currently sets the half-level temperature at the surface to be |
---|
288 | ! equal to the skin temperature. The radiation scheme takes as input |
---|
289 | ! only the half-level temperatures and assumes the Planck function to |
---|
290 | ! vary linearly in optical depth between half levels. In the lowest |
---|
291 | ! atmospheric layer, where the atmospheric temperature can be much |
---|
292 | ! cooler than the skin temperature, this can lead to significant |
---|
293 | ! differences between the effective temperature of this lowest layer |
---|
294 | ! and the true value in the model. |
---|
295 | |
---|
296 | ! We may approximate the temperature profile in the lowest model level |
---|
297 | ! as piecewise linear between the top of the layer T[k-1/2], the |
---|
298 | ! centre of the layer T[k] and the base of the layer Tskin. The mean |
---|
299 | ! temperature of the layer is then 0.25*T[k-1/2] + 0.5*T[k] + |
---|
300 | ! 0.25*Tskin, which can be achieved by setting the atmospheric |
---|
301 | ! temperature at the half-level corresponding to the surface as |
---|
302 | ! follows: |
---|
303 | THERMODYNAMICS%TEMPERATURE_HL(KIDIA:KFDIA,KLEV+1)& |
---|
304 | & = PTEMPERATURE(KIDIA:KFDIA,KLEV)& |
---|
305 | & + 0.5_JPRB * (PTEMPERATURE_H(KIDIA:KFDIA,KLEV+1)& |
---|
306 | & -PTEMPERATURE_H(KIDIA:KFDIA,KLEV)) |
---|
307 | |
---|
308 | ! Alternatively we respect the model's atmospheric temperature in the |
---|
309 | ! lowest model level by setting the temperature at the lowest |
---|
310 | ! half-level such that the mean temperature of the layer is correct: |
---|
311 | !thermodynamics%temperature_hl(KIDIA:KFDIA,KLEV+1) & |
---|
312 | ! & = 2.0_JPRB * PTEMPERATURE(KIDIA:KFDIA,KLEV) & |
---|
313 | ! & - PTEMPERATURE_H(KIDIA:KFDIA,KLEV) |
---|
314 | |
---|
315 | ! Compute saturation specific humidity, used to hydrate aerosols. The |
---|
316 | ! "2" for the last argument indicates that the routine is not being |
---|
317 | ! called from within the convection scheme. |
---|
318 | !CALL SATUR(KIDIA, KFDIA, KLON, 1, KLEV, .false., & |
---|
319 | ! & PPRESSURE, PTEMPERATURE, THERMODYNAMICS%H2O_SAT_LIQ, 2) |
---|
320 | ! Alternative approximate version using temperature and pressure from |
---|
321 | ! the thermodynamics structure |
---|
322 | CALL thermodynamics%calc_saturation_wrt_liquid(KIDIA, KFDIA) |
---|
323 | |
---|
324 | ! Set single-level fileds |
---|
325 | SINGLE_LEVEL%SOLAR_IRRADIANCE = PSOLAR_IRRADIANCE |
---|
326 | SINGLE_LEVEL%COS_SZA(KIDIA:KFDIA) = PMU0(KIDIA:KFDIA) |
---|
327 | SINGLE_LEVEL%SKIN_TEMPERATURE(KIDIA:KFDIA) = PTEMPERATURE_SKIN(KIDIA:KFDIA) |
---|
328 | SINGLE_LEVEL%SW_ALBEDO(KIDIA:KFDIA,:) = PALBEDO_DIF(KIDIA:KFDIA,:) |
