[3908] | 1 | ! radiation_tripleclouds_lw.F90 - Longwave "Tripleclouds" solver |
---|
[5159] | 2 | |
---|
[3908] | 3 | ! (C) Copyright 2016- ECMWF. |
---|
[5159] | 4 | |
---|
[3908] | 5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
| 6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
[5159] | 7 | |
---|
[3908] | 8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
| 9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
| 10 | ! nor does it submit to any jurisdiction. |
---|
[5159] | 11 | |
---|
[3908] | 12 | ! Author: Robin Hogan |
---|
| 13 | ! Email: r.j.hogan@ecmwf.int |
---|
[5159] | 14 | |
---|
[3908] | 15 | ! Modifications |
---|
| 16 | ! 2017-04-28 R. Hogan Receive emission/albedo rather than planck/emissivity |
---|
| 17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
---|
| 18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
| 19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
---|
[4489] | 20 | ! 2020-09-18 R. Hogan Replaced some array expressions with loops |
---|
| 21 | ! 2020-09-19 R. Hogan Implement the cloud-only-scattering optimization |
---|
[3908] | 22 | |
---|
| 23 | module radiation_tripleclouds_lw |
---|
| 24 | |
---|
| 25 | public |
---|
| 26 | |
---|
| 27 | contains |
---|
| 28 | ! Small routine for scaling cloud optical depth in the cloudy |
---|
| 29 | ! regions |
---|
| 30 | #include "radiation_optical_depth_scaling.h" |
---|
| 31 | |
---|
[4489] | 32 | !--------------------------------------------------------------------- |
---|
[3908] | 33 | ! This module contains just one subroutine, the longwave |
---|
| 34 | ! "Tripleclouds" solver in which cloud inhomogeneity is treated by |
---|
| 35 | ! dividing each model level into three regions, one clear and two |
---|
| 36 | ! cloudy (with differing optical depth). This approach was described |
---|
| 37 | ! by Shonk and Hogan (2008). |
---|
| 38 | subroutine solver_tripleclouds_lw(nlev,istartcol,iendcol, & |
---|
| 39 | & config, cloud, & |
---|
| 40 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, planck_hl, & |
---|
| 41 | & emission, albedo, & |
---|
| 42 | & flux) |
---|
| 43 | |
---|
| 44 | use parkind1, only : jprb |
---|
| 45 | use yomhook, only : lhook, dr_hook |
---|
| 46 | |
---|
| 47 | ! use radiation_io, only : nulout |
---|
| 48 | use radiation_config, only : config_type, IPdfShapeGamma |
---|
| 49 | use radiation_cloud, only : cloud_type |
---|
| 50 | use radiation_regions, only : calc_region_properties |
---|
| 51 | use radiation_overlap, only : calc_overlap_matrices |
---|
[4489] | 52 | use radiation_flux, only : flux_type, indexed_sum |
---|
[3908] | 53 | use radiation_matrix, only : singlemat_x_vec |
---|
| 54 | use radiation_two_stream, only : calc_two_stream_gammas_lw, & |
---|
| 55 | & calc_reflectance_transmittance_lw, & |
---|
| 56 | & calc_no_scattering_transmittance_lw |
---|
[4489] | 57 | use radiation_adding_ica_lw, only : adding_ica_lw, calc_fluxes_no_scattering_lw |
---|
[3908] | 58 | use radiation_lw_derivatives, only : calc_lw_derivatives_region |
---|
| 59 | |
---|
| 60 | implicit none |
---|
| 61 | |
---|
| 62 | ! Inputs |
---|
| 63 | integer, intent(in) :: nlev ! number of model levels |
---|
| 64 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
| 65 | type(config_type), intent(in) :: config |
---|
| 66 | type(cloud_type), intent(in) :: cloud |
---|
| 67 | |
---|
| 68 | ! Gas and aerosol optical depth of each layer at each longwave |
---|
| 69 | ! g-point |
---|
| 70 | real(jprb), intent(in), dimension(config%n_g_lw,nlev,istartcol:iendcol) :: od |
---|
| 71 | |
---|
| 72 | ! Gas and aerosol single-scattering albedo and asymmetry factor, |
---|
| 73 | ! only if longwave scattering by aerosols is to be represented |
---|
| 74 | real(jprb), intent(in), & |
