1 | ! radiation_ifs_rrtm.F90 - Interface to IFS implementation of RRTM-G |
---|
2 | |
---|
3 | ! (C) Copyright 2015- ECMWF. |
---|
4 | |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | |
---|
15 | ! Modifications |
---|
16 | ! 2017-04-11 R. Hogan Receive "surface" dummy argument |
---|
17 | ! 2017-09-08 R. Hogan Reverted some changes |
---|
18 | ! 2017-10-18 R. Hogan Added planck_function public function |
---|
19 | ! 2018-01-11 R. Hogan Added optional spectral scaling of incoming solar radiation |
---|
20 | ! 2018-02-22 R. Hogan Optimized reverse indexing of heights |
---|
21 | ! 2018-05-05 R. Hogan gas_optics can be called for reduced number of levels |
---|
22 | ! 2019-01-02 R. Hogan Initialize shortwave props to zero in case sun below horizon |
---|
23 | |
---|
24 | module radiation_ifs_rrtm |
---|
25 | |
---|
26 | implicit none |
---|
27 | |
---|
28 | public :: setup_gas_optics, gas_optics, planck_function, set_gas_units |
---|
29 | |
---|
30 | contains |
---|
31 | |
---|
32 | !--------------------------------------------------------------------- |
---|
33 | ! Setup the IFS implementation of RRTM-G gas absorption model |
---|
34 | subroutine setup_gas_optics(config, directory) |
---|
35 | |
---|
36 | use yoerrtm, only : jpglw |
---|
37 | use yoesrtm, only : jpgsw |
---|
38 | use yoerrtftr, only : ngb_lw => ngb |
---|
39 | use yoesrtm, only : ngb_sw => ngbsw |
---|
40 | use yomhook, only : lhook, dr_hook |
---|
41 | |
---|
42 | use radiation_config |
---|
43 | |
---|
44 | type(config_type), intent(inout), target :: config |
---|
45 | character(len=*), intent(in) :: directory |
---|
46 | |
---|
47 | integer :: irep ! For implied do |
---|
48 | |
---|
49 | integer, parameter :: RRTM_GPOINT_REORDERING_LW(140) = (/ & |
---|
50 | & 89, 90, 139, 77, 137, 69, 131, 97, 91, 70, 78, 71, 53, 72, 123, 54, 79, 98, & |
---|
51 | & 92, 55, 80, 132, 124, 81, 73, 56, 99, 82, 57, 23, 125, 100, 24, 74, 93, 58, 25, & |
---|
52 | & 83, 126, 75, 26, 11, 101, 133, 59, 27, 76, 140, 12, 84, 102, 94, 28, 127, 85, & |
---|
53 | & 13, 39, 60, 86, 103, 87, 109, 14, 29, 115, 40, 95, 15, 61, 88, 41, 110, 104, 1, & |
---|
54 | & 116, 42, 30, 134, 128, 138, 96, 62, 16, 43, 117, 63, 111, 44, 2, 64, 31, 65, & |
---|
55 | & 105, 17, 45, 66, 118, 32, 3, 33, 67, 18, 129, 135, 46, 112, 34, 106, 68, 35, 4, & |
---|
56 | & 119, 36, 47, 107, 19, 37, 38, 113, 48, 130, 5, 120, 49, 108, 20, 50, 51, 114, & |
---|
57 | & 21, 121, 52, 136, 122, 6, 22, 7, 8, 9, 10 & |
---|
58 | & /) |
---|
59 | integer, parameter :: RRTM_GPOINT_REORDERING_SW(112) = (/ & |
---|
60 | & 35, 45, 19, 27, 36, 57, 20, 46, 58, 21, 28, 67, 55, 68, 37, 1, 69, 22, 29, 59, & |
---|
61 | & 78, 101, 79, 77, 70, 76, 47, 75, 30, 81, 60, 102, 80, 82, 23, 2, 83, 84, 85, & |
---|
62 | & 86, 103, 61, 31, 87, 56, 38, 71, 48, 88, 3, 62, 89, 24, 7, 49, 32, 104, 72, 90, & |
---|
63 | & 63, 39, 4, 8, 50, 91, 64, 40, 33, 25, 51, 95, 96, 73, 65, 9, 41, 97, 92, 105, & |
---|
64 | & 52, 5, 98, 10, 42, 99, 100, 66, 11, 74, 34, 53, 26, 6, 106, 12, 43, 13, 54, 93, & |
---|
65 | & 44, 107, 94, 14, 108, 15, 16, 109, 17, 18, 110, 111, 112 & |
---|
66 | & /) |
---|
67 | |
---|
68 | real(jprb) :: hook_handle |
---|
69 | |
---|
70 | !#include "surdi.intfb.h" |
---|
71 | #include "surrtab.intfb.h" |
---|
72 | #include "surrtpk.intfb.h" |
---|
73 | #include "surrtrf.intfb.h" |
---|
74 | #include "rrtm_init_140gp.intfb.h" |
---|
75 | #include "srtm_init.intfb.h" |
---|
76 | |
---|
77 | if (lhook) call dr_hook('radiation_ifs_rrtm:setup_gas_optics',0,hook_handle) |
---|
78 | |
---|
79 | ! The IFS implementation of RRTMG uses many global variables. In |
---|
80 | ! the IFS these will have been set up already; otherwise set them |
---|
81 | ! up now. |
---|
82 | if (config%do_setup_ifsrrtm) then |
---|
83 | !call SURDI |
---|
84 | call SURRTAB |
---|
85 | call SURRTPK |
---|
86 | call SURRTRF |
---|
87 | call RRTM_INIT_140GP(directory) |
---|
88 | call SRTM_INIT(directory) |
---|
89 | end if |
---|
90 | |
---|
91 | ! Cloud and aerosol properties can only be defined per band |
---|
92 | config%do_cloud_aerosol_per_sw_g_point = .false. |
---|
93 | config%do_cloud_aerosol_per_lw_g_point = .false. |
---|
94 | |
---|
95 | config%n_g_sw = jpgsw |
---|
96 | config%n_g_lw = jpglw |
---|
97 | config%n_bands_sw = 14 |
---|
98 | config%n_bands_lw = 16 |
---|
99 | |
---|
100 | ! Wavenumber ranges of each band may be needed so that the user |
---|
101 | ! can compute UV and photosynthetically active radiation for a |
---|
102 | ! particular wavelength range |
---|
103 | call config%gas_optics_sw%spectral_def%allocate_bands_only( & |
---|
104 | & [2600.0_jprb, 3250.0_jprb, 4000.0_jprb, 4650.0_jprb, 5150.0_jprb, 6150.0_jprb, 7700.0_jprb, & |
---|
105 | & 8050.0_jprb, 12850.0_jprb, 16000.0_jprb, 22650.0_jprb, 29000.0_jprb, 38000.0_jprb, 820.0_jprb], & |
---|
106 | & [3250.0_jprb, 4000.0_jprb, 4650.0_jprb, 5150.0_jprb, 6150.0_jprb, 7700.0_jprb, 8050.0_jprb, & |
---|
107 | & 12850.0_jprb, 16000.0_jprb, 22650.0_jprb, 29000.0_jprb, 38000.0_jprb, 50000.0_jprb, 2600.0_jprb]) |
---|
108 | call config%gas_optics_lw%spectral_def%allocate_bands_only( & |
---|
109 | & [10.0_jprb, 350.0_jprb, 500.0_jprb, 630.0_jprb, 700.0_jprb, 820.0_jprb, 980.0_jprb, 1080.0_jprb, & |