---|
329 | SINGLE_LEVEL%SW_ALBEDO_DIRECT(KIDIA:KFDIA,:)=PALBEDO_DIR(KIDIA:KFDIA,:) |
---|
330 | ! Spectral longwave emissivity |
---|
331 | SINGLE_LEVEL%LW_EMISSIVITY(KIDIA:KFDIA,:) = PSPECTRALEMISS(KIDIA:KFDIA,:) |
---|
332 | |
---|
333 | ! Create the relevant seed from date and time get the starting day |
---|
334 | ! and number of minutes since start |
---|
335 | ! IDAY = NDD(NINDAT) |
---|
336 | ! ITIM = NINT(NSTEP * YDMODEL%YRML_GCONF%YRRIP%TSTEP / 60.0_JPRB) |
---|
337 | ! DO JLON = KIDIA, KFDIA |
---|
338 | ! ! This method gives a unique value for roughly every 1-km square |
---|
339 | ! ! on the globe and every minute. ASIN(PGEMU)*60 gives rough |
---|
340 | ! ! latitude in degrees, which we multiply by 100 to give a unique |
---|
341 | ! ! value for roughly every km. PGELAM*60*100 gives a unique number |
---|
342 | ! ! for roughly every km of longitude around the equator, which we |
---|
343 | ! ! multiply by 180*100 so there is no overlap with the latitude |
---|
344 | ! ! values. The result can be contained in a 32-byte integer (but |
---|
345 | ! ! since random numbers are generated with the help of integer |
---|
346 | ! ! overflow, it should not matter if the number did overflow). |
---|
347 | ! SINGLE_LEVEL%ISEED(JLON) = ITIM + IDAY & |
---|
348 | ! & + NINT(PGELAM(JLON)*108000000.0_JPRD & |
---|
349 | ! & + ASIN(PGEMU(JLON))*6000.0_JPRD) |
---|
350 | ! ENDDO |
---|
351 | |
---|
352 | ! Simple initialization of the seeds for the Monte Carlo scheme |
---|
353 | call single_level%init_seed_simple(kidia, kfdia) |
---|
354 | |
---|
355 | ! Set the solar spectrum scaling, if required |
---|
356 | IF (YRERAD%NSOLARSPECTRUM == 1) THEN |
---|
357 | ALLOCATE(SINGLE_LEVEL%SPECTRAL_SOLAR_SCALING(RAD_CONFIG%N_BANDS_SW)) |
---|
358 | ! Ratio of SORCE (Coddington et al. 2016) and Kurucz solar spectra |
---|
359 | SINGLE_LEVEL%SPECTRAL_SOLAR_SCALING & |
---|
360 | & = (/ 1.0, 1.0, 1.0, 1.0478, 1.0404, 1.0317, 1.0231, & |
---|
361 | & 1.0054, 0.98413, 0.99863, 0.99907, 0.90589, 0.92213, 1.0 /) |
---|
362 | ENDIF |
---|
363 | |
---|
364 | ! Set cloud fields |
---|
365 | YLCLOUD%Q_LIQ(KIDIA:KFDIA,:) = PQ_LIQUID(KIDIA:KFDIA,:) |
---|
366 | YLCLOUD%Q_ICE(KIDIA:KFDIA,:) = PQ_ICE(KIDIA:KFDIA,:) + PQ_SNOW(KIDIA:KFDIA,:) |
---|
367 | YLCLOUD%FRACTION(KIDIA:KFDIA,:) = PCLOUD_FRAC(KIDIA:KFDIA,:) |
---|
368 | |
---|
369 | ! Compute effective radii and convert to metres |
---|
370 | CALL LIQUID_EFFECTIVE_RADIUS(YRERAD, & |
---|
371 | & KIDIA, KFDIA, KLON, KLEV, & |
---|
372 | & PPRESSURE, PTEMPERATURE, PCLOUD_FRAC, PQ_LIQUID, PQ_RAIN, & |
---|
373 | & PLAND_SEA_MASK, PCCN_LAND, PCCN_SEA, & |
---|
