| 1 | |
|---|
| 2 | |
|---|
| 3 | SUBROUTINE cv3p2_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
|---|
| 4 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
|---|
| 5 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmflast, plfc, & |
|---|
| 6 | wbeff) |
|---|
| 7 | |
|---|
| 8 | |
|---|
| 9 | ! ************************************************************** |
|---|
| 10 | ! * |
|---|
| 11 | ! CV3P2_CLOSURE * |
|---|
| 12 | ! Ale & Alp Closure of Convect3 * |
|---|
| 13 | ! * |
|---|
| 14 | ! written by : Kerry Emanuel * |
|---|
| 15 | ! vectorization: S. Bony * |
|---|
| 16 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
|---|
| 17 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
|---|
| 18 | ! ************************************************************** |
|---|
| 19 | |
|---|
| 20 | USE lmdz_print_control, ONLY: prt_level, lunout |
|---|
| 21 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 22 | IMPLICIT NONE |
|---|
| 23 | |
|---|
| 24 | include "cvthermo.h" |
|---|
| 25 | include "cv3param.h" |
|---|
| 26 | include "cvflag.h" |
|---|
| 27 | include "YOMCST2.h" |
|---|
| 28 | include "YOMCST.h" |
|---|
| 29 | include "conema3.h" |
|---|
| 30 | |
|---|
| 31 | ! input: |
|---|
| 32 | INTEGER, INTENT (IN) :: ncum, nd, nloc |
|---|
| 33 | INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
|---|
| 34 | REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
|---|
| 35 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
|---|
| 36 | REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
|---|
| 37 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
|---|
| 38 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
|---|
| 39 | LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
|---|
| 40 | REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
|---|
| 41 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
|---|
| 42 | |
|---|
| 43 | ! input/output: |
|---|
| 44 | INTEGER, DIMENSION (nloc), INTENT (INOUT) :: iflag |
|---|
| 45 | REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
|---|
| 46 | REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
|---|
| 47 | |
|---|
| 48 | ! output: |
|---|
| 49 | REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
|---|
| 50 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
|---|
| 51 | REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
|---|
| 52 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
|---|
| 53 | REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
|---|
| 54 | REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
|---|
| 55 | REAL, DIMENSION (nloc), INTENT (OUT) :: cbmflast, plfc |
|---|
| 56 | REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
|---|
| 57 | |
|---|
| 58 | ! local variables: |
|---|
| 59 | INTEGER :: il, i, j, k, icbmax |
|---|
| 60 | INTEGER, DIMENSION (nloc) :: i0, klfc |
|---|
| 61 | REAL :: deltap, fac, w, amu |
|---|
| 62 | REAL, DIMENSION (nloc, nd) :: rhodp ! Factor such that m=rhodp*sig*w |
|---|
| 63 | REAL :: dz |
|---|
| 64 | REAL :: pbmxup |
|---|
| 65 | REAL, DIMENSION (nloc, nd) :: dtmin, sigold |
|---|
| 66 | REAL, DIMENSION (nloc, nd) :: coefmix |
|---|
| 67 | REAL, DIMENSION (nloc) :: dtminmax |
|---|
| 68 | REAL, DIMENSION (nloc) :: pzero, ptop2old |
|---|
| 69 | REAL, DIMENSION (nloc) :: cina, cinb |
|---|
| 70 | INTEGER, DIMENSION (nloc) :: ibeg |
|---|
| 71 | INTEGER, DIMENSION (nloc) :: nsupmax |
|---|
| 72 | REAL :: supcrit |
|---|
| 73 | REAL, DIMENSION (nloc, nd) :: temp |
|---|
| 74 | REAL, DIMENSION (nloc) :: p1, pmin |
|---|
| 75 | REAL, DIMENSION (nloc) :: asupmax0 |
|---|
| 76 | LOGICAL, DIMENSION (nloc) :: ok |
|---|
| 77 | REAL, DIMENSION (nloc, nd) :: siglim, wlim, mlim |
|---|
| 78 | REAL, DIMENSION (nloc) :: wb2 |
|---|
| 79 | REAL, DIMENSION (nloc) :: cbmf0 ! initial cloud base mass flux |
|---|
| 80 | REAL, DIMENSION (nloc) :: cbmflim ! cbmf given by Cape closure |
|---|
| 81 | REAL, DIMENSION (nloc) :: cbmfalp ! cbmf given by Alp closure |
|---|
| 82 | REAL, DIMENSION (nloc) :: cbmfalpb ! bounded cbmf given by Alp closure |
|---|
| 83 | REAL, DIMENSION (nloc) :: cbmfmax ! upper bound on cbmf |
|---|
| 84 | REAL, DIMENSION (nloc) :: coef |
|---|
| 85 | REAL, DIMENSION (nloc) :: xp, xq, xr, discr, b3, b4 |
|---|
| 86 | REAL, DIMENSION (nloc) :: theta, bb |
|---|
