1 | ! radiation_spartacus_lw.F90 - SPARTACUS longwave solver |
---|
2 | |
---|
3 | ! (C) Copyright 2014- ECMWF. |
---|
4 | |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | |
---|
15 | ! Modifications |
---|
16 | ! 2017-04-11 R. Hogan Receive emission/albedo rather than planck/emissivity |
---|
17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
---|
18 | ! 2018-09-03 R. Hogan Security via min_cloud_effective_size |
---|
19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
---|
20 | ! 2019-01-12 R. Hogan Use inv_inhom_effective_size if allocated |
---|
21 | |
---|
22 | module radiation_spartacus_lw |
---|
23 | |
---|
24 | public |
---|
25 | |
---|
26 | contains |
---|
27 | |
---|
28 | ! Small routine for scaling cloud optical depth in the cloudy |
---|
29 | ! regions |
---|
30 | #include "radiation_optical_depth_scaling.h" |
---|
31 | |
---|
32 | ! This module contains just one subroutine, the longwave solver |
---|
33 | ! using the Speedy Algorithm for Radiative Transfer through Cloud |
---|
34 | ! Sides (SPARTACUS), which can represent 3D effects using a matrix |
---|
35 | ! form of the two-stream equations. |
---|
36 | |
---|
37 | ! Sections: |
---|
38 | ! 1: Prepare general variables and arrays |
---|
39 | ! 2: Prepare column-specific variables and arrays |
---|
40 | ! 3: First loop over layers |
---|
41 | ! 3.1: Layer-specific initialization |
---|
42 | ! 3.2: Compute gamma variables |
---|
43 | ! 3.2a: Clear-sky case |
---|
44 | ! 3.2b: Cloudy case |
---|
45 | ! 3.3: Compute reflection, transmission and emission |
---|
46 | ! 3.3a: g-points with 3D effects |
---|
47 | ! 3.3b: g-points without 3D effects |
---|
48 | ! 4: Compute total sources and albedos |
---|
49 | ! 5: Compute fluxes |
---|
50 | subroutine solver_spartacus_lw(nlev,istartcol,iendcol, & |
---|
51 | & config, thermodynamics, cloud, & |
---|
52 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, planck_hl, & |
---|
53 | & emission, albedo, & |
---|
54 | & flux) |
---|
55 | |
---|
56 | use parkind1, only : jprb |
---|
57 | use yomhook, only : lhook, dr_hook |
---|
58 | |
---|
59 | use radiation_io, only : nulout |
---|
60 | use radiation_config, only : config_type, IPdfShapeGamma |
---|
61 | use radiation_thermodynamics, only : thermodynamics_type |
---|
62 | use radiation_cloud, only : cloud_type |
---|
63 | use radiation_regions, only : calc_region_properties |
---|
64 | use radiation_overlap, only : calc_overlap_matrices |
---|
65 | use radiation_flux, only : flux_type, indexed_sum |
---|
66 | use radiation_matrix |
---|
67 | use radiation_two_stream, only : calc_two_stream_gammas_lw, & |
---|
68 | calc_reflectance_transmittance_lw, LwDiffusivityWP |
---|
69 | use radiation_lw_derivatives, only : calc_lw_derivatives_matrix |
---|
70 | use radiation_constants, only : Pi, GasConstantDryAir, & |
---|
71 | AccelDueToGravity |
---|
72 | |
---|
73 | implicit none |
---|
74 | |
---|
75 | ! Inputs |
---|
76 | integer, intent(in) :: nlev ! number of model levels |
---|
77 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
78 | type(config_type), intent(in) :: config |
---|
79 | type(thermodynamics_type),intent(in) :: thermodynamics |
---|
80 | type(cloud_type), intent(in) :: cloud |
---|
81 | |
---|
82 | ! Gas and aerosol optical depth of each layer at each longwave |
---|
83 | ! g-point |
---|
84 | real(jprb), intent(in), dimension(config%n_g_lw,nlev,istartcol:iendcol) :: od |
---|
85 | |
---|
86 | ! Gas and aerosol single-scattering albedo and asymmetry factor, |
---|
87 | ! only if longwave scattering by aerosols is to be represented |
---|
88 | real(jprb), intent(in), & |
---|
89 | & dimension(config%n_g_lw_if_scattering,nlev,istartcol:iendcol) :: ssa, g |
---|
90 | |
---|
91 | ! Cloud and precipitation optical depth of each layer in each |
---|
92 | ! longwave band |
---|
93 | real(jprb), intent(in) :: od_cloud(config%n_bands_lw,nlev,istartcol:iendcol) |
---|
94 | |
---|
95 | ! Cloud and precipitation single-scattering albedo and asymmetry |
---|
96 | ! factor, only if longwave scattering by clouds is to be |
---|
97 | ! represented |
---|
98 | real(jprb), intent(in), dimension(config%n_bands_lw_if_scattering, & |
---|
99 | & nlev,istartcol:iendcol) :: ssa_cloud, g_cloud |
---|
100 | |
---|
101 | ! Planck function (emitted flux from a black body) at half levels |
---|
102 | real(jprb), intent(in), dimension(config%n_g_lw,nlev+1,istartcol:iendcol) & |
---|
103 | & :: planck_hl |
---|
104 | |
---|
105 | ! Emission (Planck*emissivity) and albedo (1-emissivity) at the |
---|
106 | ! surface at each longwave g-point |
---|
107 | real(jprb), intent(in), dimension(config%n_g_lw, istartcol:iendcol) & |
---|
108 | & :: emission, albedo |
---|
109 | |
---|
110 | ! Output |
---|
111 | type(flux_type), intent(inout):: flux |
---|
112 | |
---|
113 | integer :: nreg, ng |
---|
114 | integer :: nregActive ! =1 in clear layer, =nreg in a cloudy layer |
---|
115 | integer :: jcol, jlev, jg, jreg, iband, jreg2 |
---|
116 | integer :: ng3D ! Number of g-points with small enough gas optical |
---|
117 | ! depth that 3D effects need to be represented |
---|
118 | |
---|
119 | ! Ratio of gas constant for dry air to acceleration due to gravity |
---|
120 | real(jprb), parameter & |
---|
121 | & :: R_over_g = GasConstantDryAir / AccelDueToGravity |
---|
122 | |
---|
123 | ! Used in computing rates of lateral radiation transfer |
---|
124 | real(jprb), parameter :: four_over_pi = 4.0_jprb / Pi |
---|
125 | |
---|
126 | ! The tangent of the effective zenith angle for diffuse radiation |
---|
127 | ! that is appropriate for 3D transport |
---|
128 | real(jprb), parameter :: tan_diffuse_angle_3d = Pi * 0.5_jprb |
---|
129 | ! Incorrect value of tand(53) used by Hogan & Shonk (2013) |
---|
130 | ! real(jprb), parameter :: tan_diffuse_angle_3d = 1.32704482162041 |
---|
131 | |
---|
132 | ! Optical depth, single scattering albedo and asymmetry factor in |
---|
133 | ! each region at each g-point |
---|
134 | real(jprb), dimension(config%n_g_lw, config%nregions) & |
---|
135 | & :: od_region, ssa_region, g_region |
---|
136 | |
---|
137 | ! Scattering optical depths of gases and clouds |
---|
138 | real(jprb) :: scat_od, scat_od_cloud |
---|
139 | |
---|
140 | ! The area fractions of each region |
---|
141 | real(jprb) :: region_fracs(1:config%nregions,nlev,istartcol:iendcol) |
---|
142 | |
---|
143 | ! The scaling used for the optical depth in the cloudy regions |
---|
144 | real(jprb) :: od_scaling(2:config%nregions,nlev,istartcol:iendcol) |
---|
145 | |
---|
146 | ! The length of the interface between regions per unit area of |
---|
147 | ! gridbox, equal to L_diff^ab in Hogan and Shonk (2013). This is |