374 | & ZRE_LIQUID_UM) !, PPERT=PPERT) |
---|
375 | YLCLOUD%RE_LIQ(KIDIA:KFDIA,:) = ZRE_LIQUID_UM(KIDIA:KFDIA,:) * 1.0E-6_JPRB |
---|
376 | |
---|
377 | CALL ICE_EFFECTIVE_RADIUS(YRERAD, KIDIA, KFDIA, KLON, KLEV, & |
---|
378 | & PPRESSURE, PTEMPERATURE, PCLOUD_FRAC, PQ_ICE, PQ_SNOW, PGEMU, & |
---|
379 | & ZRE_ICE_UM) !, PPERT=PPERT) |
---|
380 | YLCLOUD%RE_ICE(KIDIA:KFDIA,:) = ZRE_ICE_UM(KIDIA:KFDIA,:) * 1.0E-6_JPRB |
---|
381 | |
---|
382 | ! Get the cloud overlap decorrelation length (for cloud boundaries), |
---|
383 | ! in km, according to the parameterization specified by NDECOLAT, |
---|
384 | ! and insert into the "cloud" object. Also get the ratio of |
---|
385 | ! decorrelation lengths for cloud water content inhomogeneities and |
---|
386 | ! cloud boundaries, and set it in the "rad_config" object. |
---|
387 | CALL CLOUD_OVERLAP_DECORR_LEN(KIDIA,KFDIA,KLON, & |
---|
388 | & PGEMU,YRERAD%NDECOLAT, & |
---|
389 | & PDECORR_LEN_EDGES_KM=ZDECORR_LEN_KM, PDECORR_LEN_RATIO=ZDECORR_LEN_RATIO) |
---|
390 | |
---|
391 | ! Compute cloud overlap parameter from decorrelation length |
---|
392 | !RAD_CONFIG%CLOUD_INHOM_DECORR_SCALING = ZDECORR_LEN_RATIO |
---|
393 | DO JLON = KIDIA,KFDIA |
---|
394 | CALL YLCLOUD%SET_OVERLAP_PARAM(THERMODYNAMICS,& |
---|
395 | & ZDECORR_LEN_KM(JLON)*1000.0_JPRB,& |
---|
396 | & ISTARTCOL=JLON, IENDCOL=JLON) |
---|
397 | ENDDO |
---|
398 | ! Or we can call the routine on all columns at once |
---|
399 | !CALL YLCLOUD%SET_OVERLAP_PARAM(THERMODYNAMICS,& |
---|
400 | ! & ZDECORR_LEN_KM(KIDIA:KFDIA)*1000.0_JPRB,& |
---|
401 | ! & ISTARTCOL=KIDIA, IENDCOL=KFDIA) |
---|
402 | |
---|
403 | ! Cloud water content fractional standard deviation is configurable |
---|
404 | ! from namelist NAERAD but must be globally constant. Before it was |
---|
405 | ! hard coded at 1.0. |
---|
406 | CALL YLCLOUD%CREATE_FRACTIONAL_STD(KLON, KLEV, YRERAD%RCLOUD_FRAC_STD) |
---|
407 | |
---|
408 | |
---|
409 | IF ( RAD_CONFIG%I_SOLVER_LW == ISOLVERSPARTACUS & |
---|
410 | & .OR. RAD_CONFIG%I_SOLVER_SW == ISOLVERSPARTACUS) THEN |
---|
411 | ! We are using the SPARTACUS solver so need to specify cloud scale, |
---|
412 | ! and use Mark Fielding's parameterization based on ARM data |
---|
413 | CALL YLCLOUD%PARAM_CLOUD_EFFECTIVE_SEPARATION_ETA(KLON, KLEV, & |
---|
414 | & PPRESSURE_H, YRERAD%RCLOUD_SEPARATION_SCALE_SURF, & |
---|
415 | & YRERAD%RCLOUD_SEPARATION_SCALE_TOA, 3.5_JPRB, 0.75_JPRB, & |
---|
416 | & KIDIA, KFDIA) |
---|
417 | ENDIF |
---|
418 | |
---|
419 | ! Compute the dry mass of each layer neglecting humidity effects, in |
---|
420 | ! kg m-2, needed to scale some of the aerosol inputs |
---|