| 87 | REAL :: term1, term2, term3 |
|---|
| 88 | REAL, DIMENSION (nloc) :: alp2 ! Alp with offset |
|---|
| 89 | |
|---|
| 90 | !CR: variables for new erosion of adiabiatic ascent |
|---|
| 91 | REAL, DIMENSION (nloc, nd) :: mad, me, betalim, beta_coef |
|---|
| 92 | REAL, DIMENSION (nloc, nd) :: med, md |
|---|
| 93 | !jyg< |
|---|
| 94 | ! coef_peel is now in the common cv3_param |
|---|
| 95 | !! REAL :: coef_peel |
|---|
| 96 | !! PARAMETER (coef_peel=0.25) |
|---|
| 97 | !>jyg |
|---|
| 98 | |
|---|
| 99 | REAL :: sigmax |
|---|
| 100 | PARAMETER (sigmax=0.1) |
|---|
| 101 | !! PARAMETER (sigmax=10.) |
|---|
| 102 | |
|---|
| 103 | CHARACTER (LEN=20) :: modname = 'cv3p2_closure' |
|---|
| 104 | CHARACTER (LEN=80) :: abort_message |
|---|
| 105 | |
|---|
| 106 | INTEGER,SAVE :: igout=1 |
|---|
| 107 | !$OMP THREADPRIVATE(igout) |
|---|
| 108 | |
|---|
| 109 | IF (prt_level>=20) print *,' -> cv3p2_closure, Ale ',ale(igout) |
|---|
| 110 | |
|---|
| 111 | |
|---|
| 112 | ! ------------------------------------------------------- |
|---|
| 113 | ! -- Initialization |
|---|
| 114 | ! ------------------------------------------------------- |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | DO il = 1, ncum |
|---|
| 118 | alp2(il) = max(alp(il), 1.E-5) |
|---|
| 119 | ! IM |
|---|
| 120 | alp2(il) = max(alp(il), 1.E-12) |
|---|
| 121 | END DO |
|---|
| 122 | |
|---|
| 123 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
|---|
| 124 | ! exist (if any) |
|---|
| 125 | |
|---|
| 126 | IF (prt_level>=20) PRINT *, 'cv3p2_closure nloc ncum nd icb inb nl', nloc, & |
|---|
| 127 | ncum, nd, icb(nloc), inb(nloc), nl |
|---|
| 128 | DO k = 1, nl |
|---|
| 129 | DO il = 1, ncum |
|---|
| 130 | rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
|---|
| 131 | END DO |
|---|
| 132 | END DO |
|---|
| 133 | |
|---|
| 134 | !CR+jyg: initializations (up to nd) for erosion of adiabatic ascent and of m and wlim |
|---|
| 135 | DO k = 1,nd |
|---|
| 136 | DO il = 1, ncum |
|---|
| 137 | mad(il,k)=0. |
|---|
| 138 | me(il,k)=0. |
|---|
| 139 | betalim(il,k)=1. |
|---|
| 140 | wlim(il,k)=0. |
|---|
| 141 | m(il, k) = 0.0 |
|---|
| 142 | ENDDO |
|---|
| 143 | ENDDO |
|---|
| 144 | |
|---|
| 145 | ! ------------------------------------------------------- |
|---|
| 146 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
|---|
| 147 | ! ------------------------------------------------------- |
|---|
| 148 | |
|---|
| 149 | ! update sig and w0 above LNB: |
|---|
| 150 | |
|---|
| 151 | DO k = 1, nl - 1 |
|---|
| 152 | DO il = 1, ncum |
|---|
| 153 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
|---|
| 154 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il,inb(il))) |
|---|
| 155 | sig(il, k) = amax1(sig(il,k), 0.0) |
|---|
| 156 | w0(il, k) = beta*w0(il, k) |
|---|
| 157 | END IF |
|---|
| 158 | END DO |
|---|
| 159 | END DO |
|---|
| 160 | |
|---|
| 161 | ! IF(prt.level.GE.20) PRINT*,'cv3p2_closure apres 100' |
|---|
| 162 | ! compute icbmax: |
|---|
| 163 | |
|---|
| 164 | icbmax = 2 |
|---|
| 165 | DO il = 1, ncum |
|---|
| 166 | icbmax = max(icbmax, icb(il)) |
|---|
| 167 | END DO |
|---|
| 168 | ! IF(prt.level.GE.20) PRINT*,'cv3p2_closure apres 200' |
|---|
| 169 | |
|---|
| 170 | ! update sig and w0 below cloud base: |
|---|
| 171 | |
|---|
| 172 | DO k = 1, icbmax |
|---|
| 173 | DO il = 1, ncum |
|---|
| 174 | IF (k<=icb(il)) THEN |
|---|
| 175 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il,icb(il)) |
|---|
| 176 | sig(il, k) = amax1(sig(il,k), 0.0) |
|---|
| 177 | w0(il, k) = beta*w0(il, k) |
|---|
| 178 | END IF |
|---|
| 179 | END DO |
|---|
| 180 | END DO |
|---|
| 181 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 300' |
|---|
| 182 | |
|---|
| 183 | ! ------------------------------------------------------------- |
|---|
| 184 | ! -- Reset fractional areas of updrafts and w0 at initial time |
|---|
| 185 | ! -- and after 10 time steps of no convection |
|---|
| 186 | ! ------------------------------------------------------------- |
|---|
| 187 | |
|---|
| 188 | !jyg< |
|---|
| 189 | IF (ok_convstop) THEN |
|---|
| 190 | DO k = 1, nl - 1 |
|---|
| 191 | DO il = 1, ncum |
|---|
| 192 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>noconv_stop) THEN |
|---|
| 193 | sig(il, k) = 0.0 |
|---|
| 194 | w0(il, k) = 0.0 |
|---|
| 195 | END IF |
