1 | |
---|
2 | ! $Header$ |
---|
3 | |
---|
4 | SUBROUTINE diagphy(airephy, tit, iprt, tops, topl, sols, soll, sens, evap, & |
---|
5 | rain_fall, snow_fall, ts, d_etp_tot, d_qt_tot, d_ec_tot, fs_bound, & |
---|
6 | fq_bound) |
---|
7 | ! ====================================================================== |
---|
8 | |
---|
9 | ! Purpose: |
---|
10 | ! Compute the thermal flux and the watter mass flux at the atmosphere |
---|
11 | ! boundaries. Print them and also the atmospheric enthalpy change and |
---|
12 | ! the atmospheric mass change. |
---|
13 | |
---|
14 | ! Arguments: |
---|
15 | ! airephy-------input-R- grid area |
---|
16 | ! tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) |
---|
17 | ! iprt--------input-I- PRINT level ( <=0 : no PRINT) |
---|
18 | ! tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. |
---|
19 | ! topl(klon)--input-R- LW rad. at TOA (W/m2), positive down |
---|
20 | ! sols(klon)--input-R- Net SW flux above surface (W/m2), positive up |
---|
21 | ! (i.e. -1 * flux absorbed by the surface) |
---|
22 | ! soll(klon)--input-R- Net LW flux above surface (W/m2), positive up |
---|
23 | ! (i.e. flux emited - flux absorbed by the surface) |
---|
24 | ! sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down |
---|
25 | ! evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux |
---|
26 | ! (kg/m2/s), positive up |
---|
27 | ! rain_fall(klon) |
---|
28 | ! --input-R- Liquid watter mass flux (kg/m2/s), positive down |
---|
29 | ! snow_fall(klon) |
---|
30 | ! --input-R- Solid watter mass flux (kg/m2/s), positive down |
---|
31 | ! ts(klon)----input-R- Surface temperature (K) |
---|
32 | ! d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy |
---|
33 | ! change (W/m2) |
---|
34 | ! d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass |
---|
35 | ! change (kg/m2/s) |
---|
36 | ! d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy |
---|
37 | ! change (W/m2) |
---|
38 | |
---|
39 | ! fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) |
---|
40 | ! fq_bound---output-R- Watter mass flux at the atmosphere boundaries |
---|
41 | ! (kg/m2/s) |
---|
42 | |
---|
43 | ! J.L. Dufresne, July 2002 |
---|
44 | ! Version prise sur |
---|
45 | ! ~rlmd833/LMDZOR_201102/modipsl/modeles/LMDZ.3.3/libf/phylmd |
---|
46 | ! le 25 Novembre 2002. |
---|
47 | ! ====================================================================== |
---|
48 | |
---|
49 | USE dimphy |
---|
50 | USE lmdz_yoethf |
---|
51 | USE lmdz_yomcst |
---|
52 | |
---|
53 | IMPLICIT NONE |
---|
54 | |
---|
55 | ! Input variables |
---|
56 | REAL airephy(klon) |
---|
57 | CHARACTER *15 tit |
---|
58 | INTEGER iprt |
---|
59 | REAL tops(klon), topl(klon), sols(klon), soll(klon) |
---|
60 | REAL sens(klon), evap(klon), rain_fall(klon), snow_fall(klon) |
---|
61 | REAL ts(klon) |
---|
62 | REAL d_etp_tot, d_qt_tot, d_ec_tot |
---|
63 | ! Output variables |
---|
64 | REAL fs_bound, fq_bound |
---|
65 | |
---|
66 | ! Local variables |
---|
67 | REAL stops, stopl, ssols, ssoll |
---|
68 | REAL ssens, sfront, slat |
---|
69 | REAL airetot, zcpvap, zcwat, zcice |
---|
70 | REAL rain_fall_tot, snow_fall_tot, evap_tot |
---|
71 | |
---|
72 | INTEGER i |
---|
73 | |
---|
74 | INTEGER pas |
---|
75 | SAVE pas |
---|
76 | DATA pas/0/ |
---|
77 | !$OMP THREADPRIVATE(pas) |
---|
78 | |
---|
79 | pas = pas + 1 |
---|
80 | stops = 0. |
---|
81 | stopl = 0. |
---|
82 | ssols = 0. |
---|
83 | ssoll = 0. |
---|
84 | ssens = 0. |
---|