---|
| 75 | & dimension(config%n_g_lw_if_scattering,nlev,istartcol:iendcol) :: ssa, g |
---|
| 76 | |
---|
| 77 | ! Cloud and precipitation optical depth of each layer in each |
---|
| 78 | ! longwave band |
---|
| 79 | real(jprb), intent(in) :: od_cloud(config%n_bands_lw,nlev,istartcol:iendcol) |
---|
| 80 | |
---|
| 81 | ! Cloud and precipitation single-scattering albedo and asymmetry |
---|
| 82 | ! factor, only if longwave scattering by clouds is to be |
---|
| 83 | ! represented |
---|
| 84 | real(jprb), intent(in), dimension(config%n_bands_lw_if_scattering, & |
---|
| 85 | & nlev,istartcol:iendcol) :: ssa_cloud, g_cloud |
---|
| 86 | |
---|
| 87 | ! Planck function (emitted flux from a black body) at half levels |
---|
| 88 | ! and at the surface at each longwave g-point |
---|
| 89 | real(jprb), intent(in), dimension(config%n_g_lw,nlev+1,istartcol:iendcol) :: planck_hl |
---|
| 90 | |
---|
| 91 | ! Emission (Planck*emissivity) and albedo (1-emissivity) at the |
---|
| 92 | ! surface at each longwave g-point |
---|
| 93 | real(jprb), intent(in), dimension(config%n_g_lw, istartcol:iendcol) :: emission, albedo |
---|
| 94 | |
---|
| 95 | ! Optical depth, single scattering albedo and asymmetry factor in |
---|
| 96 | ! each g-point including gas, aerosol and clouds |
---|
| 97 | real(jprb), dimension(config%n_g_lw) :: od_total, ssa_total, g_total |
---|
| 98 | |
---|
| 99 | ! Modified optical depth after Tripleclouds scaling to represent |
---|
| 100 | ! cloud inhomogeneity |
---|
| 101 | real(jprb), dimension(config%n_g_lw) :: od_cloud_new |
---|
| 102 | |
---|
| 103 | ! Output |
---|
| 104 | type(flux_type), intent(inout):: flux |
---|
| 105 | |
---|
| 106 | ! Local constants |
---|
| 107 | integer, parameter :: nregions = 3 |
---|
| 108 | |
---|
| 109 | ! In a clear-sky layer this will be 1, otherwise equal to nregions |
---|
| 110 | integer :: nreg |
---|
| 111 | |
---|
| 112 | ! Local variables |
---|
| 113 | |
---|
| 114 | ! The area fractions of each region |
---|
| 115 | real(jprb) :: region_fracs(1:nregions,nlev,istartcol:iendcol) |
---|
| 116 | |
---|
| 117 | ! The scaling used for the optical depth in the cloudy regions |
---|
| 118 | real(jprb) :: od_scaling(2:nregions,nlev,istartcol:iendcol) |
---|
| 119 | |
---|
| 120 | ! Directional overlap matrices defined at all layer interfaces |
---|
| 121 | ! including top-of-atmosphere and the surface |
---|
| 122 | real(jprb), dimension(nregions,nregions,nlev+1, & |
---|
| 123 | & istartcol:iendcol) :: u_matrix, v_matrix |
---|
| 124 | |
---|
| 125 | ! Two-stream variables |
---|
| 126 | real(jprb), dimension(config%n_g_lw) :: gamma1, gamma2 |
---|
| 127 | |
---|
| 128 | ! Diffuse reflection and transmission matrices of each layer |
---|
| 129 | real(jprb), dimension(config%n_g_lw, nregions, nlev) :: reflectance, transmittance |
---|
| 130 | |
---|
| 131 | ! Emission by a layer into the upwelling or downwelling diffuse |
---|
| 132 | ! streams |
---|
| 133 | real(jprb), dimension(config%n_g_lw, nregions, nlev) & |
---|
[4489] | 134 | & :: source_up, source_dn |
---|
[3908] | 135 | |
---|
[4489] | 136 | ! Clear-sky reflectance and transmittance |
---|
| 137 | real(jprb), dimension(config%n_g_lw, nlev) & |
---|
| 138 | & :: ref_clear, trans_clear |
---|
| 139 | |
---|
[3908] | 140 | ! ...clear-sky equivalent |
---|
| 141 | real(jprb), dimension(config%n_g_lw, nlev) & |
---|
[4489] | 142 | & :: source_up_clear, source_dn_clear |
---|
[3908] | 143 | |
---|
| 144 | ! Total albedo of the atmosphere/surface just above a layer |
---|
| 145 | ! interface with respect to downwelling diffuse radiation at that |
---|
| 146 | ! interface, where level index = 1 corresponds to the |
---|
| 147 | ! top-of-atmosphere |
---|