|---|
| 196 | END DO |
|---|
| 197 | END DO |
|---|
| 198 | ELSE |
|---|
| 199 | DO k = 1, nl - 1 |
|---|
| 200 | DO il = 1, ncum |
|---|
| 201 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
|---|
| 202 | sig(il, k) = 0.0 |
|---|
| 203 | w0(il, k) = 0.0 |
|---|
| 204 | END IF |
|---|
| 205 | END DO |
|---|
| 206 | END DO |
|---|
| 207 | ENDIF ! (ok_convstop) |
|---|
| 208 | !>jyg |
|---|
| 209 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 400' |
|---|
| 210 | |
|---|
| 211 | ! ------------------------------------------------------- |
|---|
| 212 | ! -- Compute initial cloud base mass flux (Cbmf0) |
|---|
| 213 | ! ------------------------------------------------------- |
|---|
| 214 | DO il = 1, ncum |
|---|
| 215 | cbmf0(il) = 0.0 |
|---|
| 216 | END DO |
|---|
| 217 | |
|---|
| 218 | DO k = 1, nl |
|---|
| 219 | DO il = 1, ncum |
|---|
| 220 | IF (k>=icb(il) .AND. k<=inb(il) & |
|---|
| 221 | .AND. icb(il)+1<=inb(il)) THEN |
|---|
| 222 | cbmf0(il) = cbmf0(il) + sig(il, k)*w0(il,k)*rhodp(il,k) |
|---|
| 223 | END IF |
|---|
| 224 | END DO |
|---|
| 225 | END DO |
|---|
| 226 | |
|---|
| 227 | ! ------------------------------------------------------------- |
|---|
| 228 | ! jyg1 |
|---|
| 229 | ! -- Calculate adiabatic ascent top pressure (ptop) |
|---|
| 230 | ! ------------------------------------------------------------- |
|---|
| 231 | |
|---|
| 232 | |
|---|
| 233 | ! c 1. Start at first level where precipitations form |
|---|
| 234 | DO il = 1, ncum |
|---|
| 235 | pzero(il) = plcl(il) - pbcrit |
|---|
| 236 | END DO |
|---|
| 237 | |
|---|
| 238 | ! c 2. Add offset |
|---|
| 239 | DO il = 1, ncum |
|---|
| 240 | pzero(il) = pzero(il) - pbmxup |
|---|
| 241 | END DO |
|---|
| 242 | DO il = 1, ncum |
|---|
| 243 | ptop2old(il) = ptop2(il) |
|---|
| 244 | END DO |
|---|
| 245 | |
|---|
| 246 | DO il = 1, ncum |
|---|
| 247 | ! CR:c est quoi ce 300?? |
|---|
| 248 | p1(il) = pzero(il) - 300. |
|---|
| 249 | END DO |
|---|
| 250 | |
|---|
| 251 | ! compute asupmax=abs(supmax) up to lnm+1 |
|---|
| 252 | |
|---|
| 253 | DO il = 1, ncum |
|---|
| 254 | ok(il) = .TRUE. |
|---|
| 255 | nsupmax(il) = inb(il) |
|---|
| 256 | END DO |
|---|
| 257 | |
|---|
| 258 | DO i = 1, nl |
|---|
| 259 | DO il = 1, ncum |
|---|
| 260 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
|---|
| 261 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
|---|
| 262 | nsupmax(il) = i |
|---|
| 263 | ok(il) = .FALSE. |
|---|
| 264 | END IF ! end IF (P(i) ... ) |
|---|
| 265 | END IF ! end IF (icb+1 le i le inb) |
|---|
| 266 | END DO |
|---|
| 267 | END DO |
|---|
| 268 | |
|---|
| 269 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 2.' |
|---|
| 270 | DO i = 1, nl |
|---|
| 271 | DO il = 1, ncum |
|---|
| 272 | asupmax(il, i) = abs(supmax(il,i)) |
|---|
| 273 | END DO |
|---|
| 274 | END DO |
|---|
| 275 | |
|---|
| 276 | |
|---|
| 277 | DO il = 1, ncum |
|---|
| 278 | asupmaxmin(il) = 10. |
|---|
| 279 | pmin(il) = 100. |
|---|
| 280 | ! IM ?? |
|---|
| 281 | asupmax0(il) = 0. |
|---|
| 282 | END DO |
|---|
| 283 | |
|---|
| 284 | ! c 3. Compute in which level is Pzero |
|---|
| 285 | |
|---|
| 286 | ! IM bug i0 = 18 |
|---|
| 287 | DO il = 1, ncum |
|---|
| 288 | i0(il) = nl |
|---|
| 289 | END DO |
|---|
| 290 | |
|---|
| 291 | DO i = 1, nl |
|---|
| 292 | DO il = 1, ncum |
|---|
| 293 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
|---|
| 294 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
|---|
| 295 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
|---|
| 296 | i0(il) = i |
|---|
| 297 | END IF |
|---|
| 298 | END IF |
|---|
| 299 | END IF |
|---|
| 300 | END DO |
|---|
| 301 | END DO |
|---|
| 302 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 3.' |
|---|
| 303 | |
|---|
| 304 | ! c 4. Compute asupmax at Pzero |
|---|
| 305 | |
|---|
| 306 | DO i = 1, nl |
|---|
| 307 | DO il = 1, ncum |
|---|
| 308 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
|---|
| 309 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
|---|
| 310 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))- & |
|---|
| 311 | (pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il,i0(il)-1)) |
|---|
| 312 | END IF |
|---|
| 313 | END IF |
|---|
| 314 | END DO |
|---|
| 315 | END DO |
|---|
| 316 | |
|---|
| 317 | |
|---|
| 318 | DO i = 1, nl |