---|
148 | ! actually the effective length oriented to a photon with random |
---|
149 | ! azimuth angle. The three values are the edge length between |
---|
150 | ! regions a-b, b-c and a-c. |
---|
151 | real(jprb) :: edge_length(3) |
---|
152 | |
---|
153 | ! Element i,j gives the rate of 3D transfer of diffuse |
---|
154 | ! radiation from region i to region j, multiplied by the thickness |
---|
155 | ! of the layer in m |
---|
156 | real(jprb) :: transfer_rate(config%nregions,config%nregions) |
---|
157 | |
---|
158 | ! Directional overlap matrices defined at all layer interfaces |
---|
159 | ! including top-of-atmosphere and the surface |
---|
160 | real(jprb), dimension(config%nregions,config%nregions,nlev+1,istartcol:iendcol) & |
---|
161 | & :: u_matrix, v_matrix |
---|
162 | |
---|
163 | ! Two-stream variables |
---|
164 | real(jprb), dimension(config%n_g_lw, config%nregions) & |
---|
165 | & :: gamma1, gamma2 |
---|
166 | |
---|
167 | ! Matrix Gamma multiplied by the layer thickness z1, so units |
---|
168 | ! metres. After calling expm, this array contains the matrix |
---|
169 | ! exponential of the original. |
---|
170 | real(jprb), dimension(config%n_g_lw, 2*config%nregions, & |
---|
171 | & 2*config%nregions) :: Gamma_z1 |
---|
172 | |
---|
173 | ! Diffuse reflection and transmission matrices of each layer |
---|
174 | real(jprb), dimension(config%n_g_lw, config%nregions, & |
---|
175 | & config%nregions, nlev) :: reflectance, transmittance |
---|
176 | |
---|
177 | ! Clear-sky diffuse reflection and transmission matrices of each |
---|
178 | ! layer |
---|
179 | real(jprb), dimension(config%n_g_lw, nlev) :: ref_clear, trans_clear |
---|
180 | |
---|
181 | ! If the Planck term at the top of a layer in each region is the |
---|
182 | ! vector b0 then the following is vector [-b0; b0]*dz |
---|
183 | real(jprb), dimension(config%n_g_lw,2*config%nregions) :: planck_top |
---|
184 | |
---|
185 | ! The difference between the Planck terms at the bottom and top of |
---|
186 | ! a layer, doubled as with planck_top; in terms of b' in the |
---|
187 | ! paper, planck_diff is [-b'; b']*dz*dz |
---|
188 | real(jprb), dimension(config%n_g_lw,2*config%nregions) :: planck_diff |
---|
189 | |
---|
190 | ! Parts of the particular solution associated with the |
---|
191 | ! inhomogeneous ODE. In terms of quantities from the paper, |
---|
192 | ! solution0 is [c0;d0] and solution_diff is [c';d']*dz. |
---|
193 | real(jprb), dimension(config%n_g_lw,2*config%nregions) & |
---|
194 | & :: solution0, solution_diff |
---|
195 | |
---|
196 | ! Used for computing the Planck emission per layer |
---|
197 | real(jprb), dimension(config%n_g_lw,config%nregions) & |
---|
198 | & :: tmp_vectors |
---|
199 | |
---|
200 | ! The fluxes upwelling from the top of a layer (source_up) and |
---|
201 | ! downwelling from the bottom of the layer (source_dn) due to |
---|
202 | ! emission |
---|
203 | real(jprb), dimension(config%n_g_lw, config%nregions, nlev) & |
---|
204 | & :: source_up, source_dn |
---|
205 | ! ...clear-sky equivalents |
---|
206 | real(jprb), dimension(config%n_g_lw, nlev) & |
---|
207 | & :: source_up_clear, source_dn_clear |
---|
208 | |
---|
209 | ! Upwelling radiation just above a layer interface due to emission |
---|
210 | ! below that interface, where level index = 1 corresponds to the |
---|
211 | ! top-of-atmosphere |
---|
212 | real(jprb), dimension(config%n_g_lw, config%nregions, nlev+1) & |
---|
213 | & :: total_source |
---|
214 | ! ...clear-sky equivalent |
---|
215 | real(jprb), dimension(config%n_g_lw, nlev+1) :: total_source_clear |
---|
216 | |
---|
217 | ! As total_source, but just below a layer interface |
---|
218 | real(jprb), dimension(config%n_g_lw, config%nregions) & |
---|
219 | & :: total_source_below |
---|
220 | |
---|
221 | ! Total albedo of the atmosphere/surface just above a layer |
---|
222 | ! interface with respect to downwelling diffuse radiation at that |
---|
223 | ! interface, where level index = 1 corresponds to the |
---|
224 | ! top-of-atmosphere |
---|
225 | real(jprb), dimension(config%n_g_lw, config%nregions, & |
---|
226 | & config%nregions, nlev+1) :: total_albedo |
---|
227 | ! ...clear-sky equivalent |
---|
228 | real(jprb), dimension(config%n_g_lw, nlev+1) :: total_albedo_clear |
---|
229 | |
---|
230 | ! As total_albedo, but just below a layer interface |
---|
231 | real(jprb), dimension(config%n_g_lw, config%nregions, config%nregions) & |
---|
232 | & :: total_albedo_below |
---|
233 | |
---|
234 | ! The following is used to store matrices of the form I-A*B that |
---|
235 | ! are used on the denominator of some expressions |
---|
236 | real(jprb), dimension(config%n_g_lw, config%nregions, config%nregions) & |
---|
237 | & :: denominator |
---|
238 | ! Clear-sky equivalent, but actually its reciprocal to replace |
---|
239 | ! some divisions by multiplications |
---|
240 | real(jprb), dimension(config%n_g_lw) :: inv_denom_scalar |
---|
241 | |
---|
242 | ! Layer depth (m) |
---|
243 | real(jprb) :: dz |
---|
244 | |
---|
245 | ! Upwelling and downwelling fluxes above/below layer interfaces |
---|
246 | real(jprb), dimension(config%n_g_lw, config%nregions) & |
---|
247 | & :: flux_up_above, flux_dn_above, flux_dn_below |
---|
248 | ! Clear-sky upwelling and downwelling fluxes (which don't |
---|
249 | ! distinguish between whether they are above/below a layer |
---|
250 | ! interface) |
---|
251 | real(jprb), dimension(config%n_g_lw) :: flux_up_clear, flux_dn_clear |
---|
252 | |
---|
253 | ! Parameterization of internal flux distribution in a cloud that |
---|
254 | ! can lead to the flux just about to exit a cloud being different |
---|
255 | ! from the mean in-cloud value. "lateral_od" is the typical |
---|
256 | ! absorption optical depth through the cloud in a horizontal |
---|
257 | ! direction. |
---|
258 | real(jprb), dimension(config%n_g_lw) :: lateral_od, sqrt_1_minus_ssa |
---|
259 | real(jprb), dimension(config%n_g_lw) :: side_emiss_thick, side_emiss |
---|
260 | |
---|
261 | ! In the optically thin limit, the flux near the edge is greater |
---|
262 | ! than that in the interior |
---|
263 | real(jprb), parameter :: side_emiss_thin = 1.4107 |
---|
264 | |
---|
265 | real(jprb) :: aspect_ratio |
---|
266 | |
---|
267 | ! Keep a count of the number of calls to the two ways of computing |
---|
268 | ! reflectance/transmittance matrices |
---|
269 | integer :: n_calls_expm, n_calls_meador_weaver |
---|
270 | |
---|
271 | ! Identify clear-sky layers, with pseudo layers for outer space |
---|
272 | ! and below the ground, both treated as single-region clear skies |
---|