| 148 | real(jprb), dimension(config%n_g_lw, nregions, nlev+1) :: total_albedo |
---|
| 149 | |
---|
| 150 | ! Upwelling radiation just above a layer interface due to emission |
---|
| 151 | ! below that interface, where level index = 1 corresponds to the |
---|
| 152 | ! top-of-atmosphere |
---|
| 153 | real(jprb), dimension(config%n_g_lw, nregions, nlev+1) :: total_source |
---|
| 154 | |
---|
| 155 | ! Total albedo and source of the atmosphere just below a layer interface |
---|
| 156 | real(jprb), dimension(config%n_g_lw, nregions) & |
---|
| 157 | & :: total_albedo_below, total_source_below |
---|
| 158 | |
---|
| 159 | ! Downwelling flux below and above an interface between |
---|
| 160 | ! layers into a plane perpendicular to the direction of the sun |
---|
| 161 | real(jprb), dimension(config%n_g_lw, nregions) & |
---|
| 162 | & :: flux_dn, flux_dn_below, flux_up |
---|
| 163 | |
---|
| 164 | ! ...clear-sky equivalent (no distinction between "above/below") |
---|
[4489] | 165 | real(jprb), dimension(config%n_g_lw, nlev+1) & |
---|
[3908] | 166 | & :: flux_dn_clear, flux_up_clear |
---|
| 167 | |
---|
| 168 | ! Clear-sky equivalent, but actually its reciprocal to replace |
---|
| 169 | ! some divisions by multiplications |
---|
| 170 | real(jprb), dimension(config%n_g_lw, nregions) :: inv_denom |
---|
| 171 | |
---|
| 172 | ! Identify clear-sky layers, with pseudo layers for outer space |
---|
| 173 | ! and below the ground, both treated as single-region clear skies |
---|
| 174 | logical :: is_clear_sky_layer(0:nlev+1) |
---|
| 175 | |
---|
[4489] | 176 | ! Index of the highest cloudy layer |
---|
| 177 | integer :: i_cloud_top |
---|
| 178 | |
---|
[3908] | 179 | integer :: jcol, jlev, jg, jreg, jreg2, ng |
---|
| 180 | |
---|
| 181 | real(jprb) :: hook_handle |
---|
| 182 | |
---|
| 183 | if (lhook) call dr_hook('radiation_tripleclouds_lw:solver_tripleclouds_lw',0,hook_handle) |
---|
| 184 | |
---|
| 185 | ! -------------------------------------------------------- |
---|
| 186 | ! Section 1: Prepare general variables and arrays |
---|
| 187 | ! -------------------------------------------------------- |
---|
| 188 | ! Copy array dimensions to local variables for convenience |
---|
| 189 | ng = config%n_g_lw |
---|
| 190 | |
---|
| 191 | ! Compute the wavelength-independent region fractions and |
---|
| 192 | ! optical-depth scalings |
---|
| 193 | call calc_region_properties(nlev,nregions,istartcol,iendcol, & |
---|
| 194 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
---|
| 195 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
---|
| 196 | & od_scaling, config%cloud_fraction_threshold) |
---|
| 197 | |
---|
| 198 | ! Compute wavelength-independent overlap matrices u_matrix and v_matrix |
---|
| 199 | call calc_overlap_matrices(nlev,nregions,istartcol,iendcol, & |
---|
| 200 | & region_fracs, cloud%overlap_param, & |
---|
| 201 | & u_matrix, v_matrix, & |
---|
| 202 | & decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
---|
| 203 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
---|
| 204 | & use_beta_overlap=config%use_beta_overlap, & |
---|
| 205 | & cloud_cover=flux%cloud_cover_lw) |
---|
| 206 | |
---|
| 207 | ! Main loop over columns |
---|
[5158] | 208 | DO jcol = istartcol, iendcol |
---|
[3908] | 209 | ! -------------------------------------------------------- |
---|
| 210 | ! Section 2: Prepare column-specific variables and arrays |
---|
| 211 | ! -------------------------------------------------------- |
---|
| 212 | |
---|
| 213 | ! Define which layers contain cloud; assume that |
---|
| 214 | ! cloud%crop_cloud_fraction has already been called |
---|
| 215 | is_clear_sky_layer = .true. |
---|
[4489] | 216 | i_cloud_top = nlev+1 |
---|