---|
110 | & 1180.0_jprb, 1390.0_jprb, 1480.0_jprb, 1800.0_jprb, 2080.0_jprb, 2250.0_jprb, 2380.0_jprb, 2600.0_jprb], & |
---|
111 | & [350.0_jprb, 500.0_jprb, 630.0_jprb, 700.0_jprb, 820.0_jprb, 980.0_jprb, 1080.0_jprb, 1180.0_jprb, & |
---|
112 | & 1390.0_jprb, 1480.0_jprb, 1800.0_jprb, 2080.0_jprb, 2250.0_jprb, 2380.0_jprb, 2600.0_jprb, 3250.0_jprb]) |
---|
113 | |
---|
114 | allocate(config%i_band_from_g_sw (config%n_g_sw)) |
---|
115 | allocate(config%i_band_from_g_lw (config%n_g_lw)) |
---|
116 | allocate(config%i_band_from_reordered_g_sw(config%n_g_sw)) |
---|
117 | allocate(config%i_band_from_reordered_g_lw(config%n_g_lw)) |
---|
118 | allocate(config%i_g_from_reordered_g_sw(config%n_g_sw)) |
---|
119 | allocate(config%i_g_from_reordered_g_lw(config%n_g_lw)) |
---|
120 | |
---|
121 | ! Shortwave starts at 16: need to start at 1 |
---|
122 | config%i_band_from_g_sw = ngb_sw - ngb_sw(1)+1 |
---|
123 | config%i_band_from_g_lw = ngb_lw |
---|
124 | |
---|
125 | if (config%i_solver_sw == ISolverSpartacus) then |
---|
126 | ! SPARTACUS requires g points ordered in approximately |
---|
127 | ! increasing order of optical depth |
---|
128 | config%i_g_from_reordered_g_sw = RRTM_GPOINT_REORDERING_SW |
---|
129 | else |
---|
130 | ! Implied-do for no reordering |
---|
131 | ! config%i_g_from_reordered_g_sw = RRTM_GPOINT_REORDERING_SW |
---|
132 | config%i_g_from_reordered_g_sw = (/ (irep, irep=1,config%n_g_sw) /) |
---|
133 | end if |
---|
134 | |
---|
135 | if (config%i_solver_lw == ISolverSpartacus) then |
---|
136 | ! SPARTACUS requires g points ordered in approximately |
---|
137 | ! increasing order of optical depth |
---|
138 | config%i_g_from_reordered_g_lw = RRTM_GPOINT_REORDERING_LW |
---|
139 | else |
---|
140 | ! Implied-do for no reordering |
---|
141 | config%i_g_from_reordered_g_lw = (/ (irep, irep=1,config%n_g_lw) /) |
---|
142 | end if |
---|
143 | |
---|
144 | config%i_band_from_reordered_g_sw & |
---|
145 | = config%i_band_from_g_sw(config%i_g_from_reordered_g_sw) |
---|
146 | |
---|
147 | config%i_band_from_reordered_g_lw & |
---|
148 | = config%i_band_from_g_lw(config%i_g_from_reordered_g_lw) |
---|
149 | |
---|
150 | ! The i_spec_* variables are used solely for storing spectral |
---|
151 | ! data, and this can either be by band or by g-point |
---|
152 | if (config%do_save_spectral_flux) then |
---|
153 | if (config%do_save_gpoint_flux) then |
---|
154 | config%n_spec_sw = config%n_g_sw |
---|
155 | config%n_spec_lw = config%n_g_lw |
---|
156 | config%i_spec_from_reordered_g_sw => config%i_g_from_reordered_g_sw |
---|
157 | config%i_spec_from_reordered_g_lw => config%i_g_from_reordered_g_lw |
---|
158 | else |
---|
159 | config%n_spec_sw = config%n_bands_sw |
---|
160 | config%n_spec_lw = config%n_bands_lw |
---|
161 | config%i_spec_from_reordered_g_sw => config%i_band_from_reordered_g_sw |
---|
162 | config%i_spec_from_reordered_g_lw => config%i_band_from_reordered_g_lw |
---|
163 | end if |
---|
164 | else |
---|
165 | config%n_spec_sw = 0 |
---|
166 | config%n_spec_lw = 0 |
---|
167 | nullify(config%i_spec_from_reordered_g_sw) |
---|
168 | nullify(config%i_spec_from_reordered_g_lw) |
---|
169 | end if |
---|
170 | |
---|
171 | if (lhook) call dr_hook('radiation_ifs_rrtm:setup_gas_optics',1,hook_handle) |
---|
172 | |
---|
173 | end subroutine setup_gas_optics |
---|
174 | |
---|
175 | |
---|
176 | !--------------------------------------------------------------------- |
---|
177 | ! Scale gas mixing ratios according to required units |
---|
178 | subroutine set_gas_units(gas) |
---|
179 | |
---|
180 | use radiation_gas, only : gas_type, IMassMixingRatio |
---|
181 | type(gas_type), intent(inout) :: gas |
---|
182 | |
---|
183 | call gas%set_units(IMassMixingRatio) |
---|
184 | |
---|
185 | end subroutine set_gas_units |
---|
186 | |
---|
187 | |
---|
188 | !--------------------------------------------------------------------- |
---|
189 | ! Compute gas optical depths, shortwave scattering, Planck function |
---|
190 | ! and incoming shortwave radiation at top-of-atmosphere |
---|
191 | subroutine gas_optics(ncol,nlev,istartcol,iendcol, & |
---|
192 | & config, single_level, thermodynamics, gas, & |
---|
193 | & od_lw, od_sw, ssa_sw, lw_albedo, planck_hl, lw_emission, & |
---|
194 | & incoming_sw) |
---|
195 | |
---|
196 | use parkind1, only : jprb, jpim |
---|
197 | |
---|
198 | USE PARRRTM , ONLY : JPBAND, JPXSEC, JPINPX |
---|
199 | USE YOERRTM , ONLY : JPGPT_LW => JPGPT |
---|
200 | USE YOESRTM , ONLY : JPGPT_SW => JPGPT |
---|
201 | !USE YOMDIMV , ONLY : YRDIMV |
---|
202 | use yomhook , only : lhook, dr_hook |
---|
203 | |
---|
204 | use radiation_config, only : config_type, ISolverSpartacus |
---|
205 | use radiation_thermodynamics, only : thermodynamics_type |
---|
206 | use radiation_single_level, only : single_level_type |
---|
207 | use radiation_gas |
---|
208 | |
---|
209 | integer, intent(in) :: ncol ! number of columns |
---|
210 | integer, intent(in) :: nlev ! number of model levels |
---|
211 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
212 | type(config_type), intent(in) :: config |
---|
213 | type(single_level_type), intent(in) :: single_level |
---|
214 | type(thermodynamics_type),intent(in) :: thermodynamics |