|---|
| 319 | DO il = 1, ncum |
|---|
| 320 | IF (p(il,i)==pzero(il)) THEN |
|---|
| 321 | asupmax(i, il) = asupmax0(il) |
|---|
| 322 | END IF |
|---|
| 323 | END DO |
|---|
| 324 | END DO |
|---|
| 325 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 4.' |
|---|
| 326 | |
|---|
| 327 | ! c 5. Compute asupmaxmin, minimum of asupmax |
|---|
| 328 | |
|---|
| 329 | DO i = 1, nl |
|---|
| 330 | DO il = 1, ncum |
|---|
| 331 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
|---|
| 332 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
|---|
| 333 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
|---|
| 334 | asupmaxmin(il) = asupmax(il, i) |
|---|
| 335 | pmin(il) = p(il, i) |
|---|
| 336 | END IF |
|---|
| 337 | END IF |
|---|
| 338 | END IF |
|---|
| 339 | END DO |
|---|
| 340 | END DO |
|---|
| 341 | |
|---|
| 342 | DO il = 1, ncum |
|---|
| 343 | ! IM |
|---|
| 344 | IF (prt_level>=20) THEN |
|---|
| 345 | PRINT *, 'cv3p2_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
|---|
| 346 | asupmaxmin(il), pzero(il), pmin(il) |
|---|
| 347 | END IF |
|---|
| 348 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
|---|
| 349 | asupmaxmin(il) = asupmax0(il) |
|---|
| 350 | pmin(il) = pzero(il) |
|---|
| 351 | END IF |
|---|
| 352 | END DO |
|---|
| 353 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 5.' |
|---|
| 354 | |
|---|
| 355 | |
|---|
| 356 | ! Compute Supmax at Pzero |
|---|
| 357 | |
|---|
| 358 | DO i = 1, nl |
|---|
| 359 | DO il = 1, ncum |
|---|
| 360 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
|---|
| 361 | IF (p(il,i)<=pzero(il)) THEN |
|---|
| 362 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)- & |
|---|
| 363 | (p(il,i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
|---|
| 364 | GO TO 425 |
|---|
| 365 | END IF ! end IF (P(i) ... ) |
|---|
| 366 | END IF ! end IF (icb+1 le i le inb) |
|---|
| 367 | END DO |
|---|
| 368 | END DO |
|---|
| 369 | |
|---|
| 370 | 425 CONTINUE |
|---|
| 371 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 425.' |
|---|
| 372 | |
|---|
| 373 | ! c 6. Calculate ptop2 |
|---|
| 374 | |
|---|
| 375 | DO il = 1, ncum |
|---|
| 376 | IF (asupmaxmin(il)<supcrit1) THEN |
|---|
| 377 | ptop2(il) = pmin(il) |
|---|
| 378 | END IF |
|---|
| 379 | |
|---|
| 380 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
|---|
| 381 | ptop2(il) = ptop2old(il) |
|---|
| 382 | END IF |
|---|
| 383 | |
|---|
| 384 | IF (asupmaxmin(il)>supcrit2) THEN |
|---|
| 385 | ptop2(il) = ph(il, inb(il)) |
|---|
| 386 | END IF |
|---|
| 387 | END DO |
|---|
| 388 | |
|---|
| 389 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 6.' |
|---|
| 390 | |
|---|
| 391 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
|---|
| 392 | |
|---|
| 393 | |
|---|
| 394 | IF (ok_inhib) THEN |
|---|
| 395 | |
|---|
| 396 | DO i = 1, nl |
|---|
| 397 | DO il = 1, ncum |
|---|
| 398 | IF (i<=nl) THEN |
|---|
| 399 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph(il,i)) |
|---|
| 400 | coefmix(il, i) = min(coefmix(il,i), 1.) |
|---|
| 401 | END IF |
|---|
| 402 | END DO |
|---|
| 403 | END DO |
|---|
| 404 | |
|---|
| 405 | |
|---|
| 406 | ELSE ! when inhibition is not taken into account, coefmix=1 |
|---|
| 407 | |
|---|
| 408 | |
|---|
| 409 | |
|---|
| 410 | DO i = 1, nl |
|---|
| 411 | DO il = 1, ncum |
|---|
| 412 | IF (i<=nl) THEN |
|---|
| 413 | coefmix(il, i) = 1. |
|---|
| 414 | END IF |
|---|
| 415 | END DO |
|---|
| 416 | END DO |
|---|
| 417 | |
|---|
| 418 | END IF ! ok_inhib |
|---|
| 419 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 7.' |
|---|
| 420 | ! ------------------------------------------------------------------- |
|---|
| 421 | ! ------------------------------------------------------------------- |
|---|
| 422 | |
|---|
| 423 | |
|---|
| 424 | ! jyg2 |
|---|
| 425 | |
|---|
| 426 | ! ========================================================================== |
|---|
| 427 | |
|---|
| 428 | |
|---|
| 429 | ! ------------------------------------------------------------- |
|---|
| 430 | ! -- Calculate convective inhibition (CIN) |
|---|
| 431 | ! ------------------------------------------------------------- |
|---|
| 432 | |
|---|
| 433 | ! do i=1,nloc |
|---|
| 434 | ! PRINT*,'avant cine p',pbase(i),plcl(i) |
|---|
| 435 | ! enddo |
|---|
| 436 | ! do j=1,nd |