[5158] | 217 | DO jlev = 1,nlev |
---|
[3908] | 218 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
---|
| 219 | is_clear_sky_layer(jlev) = .false. |
---|
[4489] | 220 | ! Get index to the first cloudy layer from the top |
---|
| 221 | if (i_cloud_top > jlev) then |
---|
| 222 | i_cloud_top = jlev |
---|
| 223 | end if |
---|
[3908] | 224 | end if |
---|
| 225 | end do |
---|
[4489] | 226 | if (config%do_lw_aerosol_scattering) then |
---|
| 227 | ! This is actually the first layer in which we need to |
---|
| 228 | ! consider scattering |
---|
| 229 | i_cloud_top = 1 |
---|
| 230 | end if |
---|
[3908] | 231 | |
---|
| 232 | ! -------------------------------------------------------- |
---|
[4489] | 233 | ! Section 3: Clear-sky calculation |
---|
[3908] | 234 | ! -------------------------------------------------------- |
---|
[4489] | 235 | |
---|
| 236 | if (.not. config%do_lw_aerosol_scattering) then |
---|
| 237 | ! No scattering in clear-sky flux calculation |
---|
[5158] | 238 | DO jlev = 1,nlev |
---|
[4489] | 239 | ! Array-wise assignments |
---|
| 240 | gamma1 = 0.0_jprb |
---|
| 241 | gamma2 = 0.0_jprb |
---|
| 242 | call calc_no_scattering_transmittance_lw(ng, od(:,jlev,jcol), & |
---|
| 243 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1, jcol), & |
---|
| 244 | & trans_clear(:,jlev), source_up_clear(:,jlev), source_dn_clear(:,jlev)) |
---|
| 245 | ref_clear(:,jlev) = 0.0_jprb |
---|
| 246 | end do |
---|
| 247 | ! Simple down-then-up method to compute fluxes |
---|
| 248 | call calc_fluxes_no_scattering_lw(ng, nlev, & |
---|
| 249 | & trans_clear, source_up_clear, source_dn_clear, & |
---|
| 250 | & emission(:,jcol), albedo(:,jcol), & |
---|
| 251 | & flux_up_clear, flux_dn_clear) |
---|
| 252 | else |
---|
| 253 | ! Scattering in clear-sky flux calculation |
---|
[5158] | 254 | DO jlev = 1,nlev |
---|
[4489] | 255 | ! Array-wise assignments |
---|
| 256 | gamma1 = 0.0_jprb |
---|
| 257 | gamma2 = 0.0_jprb |
---|
| 258 | call calc_two_stream_gammas_lw(ng, & |
---|
| 259 | & ssa(:,jlev,jcol), g(:,jlev,jcol), gamma1, gamma2) |
---|
| 260 | call calc_reflectance_transmittance_lw(ng, & |
---|
| 261 | & od(:,jlev,jcol), gamma1, gamma2, & |
---|
| 262 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1,jcol), & |
---|
| 263 | & ref_clear(:,jlev), trans_clear(:,jlev), & |
---|
| 264 | & source_up_clear(:,jlev), source_dn_clear(:,jlev)) |
---|
| 265 | end do |
---|
| 266 | ! Use adding method to compute fluxes |
---|
| 267 | call adding_ica_lw(ng, nlev, & |
---|
| 268 | & ref_clear, trans_clear, source_up_clear, source_dn_clear, & |
---|
| 269 | & emission(:,jcol), albedo(:,jcol), & |
---|
| 270 | & flux_up_clear, flux_dn_clear) |
---|
| 271 | end if |
---|
| 272 | |
---|
| 273 | if (config%do_clear) then |
---|
| 274 | ! Sum over g-points to compute broadband fluxes |
---|
| 275 | flux%lw_up_clear(jcol,:) = sum(flux_up_clear,1) |
---|
| 276 | flux%lw_dn_clear(jcol,:) = sum(flux_dn_clear,1) |
---|
| 277 | ! Store surface spectral downwelling fluxes |
---|
| 278 | flux%lw_dn_surf_clear_g(:,jcol) = flux_dn_clear(:,nlev+1) |
---|
| 279 | ! Save the spectral fluxes if required |
---|
| 280 | if (config%do_save_spectral_flux) then |
---|
[5158] | 281 | DO jlev = 1,nlev+1 |
---|
[4489] | 282 | call indexed_sum(flux_up_clear(:,jlev), & |
---|
| 283 | & config%i_spec_from_reordered_g_lw, & |
---|
| 284 | & flux%lw_up_clear_band(:,jcol,jlev)) |
---|
| 285 | call indexed_sum(flux_dn_clear(:,jlev), & |
---|
| 286 | & config%i_spec_from_reordered_g_lw, & |
---|
| 287 | & flux%lw_dn_clear_band(:,jcol,jlev)) |
---|
| 288 | end do |
---|
| 289 | end if |
---|
| 290 | end if |
---|
| 291 | |
---|
| 292 | ! -------------------------------------------------------- |
---|