---|
215 | type(gas_type), intent(in) :: gas |
---|
216 | |
---|
217 | ! Longwave albedo of the surface |
---|
218 | real(jprb), dimension(config%n_g_lw,istartcol:iendcol), & |
---|
219 | & intent(in), optional :: lw_albedo |
---|
220 | |
---|
221 | ! Gaseous layer optical depth in longwave and shortwave, and |
---|
222 | ! shortwave single scattering albedo (i.e. fraction of extinction |
---|
223 | ! due to Rayleigh scattering) at each g-point |
---|
224 | real(jprb), dimension(config%n_g_lw,nlev,istartcol:iendcol), intent(out) :: & |
---|
225 | & od_lw |
---|
226 | real(jprb), dimension(config%n_g_sw,nlev,istartcol:iendcol), intent(out) :: & |
---|
227 | & od_sw, ssa_sw |
---|
228 | |
---|
229 | ! The Planck function (emitted flux from a black body) at half |
---|
230 | ! levels at each longwave g-point |
---|
231 | real(jprb), dimension(config%n_g_lw,nlev+1,istartcol:iendcol), & |
---|
232 | & intent(out), optional :: planck_hl |
---|
233 | ! Planck function for the surface (W m-2) |
---|
234 | real(jprb), dimension(config%n_g_lw,istartcol:iendcol), & |
---|
235 | & intent(out), optional :: lw_emission |
---|
236 | |
---|
237 | ! The incoming shortwave flux into a plane perpendicular to the |
---|
238 | ! incoming radiation at top-of-atmosphere in each of the shortwave |
---|
239 | ! g-points |
---|
240 | real(jprb), dimension(config%n_g_sw,istartcol:iendcol), & |
---|
241 | & intent(out), optional :: incoming_sw |
---|
242 | |
---|
243 | real(jprb) :: incoming_sw_scale(istartcol:iendcol) |
---|
244 | |
---|
245 | ! The variables in capitals are used in the same way as the |
---|
246 | ! equivalent routine in the IFS |
---|
247 | |
---|
248 | real(jprb) :: ZOD_LW(JPGPT_LW,nlev,istartcol:iendcol) ! Note ordering of dimensions |
---|
249 | real(jprb) :: ZOD_SW(istartcol:iendcol,nlev,JPGPT_SW) |
---|
250 | real(jprb) :: ZSSA_SW(istartcol:iendcol,nlev,JPGPT_SW) |
---|
251 | real(jprb) :: ZINCSOL(istartcol:iendcol,JPGPT_SW) |
---|
252 | |
---|
253 | real(jprb) :: ZCOLMOL(istartcol:iendcol,nlev) |
---|
254 | real(jprb) :: ZCOLDRY(istartcol:iendcol,nlev) |
---|
255 | real(jprb) :: ZWBRODL(istartcol:iendcol,nlev) !BROADENING GASES,column density (mol/cm2) |
---|
256 | real(jprb) :: ZCOLBRD(istartcol:iendcol,nlev) !BROADENING GASES, column amount |
---|
257 | real(jprb) :: ZWKL(istartcol:iendcol,JPINPX,nlev) |
---|
258 | |
---|
259 | real(jprb) :: ZWX(istartcol:iendcol,JPXSEC,nlev) ! Amount of trace gases |
---|
260 | |
---|
261 | real(jprb) :: ZFLUXFAC, ZPI |
---|
262 | |
---|
263 | ! - from AER |
---|
264 | real(jprb) :: ZTAUAERL(istartcol:iendcol,nlev,JPBAND) |
---|
265 | |
---|
266 | !- from INTFAC |
---|
267 | real(jprb) :: ZFAC00(istartcol:iendcol,nlev) |
---|
268 | real(jprb) :: ZFAC01(istartcol:iendcol,nlev) |
---|
269 | real(jprb) :: ZFAC10(istartcol:iendcol,nlev) |
---|
270 | real(jprb) :: ZFAC11(istartcol:iendcol,nlev) |
---|
271 | |
---|
272 | !- from FOR |
---|
273 | real(jprb) :: ZFORFAC(istartcol:iendcol,nlev) |
---|
274 | real(jprb) :: ZFORFRAC(istartcol:iendcol,nlev) |
---|
275 | integer :: INDFOR(istartcol:iendcol,nlev) |
---|
276 | |
---|
277 | !- from MINOR |
---|
278 | integer :: INDMINOR(istartcol:iendcol,nlev) |
---|
279 | real(jprb) :: ZSCALEMINOR(istartcol:iendcol,nlev) |
---|
280 | real(jprb) :: ZSCALEMINORN2(istartcol:iendcol,nlev) |
---|
281 | real(jprb) :: ZMINORFRAC(istartcol:iendcol,nlev) |
---|
282 | |
---|
283 | real(jprb) :: & |
---|
284 | & ZRAT_H2OCO2(istartcol:iendcol,nlev),ZRAT_H2OCO2_1(istartcol:iendcol,nlev), & |
---|
285 | & ZRAT_H2OO3(istartcol:iendcol,nlev) ,ZRAT_H2OO3_1(istartcol:iendcol,nlev), & |
---|
286 | & ZRAT_H2ON2O(istartcol:iendcol,nlev),ZRAT_H2ON2O_1(istartcol:iendcol,nlev), & |
---|
287 | & ZRAT_H2OCH4(istartcol:iendcol,nlev),ZRAT_H2OCH4_1(istartcol:iendcol,nlev), & |
---|
288 | & ZRAT_N2OCO2(istartcol:iendcol,nlev),ZRAT_N2OCO2_1(istartcol:iendcol,nlev), & |
---|
289 | & ZRAT_O3CO2(istartcol:iendcol,nlev) ,ZRAT_O3CO2_1(istartcol:iendcol,nlev) |
---|
290 | |
---|
291 | !- from INTIND |
---|
292 | integer :: JP(istartcol:iendcol,nlev) |
---|
293 | integer :: JT(istartcol:iendcol,nlev) |
---|
294 | integer :: JT1(istartcol:iendcol,nlev) |
---|
295 | |
---|
296 | !- from PRECISE |
---|
297 | real(jprb) :: ZONEMINUS, ZONEMINUS_ARRAY(istartcol:iendcol) |
---|
298 | |
---|
299 | !- from PROFDATA |
---|
300 | real(jprb) :: ZCOLH2O(istartcol:iendcol,nlev) |
---|
301 | real(jprb) :: ZCOLCO2(istartcol:iendcol,nlev) |
---|
302 | real(jprb) :: ZCOLO3(istartcol:iendcol,nlev) |
---|
303 | real(jprb) :: ZCOLN2O(istartcol:iendcol,nlev) |
---|
304 | real(jprb) :: ZCOLCH4(istartcol:iendcol,nlev) |
---|
305 | real(jprb) :: ZCOLO2(istartcol:iendcol,nlev) |
---|
306 | real(jprb) :: ZCO2MULT(istartcol:iendcol,nlev) |
---|
307 | integer :: ILAYTROP(istartcol:iendcol) |
---|
308 | integer :: ILAYSWTCH(istartcol:iendcol) |
---|
309 | integer :: ILAYLOW(istartcol:iendcol) |
---|
310 | |
---|
311 | !- from PROFILE |
---|
312 | real(jprb) :: ZPAVEL(istartcol:iendcol,nlev) |
---|
313 | real(jprb) :: ZTAVEL(istartcol:iendcol,nlev) |
---|
314 | real(jprb) :: ZPZ(istartcol:iendcol,0:nlev) |
---|
315 | real(jprb) :: ZTZ(istartcol:iendcol,0:nlev) |
---|
316 | |
---|
317 | !- from SELF |
---|