85 | sfront = 0. |
---|
86 | evap_tot = 0. |
---|
87 | rain_fall_tot = 0. |
---|
88 | snow_fall_tot = 0. |
---|
89 | airetot = 0. |
---|
90 | |
---|
91 | ! Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de |
---|
92 | ! la glace, on travaille par difference a la chaleur specifique de l' |
---|
93 | ! air sec. En effet, comme on travaille a niveau de pression donne, |
---|
94 | ! toute variation de la masse d'un constituant est totalement |
---|
95 | ! compense par une variation de masse d'air. |
---|
96 | |
---|
97 | zcpvap = rcpv - rcpd |
---|
98 | zcwat = rcw - rcpd |
---|
99 | zcice = rcs - rcpd |
---|
100 | |
---|
101 | DO i = 1, klon |
---|
102 | stops = stops + tops(i)*airephy(i) |
---|
103 | stopl = stopl + topl(i)*airephy(i) |
---|
104 | ssols = ssols + sols(i)*airephy(i) |
---|
105 | ssoll = ssoll + soll(i)*airephy(i) |
---|
106 | ssens = ssens + sens(i)*airephy(i) |
---|
107 | sfront = sfront + (evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice)* & |
---|
108 | ts(i)*airephy(i) |
---|
109 | evap_tot = evap_tot + evap(i)*airephy(i) |
---|
110 | rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) |
---|
111 | snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) |
---|
112 | airetot = airetot + airephy(i) |
---|
113 | END DO |
---|
114 | stops = stops/airetot |
---|
115 | stopl = stopl/airetot |
---|
116 | ssols = ssols/airetot |
---|
117 | ssoll = ssoll/airetot |
---|
118 | ssens = ssens/airetot |
---|
119 | sfront = sfront/airetot |
---|
120 | evap_tot = evap_tot/airetot |
---|
121 | rain_fall_tot = rain_fall_tot/airetot |
---|
122 | snow_fall_tot = snow_fall_tot/airetot |
---|
123 | |
---|
124 | slat = rlvtt*rain_fall_tot + rlstt*snow_fall_tot |
---|
125 | ! Heat flux at atm. boundaries |
---|
126 | fs_bound = stops - stopl - (ssols+ssoll) + ssens + sfront + slat |
---|
127 | ! Watter flux at atm. boundaries |
---|
128 | fq_bound = evap_tot - rain_fall_tot - snow_fall_tot |
---|
129 | |
---|
130 | IF (iprt>=1) WRITE (6, 6666) tit, pas, fs_bound, d_etp_tot, fq_bound, & |
---|
131 | d_qt_tot |
---|
132 | |
---|
133 | IF (iprt>=1) WRITE (6, 6668) tit, pas, d_etp_tot + d_ec_tot - fs_bound, & |
---|
134 | d_qt_tot - fq_bound |
---|
135 | |
---|
136 | IF (iprt>=2) WRITE (6, 6667) tit, pas, stops, stopl, ssols, ssoll, ssens, & |
---|
137 | slat, evap_tot, rain_fall_tot + snow_fall_tot |
---|
138 | |
---|
139 | RETURN |
---|
140 | |
---|
141 | 6666 FORMAT ('Phys. Flux Budget ', A15, 1I6, 2F8.2, 2(1PE13.5)) |
---|
142 | 6667 FORMAT ('Phys. Boundary Flux ', A15, 1I6, 6F8.2, 2(1PE13.5)) |
---|
143 | 6668 FORMAT ('Phys. Total Budget ', A15, 1I6, F8.2, 2(1PE13.5)) |
---|
144 | |
---|
145 | END SUBROUTINE diagphy |
---|
146 | |
---|
147 | ! ====================================================================== |
---|
148 | SUBROUTINE diagetpq(airephy, tit, iprt, idiag, idiag2, dtime, t, q, ql, qs, & |
---|
149 | u, v, paprs, pplay, d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
150 | ! ====================================================================== |
---|
151 | |
---|
152 | ! Purpose: |
---|
153 | ! Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
---|
154 | ! et calcul le flux de chaleur et le flux d'eau necessaire a ces |
---|
155 | ! changements. Ces valeurs sont moyennees sur la surface de tout |
---|
156 | ! le globe et sont exprime en W/2 et kg/s/m2 |
---|
157 | ! Outil pour diagnostiquer la conservation de l'energie |
---|
158 | ! et de la masse dans la physique. Suppose que les niveau de |