|---|
| 437 | ! do i=1,nloc |
|---|
| 438 | ! PRINT*,'avant cine t',tv(i),tvp(i) |
|---|
| 439 | ! enddo |
|---|
| 440 | ! enddo |
|---|
| 441 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
|---|
| 442 | cinb, plfc) |
|---|
| 443 | |
|---|
| 444 | DO il = 1, ncum |
|---|
| 445 | cin(il) = cina(il) + cinb(il) |
|---|
| 446 | END DO |
|---|
| 447 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_cine: cina, cinb, cin ', & |
|---|
| 448 | cina(igout), cinb(igout), cin(igout) |
|---|
| 449 | ! ------------------------------------------------------------- |
|---|
| 450 | ! --Update buoyancies to account for Ale |
|---|
| 451 | ! ------------------------------------------------------------- |
|---|
| 452 | |
|---|
| 453 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
|---|
| 454 | tvp, buoy) |
|---|
| 455 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_buoy' |
|---|
| 456 | |
|---|
| 457 | ! ------------------------------------------------------------- |
|---|
| 458 | ! -- Calculate convective available potential energy (cape), |
|---|
| 459 | ! -- vertical velocity (w), fractional area covered by |
|---|
| 460 | ! -- undilute updraft (sig), and updraft mass flux (m) |
|---|
| 461 | ! ------------------------------------------------------------- |
|---|
| 462 | |
|---|
| 463 | DO il = 1, ncum |
|---|
| 464 | cape(il) = 0.0 |
|---|
| 465 | dtminmax(il) = -100. |
|---|
| 466 | END DO |
|---|
| 467 | |
|---|
| 468 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
|---|
| 469 | |
|---|
| 470 | DO k = 1, nl |
|---|
| 471 | DO il = 1, ncum |
|---|
| 472 | dtmin(il, k) = 100.0 |
|---|
| 473 | END DO |
|---|
| 474 | END DO |
|---|
| 475 | |
|---|
| 476 | DO k = 1, nl |
|---|
| 477 | DO j = minorig, nl |
|---|
| 478 | DO il = 1, ncum |
|---|
| 479 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) & |
|---|
| 480 | .AND. (j<=(k-1))) THEN |
|---|
| 481 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
|---|
| 482 | END IF |
|---|
| 483 | END DO |
|---|
| 484 | END DO |
|---|
| 485 | END DO |
|---|
| 486 | !jyg< |
|---|
| 487 | ! Store maximum of dtmin |
|---|
| 488 | ! C est pas terrible d avoir ce test sur Ale+Cin encore une fois ici. |
|---|
| 489 | ! A REVOIR ! |
|---|
| 490 | DO k = 1, nl |
|---|
| 491 | DO il = 1, ncum |
|---|
| 492 | IF (k>=(icb(il)+1) .AND. k<=inb(il) .AND. ale(il)+cin(il)>0.) THEN |
|---|
| 493 | dtminmax(il) = max(dtmin(il,k), dtminmax(il)) |
|---|
| 494 | ENDIF |
|---|
| 495 | END DO |
|---|
| 496 | END DO |
|---|
| 497 | |
|---|
| 498 | ! prevent convection when ale+cin <= 0 |
|---|
| 499 | DO k = 1, nl |
|---|
| 500 | DO il = 1, ncum |
|---|
| 501 | IF (k>=(icb(il)+1) .AND. k<=inb(il)) THEN |
|---|
| 502 | dtmin(il,k) = min(dtmin(il,k), dtminmax(il)) |
|---|
| 503 | ENDIF |
|---|
| 504 | END DO |
|---|
| 505 | END DO |
|---|
| 506 | !>jyg |
|---|
| 507 | |
|---|
| 508 | IF (prt_level >= 20) THEN |
|---|
| 509 | print *,'cv3p2_closure: dtmin ', (k, dtmin(igout,k), k=1,nl) |
|---|
| 510 | print *,'cv3p2_closure: dtminmax ', dtminmax(igout) |
|---|
| 511 | ENDIF |
|---|
| 512 | |
|---|
| 513 | ! the interval on which cape is computed starts at pbase : |
|---|
| 514 | |
|---|
| 515 | DO k = 1, nl |
|---|
| 516 | DO il = 1, ncum |
|---|
| 517 | |
|---|
| 518 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
|---|
| 519 | |
|---|
| 520 | IF (iflag_mix_adiab==1) THEN |
|---|
| 521 | !CR:computation of cape from LCL: keep flag or to modify in all cases? |
|---|
| 522 | deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
|---|
| 523 | ELSE |
|---|
| 524 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
|---|
| 525 | ENDIF |
|---|
| 526 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
|---|
| 527 | cape(il) = amax1(0.0, cape(il)) |
|---|
| 528 | sigold(il, k) = sig(il, k) |
|---|
| 529 | |
|---|
| 530 | |
|---|
| 531 | ! jyg Coefficient coefmix limits convection to levels where a |
|---|
| 532 | ! sufficient |
|---|
| 533 | ! fraction of mixed draughts are ascending. |
|---|
| 534 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
|---|
| 535 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
|---|
| 536 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
|---|
| 537 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
|---|
| 538 | fac = 1. |
|---|
| 539 | wlim(il, k) = fac*sqrt(cape(il)) |