421 | CALL THERMODYNAMICS%GET_LAYER_MASS(KIDIA,KFDIA,ZLAYER_MASS) |
---|
422 | |
---|
423 | ! Copy over aerosol mass mixing ratio |
---|
424 | IF (YRERAD%NAERMACC == 1) THEN |
---|
425 | |
---|
426 | |
---|
427 | ! MACC aerosol from climatology or prognostic aerosol variables - |
---|
428 | ! this is already in mass mixing ratio units with the required array |
---|
429 | ! orientation so we can copy it over directly |
---|
430 | ! AB need to cap the minimum mass mixing ratio/AOD to avoid instability |
---|
431 | ! in case of negative values in input |
---|
432 | DO JAER = 1,KAEROSOL |
---|
433 | DO JLEV = 1,KLEV |
---|
434 | DO JLON = KIDIA,KFDIA |
---|
435 | AEROSOL%MIXING_RATIO(JLON,JLEV,JAER) = MAX(PAEROSOL(JLON,JLEV,JAER),0.0_JPRB) |
---|
436 | ENDDO |
---|
437 | ENDDO |
---|
438 | ENDDO |
---|
439 | |
---|
440 | IF (YRERAD%NAERMACC == 1) THEN |
---|
441 | ! Add the tropospheric and stratospheric backgrounds contained in the |
---|
442 | ! old Tegen arrays - this is very ugly! |
---|
443 | IF (TROP_BG_AER_MASS_EXT > 0.0_JPRB) THEN |
---|
444 | AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_TROP_BG_AER)& |
---|
445 | & = AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_TROP_BG_AER)& |
---|
446 | & + PAEROSOL_OLD(KIDIA:KFDIA,1,:)& |
---|
447 | & / (ZLAYER_MASS * TROP_BG_AER_MASS_EXT) |
---|
448 | ENDIF |
---|
449 | IF (STRAT_BG_AER_MASS_EXT > 0.0_JPRB) THEN |
---|
450 | AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_STRAT_BG_AER)& |
---|
451 | & = AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_STRAT_BG_AER)& |
---|
452 | & + PAEROSOL_OLD(KIDIA:KFDIA,6,:)& |
---|
453 | & / (ZLAYER_MASS * STRAT_BG_AER_MASS_EXT) |
---|
454 | ENDIF |
---|
455 | ENDIF |
---|
456 | ELSE |
---|
457 | |
---|
458 | ! Tegen aerosol climatology - the array PAEROSOL_OLD contains the |
---|
459 | ! 550-nm optical depth in each layer. The optics data file |
---|
460 | ! aerosol_ifs_rrtm_tegen.nc does not contain mass extinction |
---|
461 | ! coefficient, but a scaling factor that the 550-nm optical depth |
---|
462 | ! should be multiplied by to obtain the optical depth in each |
---|
463 | ! spectral band. Therefore, in order for the units to work out, we |
---|
464 | ! need to divide by the layer mass (in kg m-2) to obtain the 550-nm |
---|
465 | ! cross-section per unit mass of dry air (so in m2 kg-1). We also |
---|
466 | ! need to permute the array. |
---|
467 | DO JLEV = 1,KLEV |
---|
468 | DO JAER = 1,6 |
---|
469 | AEROSOL%MIXING_RATIO(KIDIA:KFDIA,JLEV,JAER)& |
---|
470 | & = PAEROSOL_OLD(KIDIA:KFDIA,JAER,JLEV)& |
---|
471 | & / ZLAYER_MASS(KIDIA:KFDIA,JLEV) |
---|
472 | ENDDO |
---|
473 | ENDDO |
---|
474 | |
---|
475 | ENDIF |
---|