273 | logical :: is_clear_sky_layer(0:nlev+1) |
---|
274 | |
---|
275 | real(jprb) :: hook_handle |
---|
276 | |
---|
277 | if (lhook) call dr_hook('radiation_spartacus_lw:solver_spartacus_lw',0,hook_handle) |
---|
278 | |
---|
279 | ! -------------------------------------------------------- |
---|
280 | ! Section 1: Prepare general variables and arrays |
---|
281 | ! -------------------------------------------------------- |
---|
282 | |
---|
283 | ! Copy array dimensions to local variables for convenience |
---|
284 | nreg = config%nregions |
---|
285 | ng = config%n_g_lw |
---|
286 | |
---|
287 | ! Reset count of number of calls to the two ways to compute |
---|
288 | ! reflectance/transmission matrices |
---|
289 | n_calls_expm = 0 |
---|
290 | n_calls_meador_weaver = 0 |
---|
291 | |
---|
292 | ! Initialize dz to avoid compiler warning |
---|
293 | dz = 1.0_jprb |
---|
294 | |
---|
295 | ! Compute the wavelength-independent region fractions and |
---|
296 | ! optical-depth scalings |
---|
297 | call calc_region_properties(nlev,nreg,istartcol,iendcol, & |
---|
298 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
---|
299 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
---|
300 | & od_scaling, config%cloud_fraction_threshold) |
---|
301 | |
---|
302 | ! Compute wavelength-independent overlap matrices u_matrix and v_matrix |
---|
303 | call calc_overlap_matrices(nlev, nreg, istartcol, iendcol, & |
---|
304 | & region_fracs, cloud%overlap_param, & |
---|
305 | & u_matrix, v_matrix, decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
---|
306 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
---|
307 | & use_beta_overlap=config%use_beta_overlap, & |
---|
308 | & cloud_cover=flux%cloud_cover_lw) |
---|
309 | |
---|
310 | if (config%iverbose >= 3) then |
---|
311 | write(nulout,'(a)',advance='no') ' Processing columns' |
---|
312 | end if |
---|
313 | |
---|
314 | ! Main loop over columns |
---|
315 | DO jcol = istartcol, iendcol |
---|
316 | ! -------------------------------------------------------- |
---|
317 | ! Section 2: Prepare column-specific variables and arrays |
---|
318 | ! -------------------------------------------------------- |
---|
319 | |
---|
320 | if (config%iverbose >= 3) then |
---|
321 | write(nulout,'(a)',advance='no') '.' |
---|
322 | end if |
---|
323 | |
---|
324 | ! Define which layers contain cloud; assume that |
---|
325 | ! cloud%crop_cloud_fraction has already been called |
---|
326 | is_clear_sky_layer = .true. |
---|
327 | DO jlev = 1,nlev |
---|
328 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
---|
329 | is_clear_sky_layer(jlev) = .false. |
---|
330 | end if |
---|
331 | end do |
---|
332 | |
---|
333 | ! -------------------------------------------------------- |
---|
334 | ! Section 3: First loop over layers |
---|
335 | ! -------------------------------------------------------- |
---|
336 | ! In this section the reflectance, transmittance and sources |
---|
337 | ! are computed for each layer |
---|
338 | DO jlev = 1,nlev ! Start at top-of-atmosphere |
---|
339 | ! -------------------------------------------------------- |
---|
340 | ! Section 3.1: Layer-specific initialization |
---|
341 | ! -------------------------------------------------------- |
---|
342 | ! Array-wise assignments |
---|
343 | gamma1 = 0.0_jprb |
---|
344 | gamma2 = 0.0_jprb |
---|
345 | Gamma_z1= 0.0_jprb |
---|
346 | planck_top = 0.0_jprb |
---|
347 | planck_diff = 0.0_jprb |
---|
348 | transfer_rate(:,:) = 0.0_jprb |
---|
349 | solution0 = 0.0_jprb |
---|
350 | solution_diff = 0.0_jprb |
---|
351 | |
---|
352 | ! Reset clear-sky absorption/scattering properties in each |
---|
353 | ! region |
---|
354 | od_region = 0.0_jprb |
---|
355 | ssa_region = 0.0_jprb ! No Rayleigh scattering in longwave by default |
---|
356 | g_region = 0.0_jprb |
---|
357 | |
---|
358 | ! Set optical depth of clear-sky region (region 1) to the |
---|
359 | ! gas/aerosol optical depth |
---|
360 | od_region(1:ng,1) = od(1:ng, jlev, jcol) |
---|
361 | |
---|
362 | ! Can't deal with zero gas optical depths, but this is now |
---|
363 | ! dealt with in radiation_ifsrrtm |
---|
364 | ! where (od_region(:,1) < 1.0e-15_jprb) od_region(:,1) = 1.0e-15_jprb |
---|
365 | |
---|
366 | ! Set clear-sky single-scattering albedo and asymmetry |
---|
367 | ! factor, if non-zero |
---|
368 | if (config%do_lw_aerosol_scattering) then |
---|
369 | ssa_region(1:ng,1) = ssa(1:ng, jlev, jcol) |
---|
370 | g_region(1:ng,1) = g(1:ng, jlev, jcol) |
---|
371 | end if |
---|
372 | |
---|
373 | ! -------------------------------------------------------- |
---|
374 | ! Section 3.2: Compute gamma variables |
---|
375 | ! -------------------------------------------------------- |
---|
376 | if (is_clear_sky_layer(jlev)) then |
---|
377 | ! --- Section 3.2a: Clear-sky case -------------------- |
---|
378 | |
---|
379 | nregActive = 1 ! Only region 1 (clear-sky) is active |
---|
380 | |
---|
381 | ! Compute two-stream variables gamma1 and gamma2 |
---|
382 | call calc_two_stream_gammas_lw(ng, & |
---|
383 | & ssa_region(1:ng,1), g_region(1:ng,1), & |
---|
384 | & gamma1(1:ng,1), gamma2(1:ng,1)) |
---|
385 | |
---|
386 | if (config%use_expm_everywhere) then |
---|
387 | ! Treat cloud-free layer as 3D: the matrix exponential |
---|
388 | ! "expm" is used as much as possible (provided the |
---|
389 | ! optical depth is not too high). ng3D is initially |
---|
390 | ! set to the total number of g-points, then the |
---|
391 | ! clear-sky optical depths are searched until a value |
---|
392 | ! exceeds the threshold for treating 3D effects, and |
---|
393 | ! if found it is reset to that. Note that we are |
---|
394 | ! assuming that the g-points have been reordered in |
---|
395 | ! approximate order of gas optical depth. |
---|
396 | ng3D = ng |
---|
397 | DO jg = 1, ng |
---|
398 | if (od_region(jg,1) > config%max_gas_od_3D) then |
---|
399 | ng3D = jg-1 |
---|
400 | exit |
---|
401 | end if |
---|
402 | end do |
---|
403 | else |
---|
404 | ! Otherwise treat cloud-free layer using the classical |
---|
405 | ! Meador & Weaver formulae for all g-points |
---|
406 | ng3D = 0 |
---|
407 | end if |
---|
408 | |
---|
409 | else |
---|
410 | ! --- Section 3.2b: Cloudy case ----------------------- |
---|
411 | |
---|
412 | ! Default number of g-points to treat with |
---|
413 | ! matrix-exponential scheme |
---|
414 | if (config%use_expm_everywhere) then |
---|
415 | ng3D = ng ! All g-points |
---|
416 | else |
---|
417 | ng3D = 0 ! No g-points |
---|
418 | end if |
---|
419 | |
---|
420 | ! Do we compute 3D effects; note that if we only have one |
---|