| 293 | ! Section 4: Loop over cloudy layers to compute reflectance and transmittance |
---|
| 294 | ! -------------------------------------------------------- |
---|
[3908] | 295 | ! In this section the reflectance, transmittance and sources |
---|
| 296 | ! are computed for each layer |
---|
[4489] | 297 | |
---|
| 298 | ! Firstly, ensure clear-sky transmittance is valid for whole |
---|
| 299 | ! depth of the atmosphere, because even above cloud it is used |
---|
| 300 | ! by the LW derivatives |
---|
| 301 | transmittance(:,1,:) = trans_clear(:,:) |
---|
| 302 | ! Dummy values in cloudy regions above cloud top |
---|
| 303 | if (i_cloud_top > 0) then |
---|
| 304 | transmittance(:,2:,1:min(i_cloud_top,nlev)) = 1.0_jprb |
---|
| 305 | end if |
---|
[3908] | 306 | |
---|
[5158] | 307 | DO jlev = i_cloud_top,nlev ! Start at cloud top and work down |
---|
[4489] | 308 | |
---|
[3908] | 309 | ! Array-wise assignments |
---|
| 310 | gamma1 = 0.0_jprb |
---|
| 311 | gamma2 = 0.0_jprb |
---|
| 312 | |
---|
[4489] | 313 | ! Copy over clear-sky properties |
---|
| 314 | reflectance(:,1,jlev) = ref_clear(:,jlev) |
---|
| 315 | source_up(:,1,jlev) = source_up_clear(:,jlev) ! Scaled later by region size |
---|
| 316 | source_dn(:,1,jlev) = source_dn_clear(:,jlev) ! Scaled later by region size |
---|
[3908] | 317 | nreg = nregions |
---|
| 318 | if (is_clear_sky_layer(jlev)) then |
---|
| 319 | nreg = 1 |
---|
| 320 | reflectance(:,2:,jlev) = 0.0_jprb |
---|
[4489] | 321 | transmittance(:,2:,jlev) = 1.0_jprb |
---|
| 322 | source_up(:,2:,jlev) = 0.0_jprb |
---|
| 323 | source_dn(:,2:,jlev) = 0.0_jprb |
---|
| 324 | else |
---|
[5158] | 325 | DO jreg = 2,nreg |
---|
[3908] | 326 | ! Cloudy sky |
---|
| 327 | ! Add scaled cloud optical depth to clear-sky value |
---|
| 328 | od_cloud_new = od_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 329 | & * od_scaling(jreg,jlev,jcol) |
---|
| 330 | od_total = od(:,jlev,jcol) + od_cloud_new |
---|
| 331 | |
---|
| 332 | if (config%do_lw_cloud_scattering) then |
---|
| 333 | ssa_total = 0.0_jprb |
---|
| 334 | g_total = 0.0_jprb |
---|
| 335 | if (config%do_lw_aerosol_scattering) then |
---|
| 336 | where (od_total > 0.0_jprb) |
---|
| 337 | ssa_total = (ssa(:,jlev,jcol)*od(:,jlev,jcol) & |
---|
| 338 | & + ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 339 | & * od_cloud_new) & |
---|
| 340 | & / od_total |
---|
| 341 | end where |
---|
[5185] | 342 | where (ssa_total > 0.0_jprb .AND. od_total > 0.0_jprb) |
---|
[3908] | 343 | g_total = (g(:,jlev,jcol)*ssa(:,jlev,jcol)*od(:,jlev,jcol) & |
---|
| 344 | & + g_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 345 | & * ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 346 | & * od_cloud_new) & |
---|
| 347 | & / (ssa_total*od_total) |
---|
| 348 | end where |
---|
| 349 | else |
---|
| 350 | where (od_total > 0.0_jprb) |
---|
| 351 | ssa_total = ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 352 | & * od_cloud_new / od_total |
---|
| 353 | end where |
---|
[5185] | 354 | where (ssa_total > 0.0_jprb .AND. od_total > 0.0_jprb) |
---|
[3908] | 355 | g_total = g_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 356 | & * ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
| 357 | & * od_cloud_new / (ssa_total*od_total) |
---|
| 358 | end where |
---|
| 359 | end if |
---|
| 360 | call calc_two_stream_gammas_lw(ng, & |
---|
| 361 | & ssa_total, g_total, gamma1, gamma2) |
---|
| 362 | call calc_reflectance_transmittance_lw(ng, & |
---|
| 363 | & od_total, gamma1, gamma2, & |
---|
| 364 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1,jcol), & |
---|
| 365 | & reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & |
---|
[4489] | 366 | & source_up(:,jreg,jlev), source_dn(:,jreg,jlev)) |