318 | real(jprb) :: ZSELFFAC(istartcol:iendcol,nlev) |
---|
319 | real(jprb) :: ZSELFFRAC(istartcol:iendcol,nlev) |
---|
320 | integer :: INDSELF(istartcol:iendcol,nlev) |
---|
321 | |
---|
322 | !- from SP |
---|
323 | real(jprb) :: ZPFRAC(istartcol:iendcol,JPGPT_LW,nlev) |
---|
324 | |
---|
325 | !- from SURFACE |
---|
326 | integer :: IREFLECT(istartcol:iendcol) |
---|
327 | |
---|
328 | real(jprb) :: pressure_fl(ncol, nlev), temperature_fl(ncol, nlev) |
---|
329 | |
---|
330 | ! If nlev is less than the number of heights at which gas mixing |
---|
331 | ! ratios are stored, then we assume that the lower part of the |
---|
332 | ! atmosphere is required. This enables nlev=1 to be passed in to |
---|
333 | ! the routine, in which case the gas properties of the lowest |
---|
334 | ! layer are provided, useful for canopy radiative transfer. |
---|
335 | integer :: istartlev, iendlev |
---|
336 | |
---|
337 | integer :: jlev, jgreorder, jg, ig, iband, jcol |
---|
338 | |
---|
339 | real(jprb) :: hook_handle |
---|
340 | |
---|
341 | #include "rrtm_prepare_gases.intfb.h" |
---|
342 | #include "rrtm_setcoef_140gp.intfb.h" |
---|
343 | #include "rrtm_gas_optical_depth.intfb.h" |
---|
344 | #include "srtm_setcoef.intfb.h" |
---|
345 | #include "srtm_gas_optical_depth.intfb.h" |
---|
346 | |
---|
347 | if (lhook) call dr_hook('radiation_ifs_rrtm:gas_optics',0,hook_handle) |
---|
348 | |
---|
349 | ! Compute start and end levels for indexing the gas mixing ratio |
---|
350 | ! and thermodynamics arrays |
---|
351 | iendlev = ubound(gas%mixing_ratio,2) |
---|
352 | istartlev = iendlev - nlev + 1 |
---|
353 | |
---|
354 | ZPI = 2.0_jprb*ASIN(1.0_jprb) |
---|
355 | ZFLUXFAC = ZPI * 1.E+4 |
---|
356 | ZONEMINUS = 1.0_jprb - 1.0e-6_jprb |
---|
357 | ZONEMINUS_ARRAY = ZONEMINUS |
---|
358 | |
---|
359 | ! if (.not. associated(YRDIMV)) then |
---|
360 | ! allocate(YRDIMV) |
---|
361 | ! YRDIMV%NFLEVG = nlev |
---|
362 | ! end if |
---|
363 | |
---|
364 | DO jlev=1,nlev |
---|
365 | DO jcol= istartcol,iendcol |
---|
366 | pressure_fl(jcol,jlev) & |
---|
367 | & = 0.5_jprb * (thermodynamics%pressure_hl(jcol,jlev+istartlev-1) & |
---|
368 | & +thermodynamics%pressure_hl(jcol,jlev+istartlev)) |
---|
369 | temperature_fl(jcol,jlev) & |
---|
370 | & = 0.5_jprb * (thermodynamics%temperature_hl(jcol,jlev+istartlev-1) & |
---|
371 | & +thermodynamics%temperature_hl(jcol,jlev+istartlev)) |
---|
372 | end do |
---|
373 | end do |
---|
374 | |
---|
375 | ! Check we have gas mixing ratios in the right units |
---|
376 | call gas%assert_units(IMassMixingRatio) |
---|
377 | |
---|
378 | ! Warning: O2 is hard-coded within the following function so the |
---|
379 | ! user-provided concentrations of this gas are ignored for both |
---|
380 | ! the longwave and shortwave |
---|
381 | CALL RRTM_PREPARE_GASES & |
---|
382 | & ( istartcol, iendcol, ncol, nlev, & |
---|
383 | & thermodynamics%pressure_hl(:,istartlev:iendlev+1), & |
---|
384 | & pressure_fl, & |
---|
385 | & thermodynamics%temperature_hl(:,istartlev:iendlev+1), & |
---|
386 | & temperature_fl, & |
---|
387 | & gas%mixing_ratio(:,istartlev:iendlev,IH2O), & |
---|
388 | & gas%mixing_ratio(:,istartlev:iendlev,ICO2), & |
---|
389 | & gas%mixing_ratio(:,istartlev:iendlev,ICH4), & |
---|
390 | & gas%mixing_ratio(:,istartlev:iendlev,IN2O), & |
---|
391 | & gas%mixing_ratio(:,istartlev:iendlev,INO2), & |
---|
392 | & gas%mixing_ratio(:,istartlev:iendlev,ICFC11), & |
---|
393 | & gas%mixing_ratio(:,istartlev:iendlev,ICFC12), & |
---|
394 | & gas%mixing_ratio(:,istartlev:iendlev,IHCFC22), & |
---|
395 | & gas%mixing_ratio(:,istartlev:iendlev,ICCl4), & |
---|
396 | & gas%mixing_ratio(:,istartlev:iendlev,IO3), & |
---|
397 | & ZCOLDRY, ZWBRODL,ZWKL, ZWX, & |
---|
398 | & ZPAVEL , ZTAVEL , ZPZ , ZTZ, IREFLECT) |
---|
399 | |
---|
400 | CALL RRTM_SETCOEF_140GP & |
---|
401 | &( istartcol, iendcol, nlev , ZCOLDRY , ZWBRODL , ZWKL , & |
---|
402 | & ZFAC00 , ZFAC01 , ZFAC10 , ZFAC11 , ZFORFAC,ZFORFRAC,INDFOR, JP, JT, JT1 , & |
---|
403 | & ZCOLH2O, ZCOLCO2 , ZCOLO3 , ZCOLN2O, ZCOLCH4, ZCOLO2,ZCO2MULT , ZCOLBRD, & |
---|
404 | & ILAYTROP,ILAYSWTCH, ILAYLOW, ZPAVEL , ZTAVEL , ZSELFFAC, ZSELFFRAC, INDSELF, & |
---|
405 | & INDMINOR,ZSCALEMINOR,ZSCALEMINORN2,ZMINORFRAC,& |
---|
406 | & ZRAT_H2OCO2, ZRAT_H2OCO2_1, ZRAT_H2OO3, ZRAT_H2OO3_1, & |
---|
407 | & ZRAT_H2ON2O, ZRAT_H2ON2O_1, ZRAT_H2OCH4, ZRAT_H2OCH4_1, & |
---|
408 | & ZRAT_N2OCO2, ZRAT_N2OCO2_1, ZRAT_O3CO2, ZRAT_O3CO2_1) |
---|
409 | |
---|
410 | ZTAUAERL(istartcol:iendcol,:,:) = 0.0_jprb |
---|
411 | |
---|
412 | CALL RRTM_GAS_OPTICAL_DEPTH & |
---|
413 | &( istartcol, iendcol, nlev, ZOD_LW, ZPAVEL, ZCOLDRY, ZCOLBRD, ZWX ,& |
---|
414 | & ZTAUAERL, ZFAC00 , ZFAC01, ZFAC10 , ZFAC11 , ZFORFAC,ZFORFRAC,INDFOR, & |
---|
415 | & JP, JT, JT1, ZONEMINUS ,& |
---|
416 | & ZCOLH2O , ZCOLCO2, ZCOLO3, ZCOLN2O, ZCOLCH4, ZCOLO2,ZCO2MULT ,& |
---|
417 | & ILAYTROP, ILAYSWTCH,ILAYLOW, ZSELFFAC, ZSELFFRAC, INDSELF, ZPFRAC, & |
---|
418 | & INDMINOR,ZSCALEMINOR,ZSCALEMINORN2,ZMINORFRAC,& |
---|
419 | & ZRAT_H2OCO2, ZRAT_H2OCO2_1, ZRAT_H2OO3, ZRAT_H2OO3_1, & |
---|
420 | & ZRAT_H2ON2O, ZRAT_H2ON2O_1, ZRAT_H2OCH4, ZRAT_H2OCH4_1, & |
---|
421 | & ZRAT_N2OCO2, ZRAT_N2OCO2_1, ZRAT_O3CO2, ZRAT_O3CO2_1) |
---|
422 | |