421 | ! region and the sky is overcast then 3D calculations must |
---|
422 | ! be turned off as there will be only one region |
---|
423 | if (config%do_3d_effects .AND. & |
---|
424 | & allocated(cloud%inv_cloud_effective_size) .AND. & |
---|
425 | & .not. (nreg == 2 .AND. cloud%fraction(jcol,jlev) & |
---|
426 | & > 1.0_jprb-config%cloud_fraction_threshold)) then |
---|
427 | if (cloud%inv_cloud_effective_size(jcol,jlev) & |
---|
428 | & > 0.0_jprb) then |
---|
429 | ! 3D effects are only simulated if |
---|
430 | ! inv_cloud_effective_size is defined and greater |
---|
431 | ! than zero |
---|
432 | ng3D = ng |
---|
433 | |
---|
434 | ! The following is from the hydrostatic equation |
---|
435 | ! and ideal gas law: dz = dp * R * T / (p * g) |
---|
436 | dz = R_over_g & |
---|
437 | & * (thermodynamics%pressure_hl(jcol,jlev+1) & |
---|
438 | & - thermodynamics%pressure_hl(jcol,jlev)) & |
---|
439 | & * (thermodynamics%temperature_hl(jcol,jlev) & |
---|
440 | & + thermodynamics%temperature_hl(jcol,jlev+1)) & |
---|
441 | & / (thermodynamics%pressure_hl(jcol,jlev) & |
---|
442 | & + thermodynamics%pressure_hl(jcol,jlev+1)) |
---|
443 | |
---|
444 | ! Compute cloud edge length per unit area of gridbox |
---|
445 | ! from rearranging Hogan & Shonk (2013) Eq. 45, but |
---|
446 | ! adding a factor of (1-frac) so that a region that |
---|
447 | ! fully occupies the gridbox (frac=1) has an edge of |
---|
448 | ! zero. We can therefore use the fraction of clear sky, |
---|
449 | ! region_fracs(1,jlev,jcol) for convenience instead. The |
---|
450 | ! pi on the denominator means that this is actually edge |
---|
451 | ! length with respect to a light ray with a random |
---|
452 | ! azimuthal direction. |
---|
453 | edge_length(1) = four_over_pi & |
---|
454 | & * region_fracs(1,jlev,jcol)*(1.0_jprb-region_fracs(1,jlev,jcol)) & |
---|
455 | & * min(cloud%inv_cloud_effective_size(jcol,jlev), & |
---|
456 | & 1.0_jprb / config%min_cloud_effective_size) |
---|
457 | if (nreg > 2) then |
---|
458 | ! The corresponding edge length between the two cloudy |
---|
459 | ! regions is computed in the same way but treating the |
---|
460 | ! optically denser of the two regions (region 3) as |
---|
461 | ! the cloud; note that the fraction of this region may |
---|
462 | ! be less than that of the optically less dense of the |
---|
463 | ! two regions (region 2). For increased flexibility, |
---|
464 | ! the user may specify the effective size of |
---|
465 | ! inhomogeneities separately from the cloud effective |
---|
466 | ! size. |
---|
467 | if (allocated(cloud%inv_inhom_effective_size)) then |
---|
468 | edge_length(2) = four_over_pi & |
---|
469 | & * region_fracs(3,jlev,jcol)*(1.0_jprb-region_fracs(3,jlev,jcol)) & |
---|
470 | & * min(cloud%inv_inhom_effective_size(jcol,jlev), & |
---|
471 | & 1.0_jprb / config%min_cloud_effective_size) |
---|
472 | else |
---|
473 | edge_length(2) = four_over_pi & |
---|
474 | & * region_fracs(3,jlev,jcol)*(1.0_jprb-region_fracs(3,jlev,jcol)) & |
---|
475 | & * min(cloud%inv_cloud_effective_size(jcol,jlev), & |
---|
476 | & 1.0_jprb / config%min_cloud_effective_size) |
---|
477 | end if |
---|
478 | ! In the case of three regions, some of the cloud |
---|
479 | ! boundary may go directly to the "thick" region |
---|
480 | if (config%clear_to_thick_fraction > 0.0_jprb) then |
---|
481 | edge_length(3) = config%clear_to_thick_fraction & |
---|
482 | & * min(edge_length(1), edge_length(2)) |
---|
483 | edge_length(1) = edge_length(1) - edge_length(3) |
---|
484 | edge_length(2) = edge_length(2) - edge_length(3) |
---|
485 | else |
---|
486 | edge_length(3) = 0.0_jprb |
---|
487 | end if |
---|
488 | end if |
---|
489 | |
---|
490 | DO jreg = 1, nreg-1 |
---|
491 | ! Compute lateral transfer rate from region jreg to |
---|
492 | ! jreg+1 following Hogan & Shonk (2013) Eq. 47, but |
---|
493 | ! multiplied by dz because the transfer rate is |
---|
494 | ! vertically integrated across the depth of the layer |
---|
495 | if (region_fracs(jreg,jlev,jcol) > epsilon(1.0_jprb)) then |
---|
496 | transfer_rate(jreg,jreg+1) = dz & |
---|
497 | & * edge_length(jreg) & |
---|
498 | & * tan_diffuse_angle_3d / region_fracs(jreg,jlev,jcol) |
---|
499 | end if |
---|
500 | ! Compute transfer rate from region jreg+1 to jreg |
---|
501 | if (region_fracs(jreg+1,jlev,jcol) > epsilon(1.0_jprb)) then |
---|
502 | transfer_rate(jreg+1,jreg) = dz & |
---|
503 | & * edge_length(jreg) & |
---|
504 | & * tan_diffuse_angle_3d / region_fracs(jreg+1,jlev,jcol) |
---|
505 | end if |
---|
506 | end do |
---|
507 | |
---|
508 | ! Compute transfer rates directly between regions 1 and |
---|
509 | ! 3 |
---|
510 | if (edge_length(3) > 0.0_jprb) then |
---|
511 | if (region_fracs(1,jlev,jcol) > epsilon(1.0_jprb)) then |
---|
512 | transfer_rate(1,3) = dz & |
---|
513 | & * edge_length(3) & |
---|
514 | & * tan_diffuse_angle_3d / region_fracs(1,jlev,jcol) |
---|
515 | end if |
---|
516 | if (region_fracs(3,jlev,jcol) > epsilon(1.0_jprb)) then |
---|
517 | transfer_rate(3,1) = dz & |
---|
518 | & * edge_length(3) & |
---|
519 | & * tan_diffuse_angle_3d / region_fracs(3,jlev,jcol) |
---|
520 | end if |
---|
521 | end if |
---|
522 | |
---|
523 | ! Don't allow the transfer rate out of a region to be |
---|
524 | ! equivalent to a loss of exp(-10) through the layer |
---|
525 | where (transfer_rate > config%max_3d_transfer_rate) |
---|
526 | transfer_rate = config%max_3d_transfer_rate |
---|
527 | end where |
---|
528 | end if ! Cloud has edge length required for 3D effects |
---|
529 | end if ! Include 3D effects |
---|
530 | |
---|
531 | ! In a cloudy layer the number of active regions equals |
---|
532 | ! the number of regions |
---|
533 | nregActive = nreg |
---|
534 | |
---|
535 | ! Compute scattering properties of the regions at each |
---|
536 | ! g-point, mapping from the cloud properties |
---|
537 | ! defined in each band. |
---|
538 | DO jg = 1,ng |
---|
539 | ! Mapping from g-point to band |
---|
540 | iband = config%i_band_from_reordered_g_lw(jg) |
---|
541 | |
---|
542 | ! Scattering optical depth of clear-sky region |
---|
543 | scat_od = od_region(jg,1)*ssa_region(jg,1) |
---|
544 | |
---|
545 | ! Loop over cloudy regions |
---|
546 | DO jreg = 2,nreg |
---|
547 | ! Add scaled cloud optical depth to clear-sky value |
---|
548 | od_region(jg,jreg) = od_region(jg,1) & |
---|
549 | & + od_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) |
---|
550 | if (config%do_lw_cloud_scattering) then |
---|
551 | ! Compute single-scattering albedo of gas-cloud |
---|
552 | ! combination |
---|
553 | scat_od_cloud = od_cloud(iband,jlev,jcol) & |
---|