|---|
| 540 | amu = siglim(il, k)*wlim(il, k) |
|---|
| 541 | !! rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) !cor jyg : computed earlier |
|---|
| 542 | mlim(il, k) = amu*rhodp(il,k) |
|---|
| 543 | ! PRINT*, 'siglim ', k,siglim(1,k) |
|---|
| 544 | END IF |
|---|
| 545 | |
|---|
| 546 | END DO |
|---|
| 547 | END DO |
|---|
| 548 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 600' |
|---|
| 549 | |
|---|
| 550 | DO il = 1, ncum |
|---|
| 551 | ! IM beg |
|---|
| 552 | IF (prt_level>=20) THEN |
|---|
| 553 | PRINT *, 'cv3p2_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
|---|
| 554 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
|---|
| 555 | ph(il, icb(il)+2) |
|---|
| 556 | END IF |
|---|
| 557 | |
|---|
| 558 | IF (icb(il)+1<=inb(il)) THEN |
|---|
| 559 | ! IM end |
|---|
| 560 | mlim(il, icb(il)) = 0.5*mlim(il,icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
|---|
| 561 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
|---|
| 562 | ! IM beg |
|---|
| 563 | END IF !(icb(il.le.inb(il))) THEN |
|---|
| 564 | ! IM end |
|---|
| 565 | END DO |
|---|
| 566 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 700' |
|---|
| 567 | |
|---|
| 568 | ! ------------------------------------------------------------------------ |
|---|
| 569 | ! c Compute Cloud base mass flux given by Cape closure (cbmflim = cbmf of |
|---|
| 570 | ! c elementary systems), cbmf given by Alp closure (cbmfalp), cbmf given by Alp |
|---|
| 571 | ! c closure with an upper bound imposed (cbmfalpb) and cbmf resulting from |
|---|
| 572 | ! c time integration (cbmflast). |
|---|
| 573 | ! ------------------------------------------------------------------------ |
|---|
| 574 | |
|---|
| 575 | DO il = 1, ncum |
|---|
| 576 | cbmflim(il) = 0. |
|---|
| 577 | cbmfalp(il) = 0. |
|---|
| 578 | cbmfalpb(il) = 0. |
|---|
| 579 | cbmflast(il) = 0. |
|---|
| 580 | END DO |
|---|
| 581 | |
|---|
| 582 | ! c 1. Compute cloud base mass flux of elementary system (Cbmflim) |
|---|
| 583 | |
|---|
| 584 | DO k = 1, nl |
|---|
| 585 | DO il = 1, ncum |
|---|
| 586 | ! old IF (k .ge. icb(il) .AND. k .le. inb(il)) THEN |
|---|
| 587 | ! IM IF (k .ge. icb(il)+1 .AND. k .le. inb(il)) THEN |
|---|
| 588 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
|---|
| 589 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
|---|
| 590 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
|---|
| 591 | END IF |
|---|
| 592 | END DO |
|---|
| 593 | END DO |
|---|
| 594 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cbmflim: cbmflim ', cbmflim(igout) |
|---|
| 595 | |
|---|
| 596 | ! 1.5 Compute cloud base mass flux given by Alp closure (Cbmfalp), maximum |
|---|
| 597 | ! allowed mass flux (Cbmfmax) and bounded mass flux (Cbmfalpb) |
|---|
| 598 | ! Cbmfalpb is set to zero if Cbmflim (the mass flux of elementary cloud) |
|---|
| 599 | ! is exceedingly small. |
|---|
| 600 | |
|---|
| 601 | DO il = 1, ncum |
|---|
| 602 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
|---|
| 603 | END DO |
|---|
| 604 | |
|---|
| 605 | DO il = 1, ncum |
|---|
| 606 | IF (plfc(il)<100.) THEN |
|---|
| 607 | ! This is an irealistic value for plfc => no calculation of wbeff |
|---|
| 608 | wbeff(il) = 100.1 |
|---|
| 609 | ELSE |
|---|
| 610 | ! Calculate wbeff |
|---|
| 611 | IF (NINT(flag_wb)==0) THEN |
|---|
| 612 | wbeff(il) = wbmax |
|---|
| 613 | ELSE IF (NINT(flag_wb)==1) THEN |
|---|
| 614 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
|---|
| 615 | ELSE IF (NINT(flag_wb)==2) THEN |
|---|
| 616 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
|---|
| 617 | END IF |
|---|
| 618 | END IF |
|---|
| 619 | END DO |
|---|
| 620 | |
|---|
| 621 | !CR:Compute k at plfc |
|---|
| 622 | DO il=1,ncum |
|---|
| 623 | klfc(il)=nl |
|---|
| 624 | ENDDO |
|---|
| 625 | DO k=1,nl |
|---|
| 626 | DO il=1,ncum |
|---|
| 627 | IF ((plfc(il)<ph(il,k)).AND.(plfc(il)>=ph(il,k+1))) THEN |
|---|
| 628 | klfc(il)=k |
|---|
| 629 | endif |
|---|
| 630 | ENDDO |
|---|
| 631 | ENDDO |
|---|
| 632 | !RC |
|---|
| 633 | |
|---|
| 634 | DO il = 1, ncum |
|---|
| 635 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
|---|
| 636 | ! c cbmfalp(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
|---|
| 637 | cbmfalp(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