---|
423 | if (present(lw_albedo)) then |
---|
424 | |
---|
425 | call planck_function_atmos(nlev, istartcol, iendcol, config, & |
---|
426 | & thermodynamics, ZPFRAC, planck_hl) |
---|
427 | |
---|
428 | if (single_level%is_simple_surface) then |
---|
429 | call planck_function_surf(istartcol, iendcol, config, & |
---|
430 | & single_level%skin_temperature, ZPFRAC(:,:,1), & |
---|
431 | & lw_emission) |
---|
432 | |
---|
433 | ! The following can be used to extract the parameters defined at |
---|
434 | ! the top of the planck_function routine below: |
---|
435 | !write(*,'(a,140(e12.5,","),a)') 'ZPFRAC_surf=[', & |
---|
436 | !& sum(ZPFRAC(istartcol:iendcol,:,1),1) / (iendcol+1-istartcol), ']' |
---|
437 | |
---|
438 | ! lw_emission at this point is actually the planck function of |
---|
439 | ! the surface |
---|
440 | lw_emission = lw_emission * (1.0_jprb - lw_albedo) |
---|
441 | else |
---|
442 | ! Longwave emission has already been computed |
---|
443 | if (config%use_canopy_full_spectrum_lw) then |
---|
444 | lw_emission = transpose(single_level%lw_emission(istartcol:iendcol,:)) |
---|
445 | else |
---|
446 | lw_emission = transpose(single_level%lw_emission(istartcol:iendcol, & |
---|
447 | & config%i_emiss_from_band_lw(config%i_band_from_reordered_g_lw))) |
---|
448 | end if |
---|
449 | end if |
---|
450 | |
---|
451 | end if |
---|
452 | |
---|
453 | if (config%i_solver_lw == ISolverSpartacus) then |
---|
454 | ! if (.true.) then |
---|
455 | ! We need to rearrange the gas optics info in memory: reordering |
---|
456 | ! the g points in order of approximately increasing optical |
---|
457 | ! depth (for efficient 3D processing on only the regions of the |
---|
458 | ! spectrum that are optically thin for gases) and reorder in |
---|
459 | ! pressure since the the functions above treat pressure |
---|
460 | ! decreasing with increasing index. Note that the output gas |
---|
461 | ! arrays have dimensions in a different order to the inputs, |
---|
462 | ! so there is some inefficiency here. |
---|
463 | DO jgreorder = 1,config%n_g_lw |
---|
464 | iband = config%i_band_from_reordered_g_lw(jgreorder) |
---|
465 | ig = config%i_g_from_reordered_g_lw(jgreorder) |
---|
466 | |
---|
467 | ! Top-of-atmosphere half level |
---|
468 | DO jlev = 1,nlev |
---|
469 | DO jcol = istartcol,iendcol |
---|
470 | ! Some g points can return negative optical depths; |
---|
471 | ! specifically original g points 54-56 which causes |
---|
472 | ! unphysical single-scattering albedo when combined with |
---|
473 | ! aerosol |
---|
474 | od_lw(jgreorder,jlev,jcol) & |
---|
475 | & = max(config%min_gas_od_lw, ZOD_LW(ig,nlev+1-jlev,jcol)) |
---|
476 | end do |
---|
477 | end do |
---|
478 | end do |
---|
479 | else |
---|
480 | ! G points have not been reordered |
---|
481 | DO jcol = istartcol,iendcol |
---|
482 | DO jlev = 1,nlev |
---|
483 | ! Check for negative optical depth |
---|
484 | od_lw(:,jlev,jcol) = max(config%min_gas_od_lw, ZOD_LW(:,nlev+1-jlev,jcol)) |
---|
485 | end do |
---|
486 | end do |
---|
487 | end if |
---|
488 | |
---|
489 | CALL SRTM_SETCOEF & |
---|
490 | & ( istartcol, iendcol, nlev,& |
---|
491 | & ZPAVEL , ZTAVEL,& |
---|
492 | & ZCOLDRY , ZWKL,& |
---|
493 | & ILAYTROP,& |
---|
494 | & ZCOLCH4 , ZCOLCO2 , ZCOLH2O , ZCOLMOL , ZCOLO2 , ZCOLO3,& |
---|
495 | & ZFORFAC , ZFORFRAC , INDFOR , ZSELFFAC, ZSELFFRAC, INDSELF, & |
---|
496 | & ZFAC00 , ZFAC01 , ZFAC10 , ZFAC11,& |
---|
497 | & JP , JT , JT1 , single_level%cos_sza(istartcol:iendcol) & |
---|
498 | & ) |
---|
499 | |
---|
500 | ! SRTM_GAS_OPTICAL_DEPTH will not initialize profiles when the sun |
---|
501 | ! is below the horizon, so we do it here |
---|
502 | ZOD_SW(istartcol:iendcol,:,:) = 0.0_jprb |
---|
503 | ZSSA_SW(istartcol:iendcol,:,:) = 0.0_jprb |
---|
504 | ZINCSOL(istartcol:iendcol,:) = 0.0_jprb |
---|
505 | |
---|
506 | CALL SRTM_GAS_OPTICAL_DEPTH & |
---|
507 | &( istartcol, iendcol , nlev , ZONEMINUS_ARRAY,& |
---|
508 | & single_level%cos_sza(istartcol:iendcol), ILAYTROP,& |
---|
509 | & ZCOLCH4 , ZCOLCO2 , ZCOLH2O, ZCOLMOL , ZCOLO2 , ZCOLO3,& |
---|
510 | & ZFORFAC , ZFORFRAC , INDFOR , ZSELFFAC, ZSELFFRAC, INDSELF,& |
---|
511 | & ZFAC00 , ZFAC01 , ZFAC10 , ZFAC11 ,& |
---|
512 | & JP , JT , JT1 ,& |
---|
513 | & ZOD_SW , ZSSA_SW , ZINCSOL ) |
---|
514 | |
---|
515 | ! Scale the incoming solar per band, if requested |
---|
516 | if (config%use_spectral_solar_scaling) then |
---|
517 | DO jg = 1,JPGPT_SW |
---|
518 | DO jcol = istartcol,iendcol |
---|
519 | ZINCSOL(jcol,jg) = ZINCSOL(jcol,jg) * & |
---|
520 | & single_level%spectral_solar_scaling(config%i_band_from_reordered_g_sw(jg)) |
---|
521 | end do |
---|
522 | end do |
---|
523 | end if |
---|
524 | |
---|
525 | ! Scaling factor to ensure that the total solar irradiance is as |
---|
526 | ! requested. Note that if the sun is below the horizon then |
---|
527 | ! ZINCSOL will be zero. |
---|
528 | if (present(incoming_sw)) then |
---|
529 | DO jcol = istartcol,iendcol |
---|
530 | if (single_level%cos_sza(jcol) > 0.0_jprb) then |
---|
531 | ! Added for DWD (2020) |
---|
532 | !NEC$ nounroll |
---|
533 | incoming_sw_scale(jcol) = single_level%solar_irradiance / sum(ZINCSOL(jcol,:)) |
---|
534 | else |