---|
159 | ! pression entre couche ne varie pas entre 2 appels. |
---|
160 | |
---|
161 | ! Plusieurs de ces diagnostics peuvent etre fait en parallele: les |
---|
162 | ! bilans sont sauvegardes dans des tableaux indices. On parlera |
---|
163 | ! "d'indice de diagnostic" |
---|
164 | |
---|
165 | |
---|
166 | ! ====================================================================== |
---|
167 | ! Arguments: |
---|
168 | ! airephy-------input-R- grid area |
---|
169 | ! tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
---|
170 | ! iprt----input-I- PRINT level ( <=1 : no PRINT) |
---|
171 | ! idiag---input-I- indice dans lequel sera range les nouveaux |
---|
172 | ! bilans d' entalpie et de masse |
---|
173 | ! idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
---|
174 | ! sont compare au bilan de d'enthalpie de masse de |
---|
175 | ! l'indice numero idiag2 |
---|
176 | ! Cas parriculier : si idiag2=0, pas de comparaison, on |
---|
177 | ! sort directement les bilans d'enthalpie et de masse |
---|
178 | ! dtime----input-R- time step (s) |
---|
179 | ! t--------input-R- temperature (K) |
---|
180 | ! q--------input-R- vapeur d'eau (kg/kg) |
---|
181 | ! ql-------input-R- liquid watter (kg/kg) |
---|
182 | ! qs-------input-R- solid watter (kg/kg) |
---|
183 | ! u--------input-R- vitesse u |
---|
184 | ! v--------input-R- vitesse v |
---|
185 | ! paprs----input-R- pression a intercouche (Pa) |
---|
186 | ! pplay----input-R- pression au milieu de couche (Pa) |
---|
187 | |
---|
188 | ! the following total value are computed by UNIT of earth surface |
---|
189 | |
---|
190 | ! d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
---|
191 | ! change (J/m2) during one time step (dtime) for the whole |
---|
192 | ! atmosphere (air, watter vapour, liquid and solid) |
---|
193 | ! d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
---|
194 | ! total watter (kg/m2) change during one time step (dtime), |
---|
195 | ! d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
---|
196 | ! d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
---|
197 | ! d_qs------output-R- same, for the solid watter only (kg/m2/s) |
---|
198 | ! d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
---|
199 | |
---|
200 | ! other (COMMON...) |
---|
201 | ! RCPD, RCPV, .... |
---|
202 | |
---|
203 | ! J.L. Dufresne, July 2002 |
---|
204 | ! ====================================================================== |
---|
205 | |
---|
206 | USE dimphy |
---|
207 | USE lmdz_yoethf |
---|
208 | USE lmdz_yomcst |
---|
209 | |
---|
210 | IMPLICIT NONE |
---|
211 | |
---|
212 | ! Input variables |
---|
213 | REAL airephy(klon) |
---|
214 | CHARACTER *15 tit |
---|
215 | INTEGER iprt, idiag, idiag2 |
---|
216 | REAL dtime |
---|
217 | REAL t(klon, klev), q(klon, klev), ql(klon, klev), qs(klon, klev) |
---|
218 | REAL u(klon, klev), v(klon, klev) |
---|
219 | REAL paprs(klon, klev+1), pplay(klon, klev) |
---|
220 | ! Output variables |
---|
221 | REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
222 | |
---|
223 | ! Local variables |
---|
224 | |
---|
225 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, h_qs_tot, qw_tot, ql_tot, & |
---|
226 | qs_tot, ec_tot |
---|
227 | ! h_vcol_tot-- total enthalpy of vertical air column |
---|
228 | ! (air with watter vapour, liquid and solid) (J/m2) |
---|
229 | ! h_dair_tot-- total enthalpy of dry air (J/m2) |
---|
230 | ! h_qw_tot---- total enthalpy of watter vapour (J/m2) |
---|