---|
[3908] | 367 | else |
---|
| 368 | ! No-scattering case: use simpler functions for |
---|
| 369 | ! transmission and emission |
---|
| 370 | call calc_no_scattering_transmittance_lw(ng, od_total, & |
---|
| 371 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1, jcol), & |
---|
[4489] | 372 | & transmittance(:,jreg,jlev), source_up(:,jreg,jlev), source_dn(:,jreg,jlev)) |
---|
[3908] | 373 | reflectance(:,jreg,jlev) = 0.0_jprb |
---|
| 374 | end if |
---|
[4489] | 375 | end do |
---|
[3908] | 376 | ! Emission is scaled by the size of each region |
---|
[5158] | 377 | DO jreg = 1,nregions |
---|
[4489] | 378 | source_up(:,jreg,jlev) = region_fracs(jreg,jlev,jcol) * source_up(:,jreg,jlev) |
---|
| 379 | source_dn(:,jreg,jlev) = region_fracs(jreg,jlev,jcol) * source_dn(:,jreg,jlev) |
---|
[3908] | 380 | end do |
---|
| 381 | end if |
---|
| 382 | |
---|
| 383 | end do ! Loop over levels |
---|
| 384 | |
---|
| 385 | ! -------------------------------------------------------- |
---|
[4489] | 386 | ! Section 5: Compute total sources and albedos at each half level |
---|
[3908] | 387 | ! -------------------------------------------------------- |
---|
| 388 | |
---|
| 389 | total_albedo(:,:,:) = 0.0_jprb |
---|
| 390 | total_source(:,:,:) = 0.0_jprb |
---|
| 391 | |
---|
| 392 | ! Calculate the upwelling radiation emitted by the surface, and |
---|
| 393 | ! copy the surface albedo into total_albedo |
---|
[5158] | 394 | DO jreg = 1,nregions |
---|
| 395 | DO jg = 1,ng |
---|
[3908] | 396 | ! region_fracs(jreg,nlev,jcol) is the fraction of each region in the |
---|
| 397 | ! lowest model level |
---|
| 398 | total_source(jg,jreg,nlev+1) = region_fracs(jreg,nlev,jcol)*emission(jg,jcol) |
---|
| 399 | total_albedo(jg,jreg,nlev+1) = albedo(jg,jcol) |
---|
| 400 | end do |
---|
| 401 | end do |
---|
| 402 | |
---|
| 403 | ! Work up from the surface computing the total albedo of the |
---|
| 404 | ! atmosphere and the total upwelling due to emission below each |
---|
| 405 | ! level below using the adding method |
---|
[5158] | 406 | DO jlev = nlev,i_cloud_top,-1 |
---|
[3908] | 407 | |
---|
| 408 | total_albedo_below = 0.0_jprb |
---|
| 409 | |
---|
| 410 | if (is_clear_sky_layer(jlev)) then |
---|
| 411 | total_albedo_below = 0.0_jprb |
---|
| 412 | total_source_below = 0.0_jprb |
---|
[5158] | 413 | DO jg = 1,ng |
---|
[4489] | 414 | inv_denom(jg,1) = 1.0_jprb & |
---|
| 415 | & / (1.0_jprb - total_albedo(jg,1,jlev+1)*reflectance(jg,1,jlev)) |
---|
| 416 | total_albedo_below(jg,1) = reflectance(jg,1,jlev) & |
---|
| 417 | & + transmittance(jg,1,jlev)*transmittance(jg,1,jlev)*total_albedo(jg,1,jlev+1) & |
---|
| 418 | & * inv_denom(jg,1) |
---|
| 419 | total_source_below(jg,1) = source_up(jg,1,jlev) & |
---|
| 420 | & + transmittance(jg,1,jlev)*(total_source(jg,1,jlev+1) & |
---|
| 421 | & + total_albedo(jg,1,jlev+1)*source_dn(jg,1,jlev)) & |
---|
| 422 | & * inv_denom(jg,1) |
---|
| 423 | end do |
---|
[3908] | 424 | else |
---|
| 425 | inv_denom = 1.0_jprb / (1.0_jprb - total_albedo(:,:,jlev+1)*reflectance(:,:,jlev)) |
---|
| 426 | total_albedo_below = reflectance(:,:,jlev) & |
---|
| 427 | & + transmittance(:,:,jlev)*transmittance(:,:,jlev)*total_albedo(:,:,jlev+1) & |
---|
| 428 | & * inv_denom |
---|
[4489] | 429 | total_source_below = source_up(:,:,jlev) & |
---|
[3908] | 430 | & + transmittance(:,:,jlev)*(total_source(:,:,jlev+1) & |
---|
[4489] | 431 | & + total_albedo(:,:,jlev+1)*source_dn(:,:,jlev)) & |
---|
[3908] | 432 | & * inv_denom |
---|
| 433 | end if |
---|
| 434 | |
---|
| 435 | ! Account for cloud overlap when converting albedo below a |
---|
| 436 | ! layer interface to the equivalent values just above |
---|
[5185] | 437 | if (is_clear_sky_layer(jlev) .AND. is_clear_sky_layer(jlev-1)) then |