|---|
| 638 | !CR: Add large-scale component to the mass-flux |
|---|
| 639 | !encore connu sous le nom "Experience du tube de dentifrice" |
|---|
| 640 | IF ((coef_clos_ls>0.).AND.(plfc(il)>0.)) THEN |
|---|
| 641 | cbmfalp(il) = cbmfalp(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
|---|
| 642 | endif |
|---|
| 643 | !RC |
|---|
| 644 | IF (cbmfalp(il)==0 .AND. alp2(il)/=0.) THEN |
|---|
| 645 | WRITE (lunout, *) 'cv3p2_closure cbmfalp=0 and alp NE 0 il alp2 alp cin ' , & |
|---|
| 646 | il, alp2(il), alp(il), cin(il) |
|---|
| 647 | abort_message = '' |
|---|
| 648 | CALL abort_physic(modname, abort_message, 1) |
|---|
| 649 | END IF |
|---|
| 650 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
|---|
| 651 | END DO |
|---|
| 652 | |
|---|
| 653 | !jyg< |
|---|
| 654 | IF (OK_intermittent) THEN |
|---|
| 655 | DO il = 1, ncum |
|---|
| 656 | IF (cbmflim(il)>1.E-6) THEN |
|---|
| 657 | cbmfalpb(il) = min(cbmfalp(il), (cbmfmax(il)-beta*cbmf0(il))/(1.-beta)) |
|---|
| 658 | ! PRINT*,'cbmfalpb',cbmfalpb(il),cbmfmax(il) |
|---|
| 659 | END IF |
|---|
| 660 | END DO |
|---|
| 661 | ELSE |
|---|
| 662 | !>jyg |
|---|
| 663 | DO il = 1, ncum |
|---|
| 664 | IF (cbmflim(il)>1.E-6) THEN |
|---|
| 665 | ! ATTENTION TEST CR |
|---|
| 666 | ! if (cbmfmax(il).lt.1.e-12) THEN |
|---|
| 667 | cbmfalpb(il) = min(cbmfalp(il), cbmfmax(il)) |
|---|
| 668 | ! else |
|---|
| 669 | ! cbmfalpb(il) = cbmfalp(il) |
|---|
| 670 | ! END IF |
|---|
| 671 | ! PRINT*,'cbmfalpb',cbmfalp(il),cbmfmax(il) |
|---|
| 672 | END IF |
|---|
| 673 | END DO |
|---|
| 674 | ENDIF !(OK_intermittent) |
|---|
| 675 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmfalpb: cbmfalpb ',cbmfalpb(igout) |
|---|
| 676 | |
|---|
| 677 | ! c 2. Compute coefficient and apply correction |
|---|
| 678 | |
|---|
| 679 | DO il = 1, ncum |
|---|
| 680 | coef(il) = (cbmfalpb(il)+1.E-10)/(cbmflim(il)+1.E-10) |
|---|
| 681 | END DO |
|---|
| 682 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres coef_plantePLUS' |
|---|
| 683 | |
|---|
| 684 | DO k = 1, nl |
|---|
| 685 | DO il = 1, ncum |
|---|
| 686 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
|---|
| 687 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)*wlim(il, k) |
|---|
| 688 | w0(il, k) = wlim(il, k) |
|---|
| 689 | w0(il, k) = max(w0(il,k), 1.E-10) |
|---|
| 690 | sig(il, k) = amu/w0(il, k) |
|---|
| 691 | sig(il, k) = min(sig(il,k), 1.) |
|---|
| 692 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
|---|
| 693 | !jyg m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
|---|
| 694 | m(il, k) = amu*rhodp(il,k) |
|---|
| 695 | END IF |
|---|
| 696 | END DO |
|---|
| 697 | END DO |
|---|
| 698 | ! jyg2 |
|---|
| 699 | DO il = 1, ncum |
|---|
| 700 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
|---|
| 701 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
|---|
| 702 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
|---|
| 703 | sig(il, icb(il)) = sig(il, icb(il)+1) |
|---|
| 704 | sig(il, icb(il)-1) = sig(il, icb(il)) |
|---|
| 705 | END DO |
|---|
| 706 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres w0_sig_M: w0, sig ', & |
|---|
| 707 | (k,w0(igout,k),sig(igout,k), k=icb(igout),inb(igout)) |
|---|
| 708 | |
|---|
| 709 | !CR: new erosion of adiabatic ascent: modification of m |
|---|
| 710 | !computation of the sum of ascending fluxes |
|---|
| 711 | IF (iflag_mix_adiab==1) THEN |
|---|
| 712 | |
|---|
| 713 | !Verification sum(me)=sum(m) |
|---|
| 714 | DO k = 1,nd |
|---|
| 715 | DO il = 1, ncum |
|---|
| 716 | md(il,k)=0. |
|---|
| 717 | med(il,k)=0. |
|---|
| 718 | ENDDO |
|---|
| 719 | ENDDO |
|---|
| 720 | |
|---|
| 721 | DO k = nl,1,-1 |
|---|
| 722 | DO il = 1, ncum |
|---|
| 723 | md(il,k)=md(il,k+1)+m(il,k+1) |
|---|
| 724 | ENDDO |
|---|
| 725 | ENDDO |
|---|
| 726 | |
|---|
| 727 | DO k = nl,1,-1 |
|---|
| 728 | DO il = 1, ncum |
|---|
| 729 | IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
|---|
| 730 | mad(il,k)=mad(il,k+1)+m(il,k+1) |
|---|
| 731 | ENDIF |
|---|
| 732 | ! PRINT*,"mad",il,k,mad(il,k) |
|---|
| 733 | ENDDO |
|---|
| 734 | ENDDO |
|---|
| 735 | |
|---|
| 736 | !CR: erosion of each adiabatic ascent during its ascent |
|---|
| 737 | |
|---|
| 738 | !Computation of erosion coefficient beta_coef |
|---|
| 739 | DO k = 1, nl |
|---|
| 740 | DO il = 1, ncum |