231 | ! h_ql_tot---- total enthalpy of liquid watter (J/m2) |
---|
232 | ! h_qs_tot---- total enthalpy of solid watter (J/m2) |
---|
233 | ! qw_tot------ total mass of watter vapour (kg/m2) |
---|
234 | ! ql_tot------ total mass of liquid watter (kg/m2) |
---|
235 | ! qs_tot------ total mass of solid watter (kg/m2) |
---|
236 | ! ec_tot------ total cinetic energy (kg/m2) |
---|
237 | |
---|
238 | REAL zairm(klon, klev) ! layer air mass (kg/m2) |
---|
239 | REAL zqw_col(klon) |
---|
240 | REAL zql_col(klon) |
---|
241 | REAL zqs_col(klon) |
---|
242 | REAL zec_col(klon) |
---|
243 | REAL zh_dair_col(klon) |
---|
244 | REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon) |
---|
245 | |
---|
246 | REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
---|
247 | |
---|
248 | REAL airetot, zcpvap, zcwat, zcice |
---|
249 | |
---|
250 | INTEGER i, k |
---|
251 | |
---|
252 | INTEGER ndiag ! max number of diagnostic in parallel |
---|
253 | PARAMETER (ndiag=10) |
---|
254 | INTEGER pas(ndiag) |
---|
255 | SAVE pas |
---|
256 | DATA pas/ndiag*0/ |
---|
257 | !$OMP THREADPRIVATE(pas) |
---|
258 | |
---|
259 | REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag), & |
---|
260 | h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag), ql_pre(ndiag), & |
---|
261 | qs_pre(ndiag), ec_pre(ndiag) |
---|
262 | SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre, h_qs_pre, qw_pre, ql_pre, & |
---|
263 | qs_pre, ec_pre |
---|
264 | !$OMP THREADPRIVATE(h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre) |
---|
265 | !$OMP THREADPRIVATE(h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre) |
---|
266 | ! ====================================================================== |
---|
267 | |
---|
268 | DO k = 1, klev |
---|
269 | DO i = 1, klon |
---|
270 | ! layer air mass |
---|
271 | zairm(i, k) = (paprs(i,k)-paprs(i,k+1))/rg |
---|
272 | END DO |
---|
273 | END DO |
---|
274 | |
---|
275 | ! Reset variables |
---|
276 | DO i = 1, klon |
---|
277 | zqw_col(i) = 0. |
---|
278 | zql_col(i) = 0. |
---|
279 | zqs_col(i) = 0. |
---|
280 | zec_col(i) = 0. |
---|
281 | zh_dair_col(i) = 0. |
---|
282 | zh_qw_col(i) = 0. |
---|
283 | zh_ql_col(i) = 0. |
---|
284 | zh_qs_col(i) = 0. |
---|
285 | END DO |
---|
286 | |
---|
287 | zcpvap = rcpv |
---|
288 | zcwat = rcw |
---|
289 | zcice = rcs |
---|
290 | |
---|
291 | ! Compute vertical sum for each atmospheric column |
---|
292 | ! ================================================ |
---|
293 | DO k = 1, klev |
---|
294 | DO i = 1, klon |
---|
295 | ! Watter mass |
---|
296 | zqw_col(i) = zqw_col(i) + q(i, k)*zairm(i, k) |
---|
297 | zql_col(i) = zql_col(i) + ql(i, k)*zairm(i, k) |
---|
298 | zqs_col(i) = zqs_col(i) + qs(i, k)*zairm(i, k) |
---|
299 | ! Cinetic Energy |
---|
300 | zec_col(i) = zec_col(i) + 0.5*(u(i,k)**2+v(i,k)**2)*zairm(i, k) |
---|
301 | ! Air enthalpy |
---|
302 | zh_dair_col(i) = zh_dair_col(i) + rcpd*(1.-q(i,k)-ql(i,k)-qs(i,k))* & |
---|
303 | zairm(i, k)*t(i, k) |
---|
304 | zh_qw_col(i) = zh_qw_col(i) + zcpvap*q(i, k)*zairm(i, k)*t(i, k) |
---|
305 | zh_ql_col(i) = zh_ql_col(i) + zcwat*ql(i, k)*zairm(i, k)*t(i, k) - & |
---|
306 | rlvtt*ql(i, k)*zairm(i, k) |
---|
307 | zh_qs_col(i) = zh_qs_col(i) + zcice*qs(i, k)*zairm(i, k)*t(i, k) - & |
---|
308 | rlstt*qs(i, k)*zairm(i, k) |
---|
309 | |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | |
---|
313 | ! Mean over the planete surface |
---|
314 | ! ============================= |
---|
315 | qw_tot = 0. |