476 | |
---|
477 | ! Insert gas mixing ratios |
---|
478 | CALL GAS%PUT(IH2O, IMASSMIXINGRATIO, PQ) |
---|
479 | CALL GAS%PUT(ICO2, IMASSMIXINGRATIO, PCO2) |
---|
480 | CALL GAS%PUT(ICH4, IMASSMIXINGRATIO, PCH4) |
---|
481 | CALL GAS%PUT(IN2O, IMASSMIXINGRATIO, PN2O) |
---|
482 | CALL GAS%PUT(ICFC11, IMASSMIXINGRATIO, PCFC11) |
---|
483 | CALL GAS%PUT(ICFC12, IMASSMIXINGRATIO, PCFC12) |
---|
484 | CALL GAS%PUT(IHCFC22, IMASSMIXINGRATIO, PHCFC22) |
---|
485 | CALL GAS%PUT(ICCL4, IMASSMIXINGRATIO, PCCL4) |
---|
486 | CALL GAS%PUT(IO3, IMASSMIXINGRATIO, PO3) |
---|
487 | CALL GAS%PUT_WELL_MIXED(IO2, IVOLUMEMIXINGRATIO, 0.20944_JPRB) |
---|
488 | |
---|
489 | ! Ensure the units of the gas mixing ratios are what is required by |
---|
490 | ! the gas absorption model |
---|
491 | CALL SET_GAS_UNITS(RAD_CONFIG, GAS) |
---|
492 | |
---|
493 | !call save_inputs('inputs_ifs.nc', rad_config, single_level, thermodynamics, & |
---|
494 | ! & gas, ylcloud, aerosol, & |
---|
495 | ! & lat=spread(0.0_jprb,1,klon), & |
---|
496 | ! & lon=spread(0.0_jprb,1,klon), & |
---|
497 | ! & iverbose=2) |
---|
498 | |
---|
499 | ! Call radiation scheme |
---|
500 | CALL RADIATION(KLON, KLEV, KIDIA, KFDIA, RAD_CONFIG,& |
---|
501 | & SINGLE_LEVEL, THERMODYNAMICS, GAS, YLCLOUD, AEROSOL, FLUX) |
---|
502 | |
---|
503 | ! Check fluxes are within physical bounds |
---|
504 | IF (YRERAD%NDUMPBADINPUTS /= 0 & |
---|
505 | & .AND. (N_BAD_FLUXES == 0 .OR. N_BAD_FLUXES < YRERAD%NDUMPBADINPUTS)) THEN |
---|
506 | IF (FLUX%OUT_OF_PHYSICAL_BOUNDS(KIDIA,KFDIA)) THEN |
---|
507 | !$OMP CRITICAL |
---|
508 | N_BAD_FLUXES = N_BAD_FLUXES+1 |
---|
509 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/bad_inputs_', & |
---|
510 | & MPL_MYRANK(), '_', N_BAD_FLUXES, '.nc' |
---|
511 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
512 | ! Implicit assumption that KFDIA==KLON |
---|
513 | CALL SAVE_INPUTS(TRIM(CL_FILE_NAME), RAD_CONFIG, SINGLE_LEVEL, & |
---|
514 | & THERMODYNAMICS, GAS, YLCLOUD, AEROSOL, & |
---|
515 | & LAT=ASIN(PGEMU)*180.0/RPI, LON=PGELAM*180.0/RPI, IVERBOSE=3) |
---|
516 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/bad_outputs_', & |
---|
517 | & MPL_MYRANK(), '_', N_BAD_FLUXES, '.nc' |
---|
518 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
519 | CALL SAVE_FLUXES(TRIM(CL_FILE_NAME), RAD_CONFIG, THERMODYNAMICS, FLUX, IVERBOSE=3) |
---|
520 | IF (YRERAD%NDUMPBADINPUTS < 0) THEN |
---|
521 | ! Abort on the first set of bad fluxes |
---|
522 | CALL ABOR1("RADIATION_SCHEME: ABORT DUE TO FLUXES OUT OF PHYSICAL BOUNDS") |
---|
523 | ENDIF |
---|
524 | !$OMP END CRITICAL |
---|
525 | ENDIF |
---|
526 | ENDIF |
---|
527 | |
---|