---|
535 | incoming_sw_scale(jcol) = 1.0_jprb |
---|
536 | end if |
---|
537 | end do |
---|
538 | end if |
---|
539 | |
---|
540 | if (config%i_solver_sw == ISolverSpartacus) then |
---|
541 | ! if (.true.) then |
---|
542 | ! Account for reordered g points |
---|
543 | DO jgreorder = 1,config%n_g_sw |
---|
544 | ig = config%i_g_from_reordered_g_sw(jgreorder) |
---|
545 | DO jlev = 1,nlev |
---|
546 | DO jcol = istartcol,iendcol |
---|
547 | ! Check for negative optical depth |
---|
548 | od_sw (jgreorder,nlev+1-jlev,jcol) & |
---|
549 | & = max(config%min_gas_od_sw, ZOD_SW (jcol,jlev,ig)) |
---|
550 | ssa_sw(jgreorder,nlev+1-jlev,jcol) = ZSSA_SW(jcol,jlev,ig) |
---|
551 | end do |
---|
552 | end do |
---|
553 | if (present(incoming_sw)) then |
---|
554 | incoming_sw(jgreorder,:) & |
---|
555 | & = incoming_sw_scale(:) * ZINCSOL(:,ig) |
---|
556 | end if |
---|
557 | end do |
---|
558 | else |
---|
559 | ! G points have not been reordered |
---|
560 | DO jcol = istartcol,iendcol |
---|
561 | DO jlev = 1,nlev |
---|
562 | DO jg = 1,config%n_g_sw |
---|
563 | ! Check for negative optical depth |
---|
564 | od_sw (jg,nlev+1-jlev,jcol) = max(config%min_gas_od_sw, ZOD_SW(jcol,jlev,jg)) |
---|
565 | ssa_sw(jg,nlev+1-jlev,jcol) = ZSSA_SW(jcol,jlev,jg) |
---|
566 | end do |
---|
567 | end do |
---|
568 | if (present(incoming_sw)) then |
---|
569 | DO jg = 1,config%n_g_sw |
---|
570 | incoming_sw(jg,jcol) = incoming_sw_scale(jcol) * ZINCSOL(jcol,jg) |
---|
571 | end do |
---|
572 | end if |
---|
573 | end do |
---|
574 | end if |
---|
575 | |
---|
576 | if (lhook) call dr_hook('radiation_ifs_rrtm:gas_optics',1,hook_handle) |
---|
577 | |
---|
578 | end subroutine gas_optics |
---|
579 | |
---|
580 | |
---|
581 | !--------------------------------------------------------------------- |
---|
582 | ! Compute Planck function of the atmosphere |
---|
583 | subroutine planck_function_atmos(nlev,istartcol,iendcol, & |
---|
584 | config, thermodynamics, PFRAC, & |
---|
585 | planck_hl) |
---|
586 | |
---|
587 | use parkind1, only : jprb, jpim |
---|
588 | |
---|
589 | USE YOERRTM , ONLY : JPGPT_LW => JPGPT |
---|
590 | use yoerrtwn, only : totplnk, delwave |
---|
591 | |
---|
592 | use yomhook, only : lhook, dr_hook |
---|
593 | |
---|
594 | use radiation_config, only : config_type, ISolverSpartacus |
---|
595 | use radiation_thermodynamics, only : thermodynamics_type |
---|
596 | !use radiation_gas |
---|
597 | |
---|
598 | integer, intent(in) :: nlev ! number of model levels |
---|
599 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
600 | type(config_type), intent(in) :: config |
---|
601 | type(thermodynamics_type),intent(in) :: thermodynamics |
---|
602 | real(jprb), intent(in) :: PFRAC(istartcol:iendcol,JPGPT_LW,nlev) |
---|
603 | |
---|
604 | ! The Planck function (emitted flux from a black body) at half |
---|
605 | ! levels at each longwave g-point |
---|
606 | real(jprb), dimension(config%n_g_lw,nlev+1,istartcol:iendcol), intent(out) :: & |
---|
607 | & planck_hl |
---|
608 | |
---|
609 | ! Planck function values per band |
---|
610 | real(jprb), dimension(istartcol:iendcol, config%n_bands_lw) :: planck_store |
---|
611 | |
---|
612 | ! Look-up table variables for Planck function |
---|
613 | real(jprb), dimension(istartcol:iendcol) :: frac |
---|
614 | integer, dimension(istartcol:iendcol) :: ind |
---|
615 | |
---|
616 | ! Temperature (K) of a half-level |
---|
617 | real(jprb) :: temperature |
---|
618 | |
---|
619 | real(jprb) :: factor, planck_tmp(istartcol:iendcol,config%n_g_lw) |
---|
620 | real(jprb) :: ZFLUXFAC |
---|
621 | |
---|
622 | integer :: jlev, jgreorder, jg, ig, iband, jband, jcol, ilevoffset |
---|
623 | |
---|
624 | real(jprb) :: hook_handle |
---|
625 | |
---|
626 | if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_atmos',0,hook_handle) |
---|
627 | |
---|
628 | ZFLUXFAC = 2.0_jprb*ASIN(1.0_jprb) * 1.0e4_jprb |
---|
629 | |
---|
630 | ! nlev may be less than the number of original levels, in which |
---|
631 | ! case we assume that the user wants the lower part of the |
---|
632 | ! atmosphere |
---|
633 | ilevoffset = ubound(thermodynamics%temperature_hl,2)-nlev-1 |
---|
634 | |
---|
635 | ! Work out interpolations: for each half level, the index of the |
---|
636 | ! lowest interpolation bound, and the fraction into interpolation |
---|
637 | ! interval |
---|
638 | DO jlev = 1,nlev+1 |
---|
639 | DO jcol = istartcol,iendcol |
---|
640 | temperature = thermodynamics%temperature_hl(jcol,jlev+ilevoffset) |
---|
641 | if (temperature < 339.0_jprb .and. temperature >= 160.0_jprb) then |
---|
642 | ! Linear interpolation between -113 and 66 degC |
---|
643 | ind(jcol) = int(temperature - 159.0_jprb) |
---|
644 | frac(jcol) = temperature - int(temperature) |
---|
645 | else if(temperature >= 339.0_jprb) then |
---|
646 | ! Extrapolation above 66 degC |
---|
647 | ind(jcol) = 180 |
---|
648 | frac(jcol) = temperature - 339.0_jprb |
---|
649 | else |
---|
650 | ! Cap below -113 degC (to avoid possible negative Planck |
---|
651 | ! function values) |
---|
652 | ind(jcol) = 1 |
---|
653 | frac(jcol) = 0.0_jprb |
---|
654 | end if |
---|
655 | end do |
---|
656 | |
---|
657 | ! Calculate Planck functions per band |
---|