---|
316 | ql_tot = 0. |
---|
317 | qs_tot = 0. |
---|
318 | ec_tot = 0. |
---|
319 | h_vcol_tot = 0. |
---|
320 | h_dair_tot = 0. |
---|
321 | h_qw_tot = 0. |
---|
322 | h_ql_tot = 0. |
---|
323 | h_qs_tot = 0. |
---|
324 | airetot = 0. |
---|
325 | |
---|
326 | DO i = 1, klon |
---|
327 | qw_tot = qw_tot + zqw_col(i)*airephy(i) |
---|
328 | ql_tot = ql_tot + zql_col(i)*airephy(i) |
---|
329 | qs_tot = qs_tot + zqs_col(i)*airephy(i) |
---|
330 | ec_tot = ec_tot + zec_col(i)*airephy(i) |
---|
331 | h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i) |
---|
332 | h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i) |
---|
333 | h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i) |
---|
334 | h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i) |
---|
335 | airetot = airetot + airephy(i) |
---|
336 | END DO |
---|
337 | |
---|
338 | qw_tot = qw_tot/airetot |
---|
339 | ql_tot = ql_tot/airetot |
---|
340 | qs_tot = qs_tot/airetot |
---|
341 | ec_tot = ec_tot/airetot |
---|
342 | h_dair_tot = h_dair_tot/airetot |
---|
343 | h_qw_tot = h_qw_tot/airetot |
---|
344 | h_ql_tot = h_ql_tot/airetot |
---|
345 | h_qs_tot = h_qs_tot/airetot |
---|
346 | |
---|
347 | h_vcol_tot = h_dair_tot + h_qw_tot + h_ql_tot + h_qs_tot |
---|
348 | |
---|
349 | ! Compute the change of the atmospheric state compare to the one |
---|
350 | ! stored in "idiag2", and convert it in flux. THis computation |
---|
351 | ! is performed IF idiag2 /= 0 and IF it is not the first CALL |
---|
352 | ! for "idiag" |
---|
353 | ! =================================== |
---|
354 | |
---|
355 | IF ((idiag2>0) .AND. (pas(idiag2)/=0)) THEN |
---|
356 | d_h_vcol = (h_vcol_tot-h_vcol_pre(idiag2))/dtime |
---|
357 | d_h_dair = (h_dair_tot-h_dair_pre(idiag2))/dtime |
---|
358 | d_h_qw = (h_qw_tot-h_qw_pre(idiag2))/dtime |
---|
359 | d_h_ql = (h_ql_tot-h_ql_pre(idiag2))/dtime |
---|
360 | d_h_qs = (h_qs_tot-h_qs_pre(idiag2))/dtime |
---|
361 | d_qw = (qw_tot-qw_pre(idiag2))/dtime |
---|
362 | d_ql = (ql_tot-ql_pre(idiag2))/dtime |
---|
363 | d_qs = (qs_tot-qs_pre(idiag2))/dtime |
---|
364 | d_ec = (ec_tot-ec_pre(idiag2))/dtime |
---|
365 | d_qt = d_qw + d_ql + d_qs |
---|
366 | ELSE |
---|
367 | d_h_vcol = 0. |
---|
368 | d_h_dair = 0. |
---|
369 | d_h_qw = 0. |
---|
370 | d_h_ql = 0. |
---|
371 | d_h_qs = 0. |
---|
372 | d_qw = 0. |
---|
373 | d_ql = 0. |
---|
374 | d_qs = 0. |
---|
375 | d_ec = 0. |
---|
376 | d_qt = 0. |
---|
377 | END IF |
---|
378 | |
---|
379 | IF (iprt>=2) THEN |
---|
380 | WRITE (6, 9000) tit, pas(idiag), d_qt, d_qw, d_ql, d_qs |
---|
381 | 9000 FORMAT ('Phys. Watter Mass Budget (kg/m2/s)', A15, 1I6, 10(1PE14.6)) |
---|
382 | WRITE (6, 9001) tit, pas(idiag), d_h_vcol |
---|
383 | 9001 FORMAT ('Phys. Enthalpy Budget (W/m2) ', A15, 1I6, 10(F8.2)) |
---|
384 | WRITE (6, 9002) tit, pas(idiag), d_ec |
---|
385 | 9002 FORMAT ('Phys. Cinetic Energy Budget (W/m2) ', A15, 1I6, 10(F8.2)) |
---|
386 | END IF |
---|
387 | |
---|
388 | ! Store the new atmospheric state in "idiag" |
---|
389 | |
---|
390 | pas(idiag) = pas(idiag) + 1 |
---|
391 | h_vcol_pre(idiag) = h_vcol_tot |
---|
392 | h_dair_pre(idiag) = h_dair_tot |
---|
393 | h_qw_pre(idiag) = h_qw_tot |
---|
394 | h_ql_pre(idiag) = h_ql_tot |
---|
395 | h_qs_pre(idiag) = h_qs_tot |
---|
396 | qw_pre(idiag) = qw_tot |
---|
397 | ql_pre(idiag) = ql_tot |
---|
398 | qs_pre(idiag) = qs_tot |
---|
399 | ec_pre(idiag) = ec_tot |
---|
400 | |
---|
401 | |
---|
402 | END SUBROUTINE diagetpq |
---|