554 | & * ssa_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) |
---|
555 | ssa_region(jg,jreg) = (scat_od+scat_od_cloud) & |
---|
556 | & / od_region(jg,jreg) |
---|
557 | if (scat_od + scat_od_cloud > 0.0_jprb) then |
---|
558 | ! Compute asymmetry factor of gas-cloud |
---|
559 | ! combination |
---|
560 | g_region(jg,jreg) & |
---|
561 | & = (scat_od*g_region(jg,1) & |
---|
562 | & + scat_od_cloud*g_cloud(iband,jlev,jcol)) & |
---|
563 | & / (scat_od + scat_od_cloud) |
---|
564 | ! else g_region is already set to zero |
---|
565 | end if |
---|
566 | ! else ssa_region is already set to zero |
---|
567 | end if |
---|
568 | |
---|
569 | ! Apply maximum cloud optical depth for stability in the |
---|
570 | ! 3D case |
---|
571 | if (od_region(jg,jreg) > config%max_cloud_od) then |
---|
572 | od_region(jg,jreg) = config%max_cloud_od |
---|
573 | end if |
---|
574 | |
---|
575 | end do |
---|
576 | |
---|
577 | ! Calculate two-stream variables gamma1 and gamma2 of |
---|
578 | ! all regions at once |
---|
579 | call calc_two_stream_gammas_lw(nreg, & |
---|
580 | & ssa_region(jg,:), g_region(jg,:), & |
---|
581 | & gamma1(jg,:), gamma2(jg,:)) |
---|
582 | |
---|
583 | ! Loop is in order of g-points with typically |
---|
584 | ! increasing optical depth: if optical depth of |
---|
585 | ! clear-sky region exceeds a threshold then turn off |
---|
586 | ! 3D effects for any further g-points |
---|
587 | if (ng3D == ng & |
---|
588 | & .AND. od_region(jg,1) > config%max_gas_od_3D) then |
---|
589 | ng3D = jg-1 |
---|
590 | end if |
---|
591 | end do ! Loop over g points |
---|
592 | end if ! Cloudy level |
---|
593 | |
---|
594 | ! -------------------------------------------------------- |
---|
595 | ! Section 3.3: Compute reflection, transmission and emission |
---|
596 | ! -------------------------------------------------------- |
---|
597 | if (ng3D > 0) then |
---|
598 | ! --- Section 3.3a: g-points with 3D effects ---------- |
---|
599 | |
---|
600 | ! 3D effects need to be represented in "ng3D" of the g |
---|
601 | ! points. This is done by creating ng3D square matrices |
---|
602 | ! each of dimension 2*nreg by 2*nreg, computing the matrix |
---|
603 | ! exponential, then computing the various |
---|
604 | ! transmission/reflectance matrices from that. |
---|
605 | DO jreg = 1,nregActive |
---|
606 | ! Write the diagonal elements of -Gamma1*z1 |
---|
607 | Gamma_z1(1:ng3D,jreg,jreg) & |
---|
608 | & = od_region(1:ng3D,jreg)*gamma1(1:ng3D,jreg) |
---|
609 | ! Write the diagonal elements of +Gamma2*z1 |
---|
610 | Gamma_z1(1:ng3D,jreg+nreg,jreg) & |
---|
611 | & = od_region(1:ng3D,jreg)*gamma2(1:ng3D,jreg) |
---|
612 | |
---|
613 | ! Write the vectors corresponding to the inhomogeneous |
---|
614 | ! parts of the matrix ODE |
---|
615 | planck_top(1:ng3D,nreg+jreg) = od_region(1:ng3D,jreg) & |
---|
616 | & *(1.0_jprb-ssa_region(1:ng3D,jreg))*region_fracs(jreg,jlev,jcol) & |
---|
617 | & *planck_hl(1:ng3D,jlev,jcol)*LwDiffusivityWP |
---|
618 | planck_top(1:ng3D,jreg) = -planck_top(1:ng3D,nreg+jreg) |
---|
619 | planck_diff(1:ng3D,nreg+jreg) = od_region(1:ng3D,jreg) & |
---|
620 | & * (1.0_jprb-ssa_region(1:ng3D,jreg))*region_fracs(jreg,jlev,jcol) & |
---|
621 | & * (planck_hl(1:ng3D,jlev+1,jcol) & |
---|
622 | & -planck_hl(1:ng3D,jlev,jcol))*LwDiffusivityWP |
---|
623 | planck_diff(1:ng3D,jreg) = -planck_diff(1:ng3D,nreg+jreg) |
---|
624 | end do |
---|
625 | |
---|
626 | if (nregActive < nreg) then |
---|
627 | ! To avoid NaNs in some situations we need to put |
---|
628 | ! non-zeros in the cloudy-sky regions even if the cloud |
---|
629 | ! fraction is zero |
---|
630 | DO jreg = nregActive+1,nreg |
---|
631 | Gamma_z1(1:ng3D,jreg,jreg) = Gamma_z1(1:ng3D,1,1) |
---|
632 | Gamma_z1(1:ng3D,nreg+jreg,jreg) = Gamma_z1(1:ng3D,nreg+1,1) |
---|
633 | end do |
---|
634 | end if |
---|
635 | |
---|
636 | ! Parameterization for the effective emissivity of the side |
---|
637 | ! of the cloud |
---|
638 | if (config%do_lw_side_emissivity & |
---|
639 | & .AND. region_fracs(1,jlev,jcol) > 0.0_jprb .AND. region_fracs(2,jlev,jcol) > 0.0_jprb & |
---|
640 | & .AND. config%do_3d_effects & |
---|
641 | & .AND. cloud%inv_cloud_effective_size(jcol,jlev) > 0.0_jprb) then |
---|
642 | aspect_ratio = 1.0_jprb / (min(cloud%inv_cloud_effective_size(jcol,jlev), & |
---|
643 | & 1.0_jprb / config%min_cloud_effective_size) & |
---|
644 | & * region_fracs(1,jlev,jcol) * dz) |
---|
645 | lateral_od(1:ng3D) = (aspect_ratio / (nreg-1.0_jprb)) & |
---|
646 | & * sum(od_region(1:ng3D,2:nreg)*(1.0_jprb-ssa_region(1:ng3D,2:nreg)),2) |
---|
647 | sqrt_1_minus_ssa(1:ng3D) = sqrt(1.0_jprb - ssa_region(1:ng3D,2)) |
---|
648 | side_emiss_thick(1:ng3D) = 2.0_jprb * sqrt_1_minus_ssa(1:ng3D) / & |
---|
649 | & (sqrt_1_minus_ssa(1:ng3D) & |
---|
650 | & + sqrt(1.0_jprb-ssa_region(1:ng3D,2)*g_region(1:ng3D,2))) |
---|
651 | side_emiss(1:ng3D) = (side_emiss_thin - side_emiss_thick(1:ng3D)) & |
---|
652 | & / (lateral_od(1:ng3D) + 1.0_jprb) & |
---|
653 | & + side_emiss_thick(1:ng3D) |
---|
654 | else |
---|
655 | side_emiss(1:ng3D) = 1.0_jprb |
---|
656 | end if |
---|
657 | |
---|
658 | DO jreg = 1,nregActive-1 |
---|
659 | ! Add the terms assocated with 3D transport to Gamma1*z1. |
---|
660 | ! First the rate from region jreg to jreg+1 |
---|
661 | Gamma_z1(1:ng3D,jreg,jreg) = Gamma_z1(1:ng3D,jreg,jreg) & |
---|
662 | & + transfer_rate(jreg,jreg+1) |
---|
663 | Gamma_z1(1:ng3D,jreg+1,jreg) = -transfer_rate(jreg,jreg+1) |
---|
664 | |
---|
665 | ! Next the rate from region jreg+1 to jreg |
---|
666 | if (jreg > 1) then |
---|
667 | ! Flow between one cloudy region and another |
---|
668 | Gamma_z1(1:ng3D,jreg+1,jreg+1) = Gamma_z1(1:ng3D,jreg+1,jreg+1) & |
---|
669 | & + transfer_rate(jreg+1,jreg) |
---|
670 | Gamma_z1(1:ng3D,jreg,jreg+1) = -transfer_rate(jreg+1,jreg) |
---|
671 | else |
---|
672 | ! Only for the lateral transfer between cloud and clear |
---|
673 | ! skies do we account for the effective emissivity of |
---|
674 | ! the side of the cloud |
---|
675 | Gamma_z1(1:ng3D,jreg+1,jreg+1) = Gamma_z1(1:ng3D,jreg+1,jreg+1) & |
---|
676 | & + side_emiss(1:ng3D) * transfer_rate(jreg+1,jreg) |
---|
677 | Gamma_z1(1:ng3D,jreg,jreg+1) = -side_emiss(1:ng3D)*transfer_rate(jreg+1,jreg) |
---|
678 | end if |
---|
679 | end do |
---|
680 | |
---|
681 | ! Possible flow between regions a and c |
---|
682 | if (edge_length(3) > 0.0_jprb) then |
---|
683 | Gamma_z1(1:ng3D,1,1) = Gamma_z1(1:ng3D,1,1) & |
---|
684 | & + transfer_rate(1,3) |
---|
685 | Gamma_z1(1:ng3D,3,1) = -transfer_rate(1,3) |
---|
686 | Gamma_z1(1:ng3D,3,3) = Gamma_z1(1:ng3D,3,3) & |
---|
687 | & + side_emiss(1:ng3D) * transfer_rate(3,1) |