528 | ! For debugging, do we store a certain number of inputs and outputs |
---|
529 | ! regardless of whether bad fluxes have been detected? |
---|
530 | IF (N_OUTPUT_FLUXES < YRERAD%NDUMPINPUTS) THEN |
---|
531 | !$OMP CRITICAL |
---|
532 | N_OUTPUT_FLUXES = N_OUTPUT_FLUXES+1 |
---|
533 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/inputs_', & |
---|
534 | & MPL_MYRANK(), '_', N_OUTPUT_FLUXES, '.nc' |
---|
535 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
536 | ! Implicit assumption that KFDIA==KLON |
---|
537 | CALL SAVE_INPUTS(TRIM(CL_FILE_NAME), RAD_CONFIG, SINGLE_LEVEL, & |
---|
538 | & THERMODYNAMICS, GAS, YLCLOUD, AEROSOL, & |
---|
539 | & LAT=ASIN(PGEMU)*180.0/RPI, LON=PGELAM*180.0/RPI, IVERBOSE=3) |
---|
540 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/outputs_', & |
---|
541 | & MPL_MYRANK(), '_', N_OUTPUT_FLUXES, '.nc' |
---|
542 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
543 | CALL SAVE_FLUXES(TRIM(CL_FILE_NAME), RAD_CONFIG, THERMODYNAMICS, FLUX, IVERBOSE=3) |
---|
544 | !$OMP END CRITICAL |
---|
545 | ENDIF |
---|
546 | |
---|
547 | ! Compute required output fluxes |
---|
548 | ! First the net fluxes |
---|
549 | PFLUX_SW(KIDIA:KFDIA,:) = FLUX%SW_DN(KIDIA:KFDIA,:) - FLUX%SW_UP(KIDIA:KFDIA,:) |
---|
550 | PFLUX_LW(KIDIA:KFDIA,:) = FLUX%LW_DN(KIDIA:KFDIA,:) - FLUX%LW_UP(KIDIA:KFDIA,:) |
---|
551 | PFLUX_SW_CLEAR(KIDIA:KFDIA,:)& |
---|
552 | & = FLUX%SW_DN_CLEAR(KIDIA:KFDIA,:) - FLUX%SW_UP_CLEAR(KIDIA:KFDIA,:) |
---|
553 | PFLUX_LW_CLEAR(KIDIA:KFDIA,:)& |
---|
554 | & = FLUX%LW_DN_CLEAR(KIDIA:KFDIA,:) - FLUX%LW_UP_CLEAR(KIDIA:KFDIA,:) |
---|
555 | ! Now the surface fluxes |
---|
556 | PFLUX_SW_DN (KIDIA:KFDIA) = FLUX%SW_DN (KIDIA:KFDIA,KLEV+1) |
---|
557 | PFLUX_LW_DN (KIDIA:KFDIA) = FLUX%LW_DN (KIDIA:KFDIA,KLEV+1) |
---|
558 | PFLUX_SW_DN_CLEAR(KIDIA:KFDIA) = FLUX%SW_DN_CLEAR (KIDIA:KFDIA,KLEV+1) |
---|
559 | PFLUX_LW_DN_CLEAR(KIDIA:KFDIA) = FLUX%LW_DN_CLEAR (KIDIA:KFDIA,KLEV+1) |
---|
560 | PFLUX_DIR (KIDIA:KFDIA) = FLUX%SW_DN_DIRECT (KIDIA:KFDIA,KLEV+1) |
---|
561 | PFLUX_DIR_CLEAR (KIDIA:KFDIA) = FLUX%SW_DN_DIRECT_CLEAR(KIDIA:KFDIA,KLEV+1) |
---|
562 | PFLUX_DIR_INTO_SUN(KIDIA:KFDIA) = 0.0_JPRB |
---|
563 | WHERE (PMU0(KIDIA:KFDIA) > EPSILON(1.0_JPRB)) |
---|
564 | PFLUX_DIR_INTO_SUN(KIDIA:KFDIA) = PFLUX_DIR(KIDIA:KFDIA) / PMU0(KIDIA:KFDIA) |
---|
565 | ENDWHERE |
---|
566 | ! Top-of-atmosphere downwelling flux |
---|
567 | PFLUX_SW_DN_TOA(KIDIA:KFDIA) = FLUX%SW_DN(KIDIA:KFDIA,1) |
---|
568 | |
---|
569 | ! Compute UV fluxes as weighted sum of appropriate shortwave bands |
---|
570 | PFLUX_UV (KIDIA:KFDIA) = 0.0_JPRB |
---|
571 | DO JBAND = 1,NWEIGHT_UV |
---|
572 | !DEC$ IVDEP |