658 | DO jband = 1,config%n_bands_lw |
---|
659 | factor = zfluxfac * delwave(jband) |
---|
660 | DO jcol = istartcol,iendcol |
---|
661 | planck_store(jcol,jband) = factor & |
---|
662 | & * (totplnk(ind(jcol),jband) & |
---|
663 | & + frac(jcol)*(totplnk(ind(jcol)+1,jband)-totplnk(ind(jcol),jband))) |
---|
664 | end do |
---|
665 | end do |
---|
666 | |
---|
667 | if (config%i_solver_lw == ISolverSpartacus) then |
---|
668 | ! We need to rearrange the gas optics info in memory: |
---|
669 | ! reordering the g points in order of approximately increasing |
---|
670 | ! optical depth (for efficient 3D processing on only the |
---|
671 | ! regions of the spectrum that are optically thin for gases) |
---|
672 | ! and reorder in pressure since the the functions above treat |
---|
673 | ! pressure decreasing with increasing index. |
---|
674 | if (jlev == 1) then |
---|
675 | ! Top-of-atmosphere half level - note that PFRAC is on model |
---|
676 | ! levels not half levels |
---|
677 | DO jgreorder = 1,config%n_g_lw |
---|
678 | iband = config%i_band_from_reordered_g_lw(jgreorder) |
---|
679 | ig = config%i_g_from_reordered_g_lw(jgreorder) |
---|
680 | planck_hl(jgreorder,1,:) = planck_store(:,iband) & |
---|
681 | & * PFRAC(:,ig,nlev) |
---|
682 | end do |
---|
683 | else |
---|
684 | DO jgreorder = 1,config%n_g_lw |
---|
685 | iband = config%i_band_from_reordered_g_lw(jgreorder) |
---|
686 | ig = config%i_g_from_reordered_g_lw(jgreorder) |
---|
687 | planck_hl(jgreorder,jlev,:) & |
---|
688 | & = planck_store(:,iband) & |
---|
689 | & * PFRAC(:,ig,nlev+2-jlev) |
---|
690 | end do |
---|
691 | end if |
---|
692 | else |
---|
693 | ! G points have not been reordered |
---|
694 | if (jlev == 1) then |
---|
695 | ! Top-of-atmosphere half level - note that PFRAC is on model |
---|
696 | ! levels not half levels |
---|
697 | DO jg = 1,config%n_g_lw |
---|
698 | iband = config%i_band_from_g_lw(jg) |
---|
699 | planck_hl(jg,1,:) = planck_store(:,iband) * PFRAC(:,jg,nlev) |
---|
700 | end do |
---|
701 | else |
---|
702 | DO jg = 1,config%n_g_lw |
---|
703 | iband = config%i_band_from_g_lw(jg) |
---|
704 | planck_tmp(:,jg) = planck_store(:,iband) * PFRAC(:,jg,nlev+2-jlev) |
---|
705 | end do |
---|
706 | DO jcol = istartcol,iendcol |
---|
707 | planck_hl(:,jlev,jcol) = planck_tmp(jcol,:) |
---|
708 | end do |
---|
709 | end if |
---|
710 | end if |
---|
711 | end do |
---|
712 | |
---|
713 | if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_atmos',1,hook_handle) |
---|
714 | |
---|
715 | end subroutine planck_function_atmos |
---|
716 | |
---|
717 | |
---|
718 | !--------------------------------------------------------------------- |
---|
719 | ! Compute Planck function of the surface |
---|
720 | subroutine planck_function_surf(istartcol, iendcol, config, temperature, PFRAC, & |
---|
721 | & planck_surf) |
---|
722 | |
---|
723 | use parkind1, only : jprb, jpim |
---|
724 | |
---|
725 | USE YOERRTM , ONLY : JPGPT_LW => JPGPT |
---|
726 | use yoerrtwn, only : totplnk, delwave |
---|
727 | |
---|
728 | use yomhook, only : lhook, dr_hook |
---|
729 | |
---|
730 | use radiation_config, only : config_type, ISolverSpartacus |
---|
731 | ! use radiation_gas |
---|
732 | |
---|
733 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
734 | type(config_type), intent(in) :: config |
---|
735 | real(jprb), intent(in) :: temperature(:) |
---|
736 | |
---|
737 | real(jprb), intent(in) :: PFRAC(istartcol:iendcol,JPGPT_LW) |
---|
738 | |
---|
739 | ! Planck function of the surface (W m-2) |
---|
740 | real(jprb), dimension(config%n_g_lw,istartcol:iendcol), & |
---|
741 | & intent(out) :: planck_surf |
---|
742 | |
---|
743 | ! Planck function values per band |
---|
744 | real(jprb), dimension(istartcol:iendcol, config%n_bands_lw) :: planck_store |
---|
745 | |
---|
746 | ! Look-up table variables for Planck function |
---|
747 | real(jprb), dimension(istartcol:iendcol) :: frac |
---|
748 | integer, dimension(istartcol:iendcol) :: ind |
---|
749 | |
---|
750 | ! Temperature (K) |
---|
751 | real(jprb) :: Tsurf |
---|
752 | |
---|
753 | real(jprb) :: factor |
---|
754 | real(jprb) :: ZFLUXFAC |
---|
755 | |
---|
756 | integer :: jgreorder, jg, ig, iband, jband, jcol |
---|
757 | |
---|
758 | real(jprb) :: hook_handle |
---|
759 | |
---|
760 | if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_surf',0,hook_handle) |
---|
761 | |
---|
762 | ZFLUXFAC = 2.0_jprb*ASIN(1.0_jprb) * 1.0e4_jprb |
---|
763 | |
---|
764 | ! Work out surface interpolations |
---|
765 | DO jcol = istartcol,iendcol |
---|
766 | Tsurf = temperature(jcol) |
---|
767 | if (Tsurf < 339.0_jprb .and. Tsurf >= 160.0_jprb) then |
---|
768 | ! Linear interpolation between -113 and 66 degC |
---|
769 | ind(jcol) = int(Tsurf - 159.0_jprb) |
---|
770 | frac(jcol) = Tsurf - int(Tsurf) |
---|
771 | else if(Tsurf >= 339.0_jprb) then |
---|
772 | ! Extrapolation above 66 degC |
---|
773 | ind(jcol) = 180 |
---|
774 | frac(jcol) = Tsurf - 339.0_jprb |
---|
775 | else |
---|
776 | ! Cap below -113 degC (to avoid possible negative Planck |
---|
777 | ! function values) |
---|
778 | ind(jcol) = 1 |
---|
779 | frac(jcol) = 0.0_jprb |
---|
780 | end if |
---|
781 | end do |
---|
782 | |
---|