---|
[3908] | 438 | total_albedo(:,:,jlev) = total_albedo_below(:,:) |
---|
| 439 | total_source(:,:,jlev) = total_source_below(:,:) |
---|
| 440 | else |
---|
| 441 | total_source(:,:,jlev) = singlemat_x_vec(ng,ng,nregions,& |
---|
| 442 | & u_matrix(:,:,jlev,jcol), total_source_below) |
---|
| 443 | ! Use overlap matrix and exclude "anomalous" horizontal |
---|
| 444 | ! transport described by Shonk & Hogan (2008). Therefore, |
---|
| 445 | ! the operation we perform is essentially diag(total_albedo) |
---|
| 446 | ! = matmul(transpose(v_matrix), diag(total_albedo_below)). |
---|
[5158] | 447 | DO jreg = 1,nregions |
---|
| 448 | DO jreg2 = 1,nregions |
---|
[3908] | 449 | total_albedo(:,jreg,jlev) & |
---|
| 450 | & = total_albedo(:,jreg,jlev) & |
---|
| 451 | & + total_albedo_below(:,jreg2) & |
---|
| 452 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
| 453 | |
---|
| 454 | end do |
---|
| 455 | end do |
---|
| 456 | |
---|
| 457 | end if |
---|
| 458 | |
---|
| 459 | end do ! Reverse loop over levels |
---|
| 460 | |
---|
| 461 | ! -------------------------------------------------------- |
---|
[4489] | 462 | ! Section 6: Copy over downwelling fluxes above cloud top |
---|
[3908] | 463 | ! -------------------------------------------------------- |
---|
[5158] | 464 | DO jlev = 1,i_cloud_top |
---|
[4489] | 465 | if (config%do_clear) then |
---|
| 466 | ! Clear-sky fluxes have already been averaged: use these |
---|
| 467 | flux%lw_dn(jcol,jlev) = flux%lw_dn_clear(jcol,jlev) |
---|
| 468 | if (config%do_save_spectral_flux) then |
---|
| 469 | flux%lw_dn_band(:,jcol,jlev) = flux%lw_dn_clear_band(:,jcol,jlev) |
---|
| 470 | end if |
---|
| 471 | else |
---|
| 472 | flux%lw_dn(jcol,:) = sum(flux_dn_clear(:,jlev)) |
---|
| 473 | if (config%do_save_spectral_flux) then |
---|
| 474 | call indexed_sum(flux_dn_clear(:,jlev), & |
---|
| 475 | & config%i_spec_from_reordered_g_lw, & |
---|
| 476 | & flux%lw_dn_band(:,jcol,jlev)) |
---|
| 477 | end if |
---|
| 478 | end if |
---|
| 479 | end do |
---|
[3908] | 480 | |
---|
[4489] | 481 | ! -------------------------------------------------------- |
---|
| 482 | ! Section 7: Compute fluxes up to top-of-atmosphere |
---|
| 483 | ! -------------------------------------------------------- |
---|
[3908] | 484 | |
---|
[4489] | 485 | ! Compute the fluxes just above the highest cloud |
---|
| 486 | flux_up(:,1) = total_source(:,1,i_cloud_top) & |
---|
| 487 | & + total_albedo(:,1,i_cloud_top)*flux_dn_clear(:,i_cloud_top) |
---|
| 488 | flux_up(:,2:) = 0.0_jprb |
---|
| 489 | flux%lw_up(jcol,i_cloud_top) = sum(flux_up(:,1)) |
---|
[3908] | 490 | if (config%do_save_spectral_flux) then |
---|
[4489] | 491 | call indexed_sum(flux_up(:,1), & |
---|
[3908] | 492 | & config%i_spec_from_reordered_g_lw, & |
---|
[4489] | 493 | & flux%lw_up_band(:,jcol,i_cloud_top)) |
---|
| 494 | end if |
---|
[5158] | 495 | DO jlev = i_cloud_top-1,1,-1 |
---|
[4489] | 496 | flux_up(:,1) = trans_clear(:,jlev)*flux_up(:,1) + source_up_clear(:,jlev) |
---|
| 497 | flux%lw_up(jcol,jlev) = sum(flux_up(:,1)) |
---|
| 498 | if (config%do_save_spectral_flux) then |
---|
| 499 | call indexed_sum(flux_up(:,1), & |
---|
[3908] | 500 | & config%i_spec_from_reordered_g_lw, & |
---|
[4489] | 501 | & flux%lw_up_band(:,jcol,jlev)) |
---|
[3908] | 502 | end if |
---|
[4489] | 503 | end do |
---|
[3908] | 504 | |
---|
[4489] | 505 | ! -------------------------------------------------------- |
---|
| 506 | ! Section 8: Compute fluxes down to surface |
---|
| 507 | ! -------------------------------------------------------- |
---|
| 508 | |
---|
| 509 | ! Copy over downwelling spectral fluxes at top of first |
---|