---|
573 | PFLUX_UV(KIDIA:KFDIA) = PFLUX_UV(KIDIA:KFDIA) + WEIGHT_UV(JBAND)& |
---|
574 | & * FLUX%SW_DN_SURF_BAND(IBAND_UV(JBAND),KIDIA:KFDIA) |
---|
575 | ENDDO |
---|
576 | |
---|
577 | ! Compute photosynthetically active radiation similarly |
---|
578 | PFLUX_PAR (KIDIA:KFDIA) = 0.0_JPRB |
---|
579 | PFLUX_PAR_CLEAR(KIDIA:KFDIA) = 0.0_JPRB |
---|
580 | DO JBAND = 1,NWEIGHT_PAR |
---|
581 | !DEC$ IVDEP |
---|
582 | PFLUX_PAR(KIDIA:KFDIA) = PFLUX_PAR(KIDIA:KFDIA) + WEIGHT_PAR(JBAND)& |
---|
583 | & * FLUX%SW_DN_SURF_BAND(IBAND_PAR(JBAND),KIDIA:KFDIA) |
---|
584 | !DEC$ IVDEP |
---|
585 | PFLUX_PAR_CLEAR(KIDIA:KFDIA) = PFLUX_PAR_CLEAR(KIDIA:KFDIA)& |
---|
586 | & + WEIGHT_PAR(JBAND)& |
---|
587 | & * FLUX%SW_DN_SURF_CLEAR_BAND(IBAND_PAR(JBAND),KIDIA:KFDIA) |
---|
588 | ENDDO |
---|
589 | |
---|
590 | ! Compute effective broadband emissivity. This is only approximate - |
---|
591 | ! due to spectral variations in emissivity, it is not in general |
---|
592 | ! possible to provide a broadband emissivity that can reproduce the |
---|
593 | ! upwelling surface flux given the downwelling flux and the skin |
---|
594 | ! temperature. |
---|
595 | ZBLACK_BODY_NET_LW = PFLUX_LW_DN(KIDIA:KFDIA) & |
---|
596 | & - RSIGMA*PTEMPERATURE_SKIN(KIDIA:KFDIA)**4 |
---|
597 | PEMIS_OUT(KIDIA:KFDIA) = PSPECTRALEMISS(KIDIA:KFDIA,1) ! Default value |
---|
598 | WHERE (ABS(ZBLACK_BODY_NET_LW) > 1.0E-5) |
---|
599 | ! This calculation can go outside the range of any individual |
---|
600 | ! spectral emissivity value, so needs to be capped |
---|
601 | PEMIS_OUT(KIDIA:KFDIA) = MAX(0.8_JPRB, MIN(0.99_JPRB, PFLUX_LW(KIDIA:KFDIA,KLEV+1) / ZBLACK_BODY_NET_LW)) |
---|
602 | ENDWHERE |
---|
603 | |
---|
604 | ! Copy longwave derivatives |
---|
605 | IF (YRERAD%LAPPROXLWUPDATE) THEN |
---|
606 | PLWDERIVATIVE(KIDIA:KFDIA,:) = FLUX%LW_DERIVATIVES(KIDIA:KFDIA,:) |
---|
607 | ENDIF |
---|
608 | |
---|
609 | ! Store the shortwave downwelling fluxes in each albedo band |
---|
610 | IF (YRERAD%LAPPROXSWUPDATE) THEN |
---|
611 | PSWDIFFUSEBAND(KIDIA:KFDIA,:) = TRANSPOSE(FLUX%SW_DN_DIFFUSE_SURF_CANOPY(:,KIDIA:KFDIA)) |
---|
612 | PSWDIRECTBAND (KIDIA:KFDIA,:) = TRANSPOSE(FLUX%SW_DN_DIRECT_SURF_CANOPY (:,KIDIA:KFDIA)) |
---|
613 | ENDIF |
---|
614 | |
---|
615 | CALL SINGLE_LEVEL%DEALLOCATE |
---|
616 | CALL THERMODYNAMICS%DEALLOCATE |
---|
617 | CALL GAS%DEALLOCATE |
---|
618 | CALL YLCLOUD%DEALLOCATE |
---|
619 | CALL AEROSOL%DEALLOCATE |
---|
620 | CALL FLUX%DEALLOCATE |
---|
621 | |
---|
622 | END ASSOCIATE |
---|
623 | |
---|
624 | IF (LHOOK) CALL DR_HOOK('RADIATION_SCHEME',1,ZHOOK_HANDLE) |
---|
625 | |
---|
626 | END SUBROUTINE RADIATION_SCHEME |
---|