783 | ! Calculate Planck functions per band |
---|
784 | DO jband = 1,config%n_bands_lw |
---|
785 | factor = zfluxfac * delwave(jband) |
---|
786 | DO jcol = istartcol,iendcol |
---|
787 | planck_store(jcol,jband) = factor & |
---|
788 | & * (totplnk(ind(jcol),jband) & |
---|
789 | & + frac(jcol)*(totplnk(ind(jcol)+1,jband)-totplnk(ind(jcol),jband))) |
---|
790 | end do |
---|
791 | end do |
---|
792 | |
---|
793 | if (config%i_solver_lw == ISolverSpartacus) then |
---|
794 | ! We need to rearrange the gas optics info in memory: reordering |
---|
795 | ! the g points in order of approximately increasing optical |
---|
796 | ! depth (for efficient 3D processing on only the regions of |
---|
797 | ! the spectrum that are optically thin for gases) and reorder |
---|
798 | ! in pressure since the the functions above treat pressure |
---|
799 | ! decreasing with increasing index. |
---|
800 | DO jgreorder = 1,config%n_g_lw |
---|
801 | iband = config%i_band_from_reordered_g_lw(jgreorder) |
---|
802 | ig = config%i_g_from_reordered_g_lw(jgreorder) |
---|
803 | planck_surf(jgreorder,:) = planck_store(:,iband) * PFRAC(:,ig) |
---|
804 | end do |
---|
805 | else |
---|
806 | ! G points have not been reordered |
---|
807 | DO jg = 1,config%n_g_lw |
---|
808 | iband = config%i_band_from_g_lw(jg) |
---|
809 | planck_surf(jg,:) = planck_store(:,iband) * PFRAC(:,jg) |
---|
810 | end do |
---|
811 | end if |
---|
812 | |
---|
813 | if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_surf',1,hook_handle) |
---|
814 | |
---|
815 | end subroutine planck_function_surf |
---|
816 | |
---|
817 | |
---|
818 | !--------------------------------------------------------------------- |
---|
819 | ! Externally facing function for computing the Planck function |
---|
820 | ! without reference to any gas profile; typically this would be used |
---|
821 | ! for computing the emission by facets of a complex surface. Note |
---|
822 | ! that this uses fixed "PFRAC" values, obtained by averaging over |
---|
823 | ! those derived from RRTM-G for near-surface conditions over a line |
---|
824 | ! of meridian from the ECMWF model. |
---|
825 | subroutine planck_function(config, temperature, planck_surf) |
---|
826 | |
---|
827 | use parkind1, only : jprb, jpim |
---|
828 | |
---|
829 | use radiation_config, only : config_type |
---|
830 | |
---|
831 | type(config_type), intent(in) :: config |
---|
832 | real(jprb), intent(in) :: temperature |
---|
833 | |
---|
834 | ! Planck function of the surface (W m-2) |
---|
835 | real(jprb), dimension(config%n_g_lw), & |
---|
836 | & intent(out) :: planck_surf |
---|
837 | |
---|
838 | ! Fraction of each band contributed by each g-point within |
---|
839 | ! it. Since there are 16 bands, this array sums to 16 |
---|
840 | real(jprb), parameter, dimension(1,140) :: frac & |
---|
841 | = reshape( (/ 0.21227E+00, 0.18897E+00, 0.25491E+00, 0.17864E+00, 0.11735E+00, 0.38298E-01, 0.57871E-02, & |
---|
842 | & 0.31753E-02, 0.53169E-03, 0.76476E-04, 0.16388E+00, 0.15241E+00, 0.14290E+00, 0.12864E+00, & |
---|
843 | & 0.11615E+00, 0.10047E+00, 0.80013E-01, 0.60445E-01, 0.44918E-01, 0.63395E-02, 0.32942E-02, & |
---|
844 | & 0.54541E-03, 0.15380E+00, 0.15194E+00, 0.14339E+00, 0.13138E+00, 0.11701E+00, 0.10081E+00, & |
---|
845 | & 0.82296E-01, 0.61735E-01, 0.41918E-01, 0.45918E-02, 0.37743E-02, 0.30121E-02, 0.22500E-02, & |
---|
846 | & 0.14490E-02, 0.55410E-03, 0.78364E-04, 0.15938E+00, 0.15146E+00, 0.14213E+00, 0.13079E+00, & |
---|
847 | & 0.11672E+00, 0.10053E+00, 0.81566E-01, 0.61126E-01, 0.41150E-01, 0.44488E-02, 0.36950E-02, & |
---|
848 | & 0.29101E-02, 0.21357E-02, 0.19609E-02, 0.14134E+00, 0.14390E+00, 0.13913E+00, 0.13246E+00, & |
---|
849 | & 0.12185E+00, 0.10596E+00, 0.87518E-01, 0.66164E-01, 0.44862E-01, 0.49402E-02, 0.40857E-02, & |
---|
850 | & 0.32288E-02, 0.23613E-02, 0.15406E-02, 0.58258E-03, 0.82171E-04, 0.29127E+00, 0.28252E+00, & |
---|
851 | & 0.22590E+00, 0.14314E+00, 0.45494E-01, 0.71792E-02, 0.38483E-02, 0.65712E-03, 0.29810E+00, & |
---|
852 | & 0.27559E+00, 0.11997E+00, 0.10351E+00, 0.84515E-01, 0.62253E-01, 0.41050E-01, 0.44217E-02, & |
---|
853 | & 0.36946E-02, 0.29113E-02, 0.34290E-02, 0.55993E-03, 0.31441E+00, 0.27586E+00, 0.21297E+00, & |
---|
854 | & 0.14064E+00, 0.45588E-01, 0.65665E-02, 0.34232E-02, 0.53199E-03, 0.19811E+00, 0.16833E+00, & |
---|
855 | & 0.13536E+00, 0.11549E+00, 0.10649E+00, 0.93264E-01, 0.75720E-01, 0.56405E-01, 0.41865E-01, & |
---|
856 | & 0.59331E-02, 0.26510E-02, 0.40040E-03, 0.32328E+00, 0.26636E+00, 0.21397E+00, 0.14038E+00, & |
---|
857 | & 0.52142E-01, 0.38852E-02, 0.14601E+00, 0.13824E+00, 0.27703E+00, 0.22388E+00, 0.15446E+00, & |
---|
858 | & 0.48687E-01, 0.98054E-02, 0.18870E-02, 0.11961E+00, 0.12106E+00, 0.13215E+00, 0.13516E+00, & |
---|
859 | & 0.25249E+00, 0.16542E+00, 0.68157E-01, 0.59725E-02, 0.49258E+00, 0.33651E+00, 0.16182E+00, & |
---|
860 | & 0.90984E-02, 0.95202E+00, 0.47978E-01, 0.91716E+00, 0.82857E-01, 0.77464E+00, 0.22536E+00 /), (/ 1,140 /) ) |
---|
861 | |
---|
862 | call planck_function_surf(1, 1, config, spread(temperature,1,1), & |
---|
863 | & frac, planck_surf) |
---|
864 | |
---|
865 | end subroutine planck_function |
---|
866 | |
---|
867 | end module radiation_ifs_rrtm |
---|