---|
688 | Gamma_z1(1:ng3D,1,3) = -side_emiss(1:ng3D)*transfer_rate(3,1) |
---|
689 | end if |
---|
690 | |
---|
691 | ! Copy Gamma1*z1 |
---|
692 | Gamma_z1(1:ng3D,nreg+1:2*nreg,nreg+1:2*nreg) & |
---|
693 | & = -Gamma_z1(1:ng3D,1:nreg,1:nreg) |
---|
694 | ! Copy Gamma2*z1 |
---|
695 | Gamma_z1(1:ng3D,1:nreg,nreg+1:2*nreg) & |
---|
696 | & = -Gamma_z1(1:ng3D,nreg+1:2*nreg,1:nreg) |
---|
697 | |
---|
698 | ! Compute the parts of the particular solution |
---|
699 | solution_diff(1:ng3D,1:2*nreg) & |
---|
700 | & = solve_vec(ng,ng3D,2*nreg,Gamma_z1,planck_diff) |
---|
701 | solution_diff(1:ng3D,1:2*nreg) = - solution_diff(1:ng3D,1:2*nreg) |
---|
702 | solution0(1:ng3D,1:2*nreg) = solve_vec(ng,ng3D,2*nreg,Gamma_z1, & |
---|
703 | & solution_diff-planck_top) |
---|
704 | |
---|
705 | ! Compute the matrix exponential of Gamma_z1, returning the |
---|
706 | ! result in-place |
---|
707 | call expm(ng, ng3D, 2*nreg, Gamma_z1, IMatrixPatternDense) |
---|
708 | |
---|
709 | ! Update count of expm calls |
---|
710 | n_calls_expm = n_calls_expm + ng3D |
---|
711 | |
---|
712 | ! Diffuse reflectance matrix |
---|
713 | reflectance(1:ng3D,:,:,jlev) = -solve_mat(ng,ng3D,nreg, & |
---|
714 | & Gamma_z1(1:ng3D,1:nreg,1:nreg), & |
---|
715 | & Gamma_z1(1:ng3D,1:nreg,nreg+1:2*nreg)) |
---|
716 | ! Diffuse transmission matrix |
---|
717 | transmittance(1:ng3D,:,:,jlev) = mat_x_mat(ng,ng3D,nreg, & |
---|
718 | & Gamma_z1(1:ng3D,nreg+1:2*nreg,1:nreg), & |
---|
719 | & reflectance(1:ng3D,:,:,jlev)) & |
---|
720 | & + Gamma_z1(1:ng3D,nreg+1:2*nreg,nreg+1:2*nreg) |
---|
721 | |
---|
722 | ! Upward and downward sources due to emission within the |
---|
723 | ! layer |
---|
724 | tmp_vectors(1:ng3D,:) = solution0(1:ng3D,1:nreg) & |
---|
725 | & + solution_diff(1:ng3D,1:nreg) & |
---|
726 | & - mat_x_vec(ng,ng3D,nreg,Gamma_z1(:,1:nreg,nreg+1:2*nreg), & |
---|
727 | & solution0(:,nreg+1:2*nreg)) |
---|
728 | source_up(1:ng3D,:,jlev) = solution0(1:ng3D,1:nreg) & |
---|
729 | & - solve_vec(ng,ng3D,nreg,Gamma_z1(:,1:nreg,1:nreg), & |
---|
730 | & tmp_vectors) |
---|
731 | tmp_vectors(1:ng3D,:) = source_up(1:ng3D,:,jlev) & |
---|
732 | & - solution0(1:ng3D,1:nreg) |
---|
733 | source_dn(1:ng3D,:,jlev) = mat_x_vec(ng,ng3D,nreg,& |
---|
734 | & Gamma_z1(:,nreg+1:2*nreg,1:nreg),tmp_vectors) & |
---|
735 | & + solution0(1:ng3D,nreg+1:2*nreg) & |
---|
736 | & - mat_x_vec(ng,ng3D,nreg, & |
---|
737 | & Gamma_z1(:,nreg+1:2*nreg,nreg+1:2*nreg), & |
---|
738 | & solution0(:,nreg+1:2*nreg)) & |
---|
739 | & + solution_diff(1:ng3D,nreg+1:2*nreg) |
---|
740 | end if ! we are treating 3D effects for some g points |
---|
741 | |
---|
742 | ! --- Section 3.3b: g-points without 3D effects ---------- |
---|
743 | |
---|
744 | ! Compute reflectance, transmittance and upward and downward |
---|
745 | ! sources for clear skies, using the Meador-Weaver formulas |
---|
746 | ! for reflectance and transmittance, and equivalent solutions |
---|
747 | ! to the coupled ODEs for the sources. |
---|
748 | call calc_reflectance_transmittance_lw(ng, & |
---|
749 | & od_region(1:ng,1), & |
---|
750 | & gamma1(1:ng,1), gamma2(1:ng,1), & |
---|
751 | & planck_hl(1:ng,jlev,jcol), planck_hl(1:ng,jlev+1,jcol), & |
---|
752 | & ref_clear(1:ng,jlev), trans_clear(1:ng,jlev), & |
---|
753 | & source_up_clear(1:ng,jlev), source_dn_clear(1:ng,jlev)) |
---|
754 | |
---|
755 | n_calls_meador_weaver = n_calls_meador_weaver + ng |
---|
756 | |
---|
757 | if (ng3D < ng) then |
---|
758 | ! Some of the g points are to be treated using the |
---|
759 | ! conventional plane-parallel method. First zero the |
---|
760 | ! relevant parts of the arrays |
---|
761 | reflectance (ng3D+1:ng,:,:,jlev) = 0.0_jprb |
---|
762 | transmittance(ng3D+1:ng,:,:,jlev) = 0.0_jprb |
---|
763 | source_up (ng3D+1:ng,:,jlev) = 0.0_jprb |
---|
764 | source_dn (ng3D+1:ng,:,jlev) = 0.0_jprb |
---|
765 | |
---|
766 | ! Since there is no lateral transport, the clear-sky parts |
---|
767 | ! of the arrays can be copied from the clear-sky arrays |
---|
768 | reflectance(ng3D+1:ng,1,1,jlev) = ref_clear(ng3D+1:ng,jlev) |
---|
769 | transmittance(ng3D+1:ng,1,1,jlev) = trans_clear(ng3D+1:ng,jlev) |
---|
770 | source_up(ng3D+1:ng,1,jlev) = region_fracs(1,jlev,jcol)*source_up_clear(ng3D+1:ng,jlev) |
---|
771 | source_dn(ng3D+1:ng,1,jlev) = region_fracs(1,jlev,jcol)*source_dn_clear(ng3D+1:ng,jlev) |
---|
772 | |
---|
773 | ! Compute reflectance, transmittance and upward and downward |
---|
774 | ! sources, for each cloudy region, using the Meador-Weaver |
---|
775 | ! formulas for reflectance and transmittance, and equivalent |
---|
776 | ! solutions to the coupled ODEs for the sources. |
---|
777 | DO jreg = 2, nregActive |
---|
778 | call calc_reflectance_transmittance_lw(ng-ng3D, & |
---|
779 | & od_region(ng3D+1:ng,jreg), & |
---|
780 | & gamma1(ng3D+1:ng,jreg), gamma2(ng3D+1:ng,jreg), & |
---|
781 | & region_fracs(jreg,jlev,jcol)*planck_hl(ng3D+1:ng,jlev,jcol), & |
---|
782 | & region_fracs(jreg,jlev,jcol)*planck_hl(ng3D+1:ng,jlev+1,jcol), & |
---|
783 | & reflectance(ng3D+1:ng,jreg,jreg,jlev), & |
---|
784 | & transmittance(ng3D+1:ng,jreg,jreg,jlev), & |
---|
785 | & source_up(ng3D+1:ng,jreg,jlev), & |
---|
786 | & source_dn(ng3D+1:ng,jreg,jlev)) |
---|
787 | end do |
---|
788 | n_calls_meador_weaver & |
---|
789 | & = n_calls_meador_weaver + (ng-ng3D)*(nregActive-1) |
---|
790 | end if |
---|
791 | |
---|
792 | end do ! Loop over levels |
---|
793 | |
---|
794 | ! -------------------------------------------------------- |
---|
795 | ! Section 4: Compute total sources and albedos |
---|
796 | ! -------------------------------------------------------- |
---|
797 | |
---|
798 | total_albedo(:,:,:,:) = 0.0_jprb |
---|
799 | total_source(:,:,:) = 0.0_jprb |
---|
800 | |
---|
801 | if (config%do_clear) then |
---|
802 | total_albedo_clear(:,:) = 0.0_jprb |
---|
803 | total_source_clear(:,:) = 0.0_jprb |
---|
804 | end if |
---|
805 | |
---|
806 | ! Calculate the upwelling radiation emitted by the surface, and |
---|
807 | ! copy the surface albedo into total_albedo |
---|
808 | DO jreg = 1,nreg |
---|
809 | DO jg = 1,ng |
---|
810 | ! region_fracs(jreg,nlev,jcol) is the fraction of each |
---|
811 | ! region in the lowest model level |
---|
812 | total_source(jg,jreg,nlev+1) = region_fracs(jreg,nlev,jcol)*emission(jg,jcol) |
---|
813 | total_albedo(jg,jreg,jreg,nlev+1) = albedo(jg,jcol) |
---|
814 | end do |
---|
815 | end do |
---|
816 | ! Equivalent surface values for computing clear-sky fluxes |
---|
817 | if (config%do_clear) then |
---|
818 | DO jg = 1,ng |
---|
819 | total_source_clear(jg,nlev+1) = emission(jg,jcol) |
---|
820 | end do |
---|