| 510 | ! scattering layer, using overlap matrix to translate to the |
---|
| 511 | ! regions of the first layer of cloud |
---|
[5158] | 512 | DO jreg = 1,nregions |
---|
[4489] | 513 | flux_dn(:,jreg) = v_matrix(jreg,1,i_cloud_top,jcol)*flux_dn_clear(:,i_cloud_top) |
---|
| 514 | end do |
---|
| 515 | |
---|
[3908] | 516 | ! Final loop back down through the atmosphere to compute fluxes |
---|
[5158] | 517 | DO jlev = i_cloud_top,nlev |
---|
[3908] | 518 | |
---|
| 519 | if (is_clear_sky_layer(jlev)) then |
---|
[5158] | 520 | DO jg = 1,ng |
---|
[4489] | 521 | flux_dn(jg,1) = (transmittance(jg,1,jlev)*flux_dn(jg,1) & |
---|
| 522 | & + reflectance(jg,1,jlev)*total_source(jg,1,jlev+1) + source_dn(jg,1,jlev) ) & |
---|
| 523 | & / (1.0_jprb - reflectance(jg,1,jlev)*total_albedo(jg,1,jlev+1)) |
---|
| 524 | flux_up(jg,1) = total_source(jg,1,jlev+1) + flux_dn(jg,1)*total_albedo(jg,1,jlev+1) |
---|
| 525 | end do |
---|
[3908] | 526 | flux_dn(:,2:) = 0.0_jprb |
---|
| 527 | flux_up(:,2:) = 0.0_jprb |
---|
| 528 | else |
---|
| 529 | flux_dn = (transmittance(:,:,jlev)*flux_dn & |
---|
[4489] | 530 | & + reflectance(:,:,jlev)*total_source(:,:,jlev+1) + source_dn(:,:,jlev) ) & |
---|
[3908] | 531 | & / (1.0_jprb - reflectance(:,:,jlev)*total_albedo(:,:,jlev+1)) |
---|
| 532 | flux_up = total_source(:,:,jlev+1) + flux_dn*total_albedo(:,:,jlev+1) |
---|
| 533 | end if |
---|
| 534 | |
---|
| 535 | if (.not. (is_clear_sky_layer(jlev) & |
---|
[5185] | 536 | & .AND. is_clear_sky_layer(jlev+1))) then |
---|
[3908] | 537 | ! Account for overlap rules in translating fluxes just above |
---|
| 538 | ! a layer interface to the values just below |
---|
| 539 | flux_dn_below = singlemat_x_vec(ng,ng,nregions, & |
---|
| 540 | & v_matrix(:,:,jlev+1,jcol), flux_dn) |
---|
| 541 | flux_dn = flux_dn_below |
---|
| 542 | end if ! Otherwise the fluxes in each region are the same so |
---|
| 543 | ! nothing to do |
---|
| 544 | |
---|
| 545 | ! Store the broadband fluxes |
---|
| 546 | flux%lw_up(jcol,jlev+1) = sum(sum(flux_up,1)) |
---|
| 547 | flux%lw_dn(jcol,jlev+1) = sum(sum(flux_dn,1)) |
---|
| 548 | |
---|
| 549 | ! Save the spectral fluxes if required |
---|
| 550 | if (config%do_save_spectral_flux) then |
---|
| 551 | call indexed_sum(sum(flux_up,2), & |
---|
| 552 | & config%i_spec_from_reordered_g_lw, & |
---|
| 553 | & flux%lw_up_band(:,jcol,jlev+1)) |
---|
| 554 | call indexed_sum(sum(flux_dn,2), & |
---|
| 555 | & config%i_spec_from_reordered_g_lw, & |
---|
| 556 | & flux%lw_dn_band(:,jcol,jlev+1)) |
---|
[4489] | 557 | end if |
---|
[3908] | 558 | |
---|
| 559 | end do ! Final loop over levels |
---|
| 560 | |
---|
| 561 | ! Store surface spectral downwelling fluxes, which at this point |
---|
| 562 | ! are at the surface |
---|
| 563 | flux%lw_dn_surf_g(:,jcol) = sum(flux_dn,2) |
---|
| 564 | |
---|
| 565 | ! Compute the longwave derivatives needed by Hogan and Bozzo |
---|
| 566 | ! (2015) approximate radiation update scheme |
---|
| 567 | if (config%do_lw_derivatives) then |
---|
| 568 | ! Note that at this point flux_up contains the spectral |
---|
| 569 | ! fluxes into the regions of the lowest layer; we sum over |
---|
| 570 | ! regions first to provide a simple spectral flux upwelling |
---|
| 571 | ! from the surface |
---|
| 572 | call calc_lw_derivatives_region(ng, nlev, nregions, jcol, transmittance, & |
---|
| 573 | & u_matrix(:,:,:,jcol), sum(flux_up,2), flux%lw_derivatives) |
---|
| 574 | end if |
---|
| 575 | |
---|
| 576 | end do ! Loop over columns |
---|
| 577 | |
---|
| 578 | if (lhook) call dr_hook('radiation_tripleclouds_lw:solver_tripleclouds_lw',1,hook_handle) |
---|
| 579 | |
---|
| 580 | end subroutine solver_tripleclouds_lw |
---|
| 581 | |
---|
| 582 | end module radiation_tripleclouds_lw |
---|