821 | ! In the case of surface albedo there is no dependence on |
---|
822 | ! cloud fraction so we can copy the all-sky value |
---|
823 | total_albedo_clear(1:ng,nlev+1) = total_albedo(1:ng,1,1,nlev+1) |
---|
824 | end if |
---|
825 | |
---|
826 | ! Loop back up through the atmosphere computing the total albedo |
---|
827 | ! and the total upwelling due to emission below each level |
---|
828 | DO jlev = nlev,1,-1 |
---|
829 | if (config%do_clear) then |
---|
830 | ! Use adding method for clear-sky arrays; note that there |
---|
831 | ! is no need to consider "above" and "below" quantities |
---|
832 | ! since with no cloud overlap to worry about, these are |
---|
833 | ! the same |
---|
834 | inv_denom_scalar(:) = 1.0_jprb & |
---|
835 | & / (1.0_jprb - total_albedo_clear(:,jlev+1)*ref_clear(:,jlev)) |
---|
836 | total_albedo_clear(:,jlev) = ref_clear(:,jlev) & |
---|
837 | & + trans_clear(:,jlev)*trans_clear(:,jlev)*total_albedo_clear(:,jlev+1) & |
---|
838 | & * inv_denom_scalar(:) |
---|
839 | total_source_clear(:,jlev) = source_up_clear(:,jlev) & |
---|
840 | & + trans_clear(:,jlev)*(total_source_clear(:,jlev+1) & |
---|
841 | & + total_albedo_clear(:,jlev+1)*source_dn_clear(:,jlev)) & |
---|
842 | & * inv_denom_scalar(:) |
---|
843 | end if |
---|
844 | |
---|
845 | if (is_clear_sky_layer(jlev)) then |
---|
846 | ! Clear-sky layer: use scalar adding method |
---|
847 | inv_denom_scalar(:) = 1.0_jprb & |
---|
848 | & / (1.0_jprb - total_albedo(:,1,1,jlev+1)*reflectance(:,1,1,jlev)) |
---|
849 | total_albedo_below = 0.0_jprb |
---|
850 | total_albedo_below(:,1,1) = reflectance(:,1,1,jlev) & |
---|
851 | & + transmittance(:,1,1,jlev) * transmittance(:,1,1,jlev) & |
---|
852 | & * total_albedo(:,1,1,jlev+1) * inv_denom_scalar(:) |
---|
853 | total_source_below = 0.0_jprb |
---|
854 | total_source_below(:,1) = source_up(:,1,jlev) & |
---|
855 | & + transmittance(:,1,1,jlev)*(total_source(:,1,jlev+1) & |
---|
856 | & + total_albedo(:,1,1,jlev+1)*source_dn(:,1,jlev)) & |
---|
857 | & * inv_denom_scalar(:) |
---|
858 | else if (config%do_3d_effects .or. & |
---|
859 | & config%do_3d_lw_multilayer_effects) then |
---|
860 | ! Cloudy layer: use matrix adding method |
---|
861 | denominator = identity_minus_mat_x_mat(ng,ng,nreg,& |
---|
862 | & total_albedo(:,:,:,jlev+1), reflectance(:,:,:,jlev)) |
---|
863 | total_albedo_below = reflectance(:,:,:,jlev) & |
---|
864 | & + mat_x_mat(ng,ng,nreg,transmittance(:,:,:,jlev), & |
---|
865 | & solve_mat(ng,ng,nreg,denominator, & |
---|
866 | & mat_x_mat(ng,ng,nreg,total_albedo(:,:,:,jlev+1), & |
---|
867 | & transmittance(:,:,:,jlev)))) |
---|
868 | total_source_below = source_up(:,:,jlev) & |
---|
869 | & + mat_x_vec(ng,ng,nreg,transmittance(:,:,:,jlev), & |
---|
870 | & solve_vec(ng,ng,nreg,denominator, & |
---|
871 | & total_source(:,:,jlev+1) + mat_x_vec(ng,ng,nreg, & |
---|
872 | & total_albedo(:,:,:,jlev+1),source_dn(:,:,jlev)))) |
---|
873 | else |
---|
874 | ! Cloudy layer for which reflectance, transmittance and |
---|
875 | ! total_albedo matrices are diagonal |
---|
876 | total_albedo_below = 0.0_jprb |
---|
877 | total_source_below = 0.0_jprb |
---|
878 | DO jreg = 1,nreg |
---|
879 | inv_denom_scalar(:) = 1.0_jprb / (1.0_jprb & |
---|
880 | & - total_albedo(:,jreg,jreg,jlev+1)*reflectance(:,jreg,jreg,jlev)) |
---|
881 | total_albedo_below(:,jreg,jreg) = reflectance(:,jreg,jreg,jlev) & |
---|
882 | & + transmittance(:,jreg,jreg,jlev)*transmittance(:,jreg,jreg,jlev) & |
---|
883 | & * total_albedo(:,jreg,jreg,jlev+1) & |
---|
884 | & * inv_denom_scalar(:) |
---|
885 | total_source_below(:,jreg) = source_up(:,jreg,jlev) & |
---|
886 | & + transmittance(:,jreg,jreg,jlev)*(total_source(:,jreg,jlev+1) & |
---|
887 | & + total_albedo(:,jreg,jreg,jlev+1)*source_dn(:,jreg,jlev)) & |
---|
888 | & * inv_denom_scalar(:) |
---|
889 | end do |
---|
890 | |
---|
891 | end if |
---|
892 | |
---|
893 | ! Account for cloud overlap when converting albedo and |
---|
894 | ! source below a layer interface to the equivalent values |
---|
895 | ! just above |
---|
896 | if (is_clear_sky_layer(jlev) .AND. is_clear_sky_layer(jlev-1)) then |
---|
897 | ! If both layers are cloud free, this is trivial... |
---|
898 | total_albedo(:,:,:,jlev) = 0.0_jprb |
---|
899 | total_albedo(:,1,1,jlev) = total_albedo_below(:,1,1) |
---|
900 | total_source(:,:,jlev) = 0.0_jprb |
---|
901 | total_source(:,1,jlev) = total_source_below(:,1) |
---|
902 | else |
---|
903 | total_source(:,:,jlev) = singlemat_x_vec(ng,ng,nreg,& |
---|
904 | & u_matrix(:,:,jlev,jcol), total_source_below) |
---|
905 | |
---|
906 | ! if (config%do_3d_effects .or. config%do_3d_lw_multilayer_effects) then |
---|
907 | if (config%do_3d_lw_multilayer_effects) then |
---|
908 | ! Use the overlap matrices u_matrix and v_matrix |
---|
909 | total_albedo(:,:,:,jlev) = singlemat_x_mat(ng,ng,nreg,& |
---|
910 | & u_matrix(:,:,jlev,jcol), & |
---|
911 | & mat_x_singlemat(ng,ng,nreg,total_albedo_below,& |
---|
912 | & v_matrix(:,:,jlev,jcol))) |
---|
913 | else |
---|
914 | total_albedo(:,:,:,jlev) = 0.0_jprb |
---|
915 | ! "total_albedo" is diagonal and we wish to exclude |
---|
916 | ! anomalous horizontal transport described by Shonk & |
---|
917 | ! Hogan (2008). Therefore, the operation we perform is |
---|
918 | ! essentially diag(total_albedo) = matmul(transpose(v_matrix), |
---|
919 | ! diag(total_albedo_below)). |
---|
920 | DO jreg = 1,nreg |
---|
921 | DO jreg2 = 1,nreg |
---|
922 | total_albedo(:,jreg,jreg,jlev) & |
---|
923 | & = total_albedo(:,jreg,jreg,jlev) & |
---|
924 | & + total_albedo_below(:,jreg2,jreg2) & |
---|
925 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
926 | end do |
---|
927 | end do |
---|
928 | end if |
---|
929 | end if |
---|
930 | |
---|
931 | end do ! Reverse loop over levels |
---|
932 | |
---|
933 | ! -------------------------------------------------------- |
---|
934 | ! Section 5: Compute fluxes |
---|
935 | ! -------------------------------------------------------- |
---|
936 | |
---|
937 | ! Top-of-atmosphere fluxes into the regions of the top-most |
---|
938 | ! layer: zero since we assume no extraterrestrial longwave |
---|
939 | ! radiation (the shortwave scheme accounts for solar radiation |
---|
940 | ! in the "longwave" part of the spectrum) |
---|
941 | flux_dn_below = 0.0_jprb |
---|
942 | flux%lw_dn(jcol,1) = 0.0_jprb |
---|
943 | if (config%do_clear) then |
---|
944 | flux_dn_clear = 0.0_jprb |
---|
945 | flux%lw_dn_clear(jcol,1) = 0.0_jprb |
---|
946 | end if |
---|
947 | |
---|
948 | ! Store the outgoing longwave radiation at top-of-atmosphere |
---|
949 | flux%lw_up(jcol,1) = sum(sum(total_source(:,:,1),1)) |
---|
950 | if (config%do_clear) then |
---|
951 | flux%lw_up_clear(jcol,1) = sum(total_source_clear(:,1)) |
---|
952 | end if |
---|
953 | |
---|
954 | if (config%do_save_spectral_flux) then |
---|
955 | call indexed_sum(sum(total_source(:,:,1),2), & |
---|
956 | & config%i_spec_from_reordered_g_lw, & |
---|
957 | & flux%lw_up_band(:,jcol,1)) |
---|
958 | flux%lw_dn_band(:,jcol,1) = 0.0_jprb |
---|
959 | if (config%do_clear) then |
---|
960 | call indexed_sum(total_source_clear(:,1), & |
---|
961 | & config%i_spec_from_reordered_g_lw, & |
---|
962 | & flux%lw_up_clear_band(:,jcol,1)) |
---|
963 | flux%lw_dn_clear_band(:,jcol,1) = 0.0_jprb |
---|
964 | end if |
---|
965 | end if |
---|
966 | |
---|
967 | ! Final loop back down through the atmosphere to compute fluxes |
---|
968 | DO jlev = 1,nlev |
---|
969 | if (config%do_clear) then |
---|
970 | ! Scalar operations for clear-sky fluxes |
---|
971 | flux_dn_clear(:) = (trans_clear(:,jlev)*flux_dn_clear(:) & |
---|
972 | + ref_clear(:,jlev)*total_source_clear(:,jlev+1) & |
---|
973 | + source_dn_clear(:,jlev)) & |
---|
974 | / (1.0_jprb - ref_clear(:,jlev)*total_albedo_clear(:,jlev+1)) |
---|
975 | flux_up_clear(:) = total_source_clear(:,jlev+1) & |
---|
976 | + total_albedo_clear(:,jlev+1)*flux_dn_clear(:) |
---|
977 | end if |
---|
978 | |
---|
979 | if (is_clear_sky_layer(jlev)) then |
---|
980 | ! Scalar operations for clear-sky layer |
---|
981 | flux_dn_above(:,1) = (transmittance(:,1,1,jlev)*flux_dn_below(:,1) & |
---|
982 | & + reflectance(:,1,1,jlev)*total_source(:,1,jlev+1) & |
---|
983 | & + source_dn(:,1,jlev)) & |
---|
984 | & / (1.0_jprb - reflectance(:,1,1,jlev)*total_albedo(:,1,1,jlev+1)) |
---|
985 | flux_dn_above(:,2:nreg) = 0.0_jprb |
---|
986 | flux_up_above(:,1) = total_source(:,1,jlev+1) & |
---|
987 | & + total_albedo(:,1,1,jlev+1)*flux_dn_above(:,1) |
---|
988 | flux_up_above(:,2:nreg) = 0.0_jprb |
---|
989 | else if (config%do_3d_effects .or. config%do_3d_lw_multilayer_effects) then |
---|
990 | ! Matrix operations for cloudy layer |
---|
991 | denominator = identity_minus_mat_x_mat(ng,ng,nreg,reflectance(:,:,:,jlev), & |
---|
992 | & total_albedo(:,:,:,jlev+1)) |
---|
993 | flux_dn_above = solve_vec(ng,ng,nreg,denominator, & |
---|
994 | & mat_x_vec(ng,ng,nreg,transmittance(:,:,:,jlev),flux_dn_below) & |
---|
995 | & + mat_x_vec(ng,ng,nreg,reflectance(:,:,:,jlev), & |
---|
996 | & total_source(:,:,jlev+1)) & |
---|
997 | & + source_dn(:,:,jlev)) |
---|
998 | flux_up_above = mat_x_vec(ng,ng,nreg,total_albedo(:,:,:,jlev+1), & |
---|
999 | & flux_dn_above) + total_source(:,:,jlev+1) |
---|
1000 | else |
---|
1001 | DO jreg = 1,nreg |
---|
1002 | ! Scalar operations for all regions, requiring that |
---|
1003 | ! reflectance, transmittance and total_albedo are diagonal |
---|
1004 | flux_dn_above(:,jreg) = (transmittance(:,jreg,jreg,jlev)*flux_dn_below(:,jreg) & |
---|
1005 | & + reflectance(:,jreg,jreg,jlev)*total_source(:,jreg,jlev+1) & |
---|
1006 | & + source_dn(:,jreg,jlev)) & |
---|
1007 | & / (1.0_jprb - reflectance(:,jreg,jreg,jlev) & |
---|
1008 | & * total_albedo(:,jreg,jreg,jlev+1)) |
---|
1009 | flux_up_above(:,jreg) = total_source(:,jreg,jlev+1) & |
---|
1010 | & + total_albedo(:,jreg,jreg,jlev+1)*flux_dn_above(:,jreg) |
---|
1011 | end do |
---|
1012 | end if |
---|
1013 | |
---|
1014 | ! Account for overlap rules in translating fluxes just above |
---|
1015 | ! a layer interface to the values just below |
---|
1016 | if (is_clear_sky_layer(jlev) .AND. is_clear_sky_layer(jlev+1)) then |
---|
1017 | flux_dn_below = flux_dn_above |
---|
1018 | else |
---|
1019 | flux_dn_below = singlemat_x_vec(ng,ng,nreg,v_matrix(:,:,jlev+1,jcol), & |
---|
1020 | & flux_dn_above) |
---|
1021 | end if |
---|
1022 | |
---|
1023 | ! Store the broadband fluxes |
---|
1024 | flux%lw_up(jcol,jlev+1) = sum(sum(flux_up_above,1)) |
---|
1025 | flux%lw_dn(jcol,jlev+1) = sum(sum(flux_dn_above,1)) |
---|
1026 | if (config%do_clear) then |
---|
1027 | flux%lw_up_clear(jcol,jlev+1) = sum(flux_up_clear) |
---|
1028 | flux%lw_dn_clear(jcol,jlev+1) = sum(flux_dn_clear) |
---|
1029 | end if |
---|
1030 | |
---|
1031 | if (config%do_save_spectral_flux) then |
---|
1032 | call indexed_sum(sum(flux_up_above,2), & |
---|
1033 | & config%i_spec_from_reordered_g_lw, & |
---|
1034 | & flux%lw_up_band(:,jcol,jlev+1)) |
---|
1035 | call indexed_sum(sum(flux_dn_above,2), & |
---|
1036 | & config%i_spec_from_reordered_g_lw, & |
---|
1037 | & flux%lw_dn_band(:,jcol,jlev+1)) |
---|
1038 | if (config%do_clear) then |
---|
1039 | call indexed_sum(flux_up_clear, & |
---|
1040 | & config%i_spec_from_reordered_g_lw, & |
---|
1041 | & flux%lw_up_clear_band(:,jcol,jlev+1)) |
---|
1042 | call indexed_sum(flux_dn_clear, & |
---|
1043 | & config%i_spec_from_reordered_g_lw, & |
---|
1044 | & flux%lw_dn_clear_band(:,jcol,jlev+1)) |
---|
1045 | end if |
---|
1046 | end if |
---|
1047 | |
---|
1048 | end do ! Final loop over levels |
---|
1049 | |
---|
1050 | ! Store surface spectral downwelling fluxes, which at this point |
---|
1051 | ! are at the surface |
---|
1052 | flux%lw_dn_surf_g(:,jcol) = sum(flux_dn_above,2) |
---|
1053 | if (config%do_clear) then |
---|
1054 | flux%lw_dn_surf_clear_g(:,jcol) = flux_dn_clear |
---|
1055 | end if |
---|
1056 | |
---|
1057 | ! Compute the longwave derivatives needed by Hogan and Bozzo |
---|
1058 | ! (2015) approximate radiation update scheme |
---|
1059 | if (config%do_lw_derivatives) then |
---|
1060 | ! Note that at this point flux_up_above contains the spectral |
---|
1061 | ! fluxes into the regions of the lowest layer; we sum over |
---|
1062 | ! regions first to provide a simple spectral flux upwelling |
---|
1063 | ! from the surface |
---|
1064 | call calc_lw_derivatives_matrix(ng, nlev, nreg, jcol, transmittance, & |
---|
1065 | & u_matrix(:,:,:,jcol), sum(flux_up_above,2), flux%lw_derivatives) |
---|
1066 | end if |
---|
1067 | |
---|
1068 | end do ! Loop over columns |
---|
1069 | |
---|
1070 | if (config%iverbose >= 3) then |
---|
1071 | write(nulout,*) |
---|
1072 | end if |
---|
1073 | |
---|
1074 | ! Report number of calls to each method of solving single-layer |
---|
1075 | ! two-stream equations |
---|
1076 | if (config%iverbose >= 4) then |
---|
1077 | write(nulout,'(a,i0)') ' Matrix-exponential calls: ', n_calls_expm |
---|
1078 | write(nulout,'(a,i0)') ' Meador-Weaver calls: ', n_calls_meador_weaver |
---|
1079 | end if |
---|
1080 | |
---|
1081 | if (lhook) call dr_hook('radiation_spartacus_lw:solver_spartacus_lw',1,hook_handle) |
---|
1082 | |
---|
1083 | end subroutine solver_spartacus_lw |
---|
1084 | |
---|
1085 | end module radiation_spartacus_lw |
---|