|---|
| 741 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k)>0.)) THEN |
|---|
| 742 | ! PRINT*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
|---|
| 743 | beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
|---|
| 744 | ELSE |
|---|
| 745 | beta_coef(il,k)=0. |
|---|
| 746 | ENDIF |
|---|
| 747 | ENDDO |
|---|
| 748 | ENDDO |
|---|
| 749 | |
|---|
| 750 | ! PRINT*,"apres beta_coef" |
|---|
| 751 | |
|---|
| 752 | DO k = 1, nl |
|---|
| 753 | DO il = 1, ncum |
|---|
| 754 | |
|---|
| 755 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
|---|
| 756 | |
|---|
| 757 | ! PRINT*,"dz",il,k,tv(il, k-1) |
|---|
| 758 | dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
|---|
| 759 | betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
|---|
| 760 | ! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
|---|
| 761 | ! PRINT*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
|---|
| 762 | dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
|---|
| 763 | ! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
|---|
| 764 | me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
|---|
| 765 | ! PRINT*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
|---|
| 766 | |
|---|
| 767 | END IF |
|---|
| 768 | |
|---|
| 769 | !Modification of m |
|---|
| 770 | m(il,k)=me(il,k) |
|---|
| 771 | END DO |
|---|
| 772 | END DO |
|---|
| 773 | |
|---|
| 774 | ! DO il = 1, ncum |
|---|
| 775 | ! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
|---|
| 776 | ! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
|---|
| 777 | ! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
|---|
| 778 | ! PRINT*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
|---|
| 779 | ! ENDDO |
|---|
| 780 | |
|---|
| 781 | !Verification sum(me)=sum(m) |
|---|
| 782 | DO k = nl,1,-1 |
|---|
| 783 | DO il = 1, ncum |
|---|
| 784 | med(il,k)=med(il,k+1)+m(il,k+1) |
|---|
| 785 | ! PRINT*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
|---|
| 786 | ENDDO |
|---|
| 787 | ENDDO |
|---|
| 788 | |
|---|
| 789 | |
|---|
| 790 | ENDIF !(iflag_mix_adiab) |
|---|
| 791 | !RC |
|---|
| 792 | |
|---|
| 793 | ! c 3. Compute final cloud base mass flux; |
|---|
| 794 | ! c set iflag to 3 if cloud base mass flux is exceedingly small and is |
|---|
| 795 | ! c decreasing (i.e. if the final mass flux (cbmflast) is greater than |
|---|
| 796 | ! c the target mass flux (cbmfalpb)). |
|---|
| 797 | ! c If(ok_convstop): set iflag to 4 if no positive buoyancy has been met |
|---|
| 798 | |
|---|
| 799 | !jyg DO il = 1, ncum |
|---|
| 800 | !jyg cbmflast(il) = 0. |
|---|
| 801 | !jyg END DO |
|---|
| 802 | |
|---|
| 803 | DO k = 1, nl |
|---|
| 804 | DO il = 1, ncum |
|---|
| 805 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
|---|
| 806 | !IMpropo?? IF ((k.ge.(icb(il)+1)).AND.(k.le.inb(il))) THEN |
|---|
| 807 | cbmflast(il) = cbmflast(il) + m(il, k) |
|---|
| 808 | END IF |
|---|
| 809 | END DO |
|---|
| 810 | END DO |
|---|
| 811 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmflast: cbmflast ',cbmflast(igout) |
|---|
| 812 | |
|---|
| 813 | DO il = 1, ncum |
|---|
| 814 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmfalpb(il)) THEN |
|---|
| 815 | iflag(il) = 3 |
|---|
| 816 | END IF |
|---|
| 817 | END DO |
|---|
| 818 | |
|---|
| 819 | !jyg< |
|---|
| 820 | IF (ok_convstop) THEN |
|---|
| 821 | DO il = 1, ncum |
|---|
| 822 | IF (dtminmax(il) <= 0.) THEN |
|---|
| 823 | iflag(il) = 4 |
|---|
| 824 | END IF |
|---|
| 825 | END DO |
|---|
| 826 | ELSE |
|---|
| 827 | !>jyg |
|---|
| 828 | DO k = 1, nl |
|---|
| 829 | DO il = 1, ncum |
|---|
| 830 | IF (iflag(il)>=3) THEN |
|---|
| 831 | m(il, k) = 0. |
|---|
| 832 | sig(il, k) = 0. |
|---|
| 833 | w0(il, k) = 0. |
|---|
| 834 | END IF |
|---|
| 835 | END DO |
|---|
| 836 | END DO |
|---|
| 837 | ENDIF ! (ok_convstop) |
|---|
| 838 | |
|---|
| 839 | IF (prt_level >= 10) THEN |
|---|
| 840 | print *,'cv3p2_closure: iflag ',iflag(igout) |
|---|
| 841 | ENDIF |
|---|
| 842 | |
|---|
| 843 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
|---|
| 844 | ! effective |
|---|
| 845 | ! c sigdz larger in the present case (using cv3p2_closure) than in the |
|---|
| 846 | ! old |
|---|
| 847 | ! c closure (using cv3_closure). |
|---|
| 848 | IF (1==0) THEN |
|---|
| 849 | DO il = 1, ncum |
|---|
| 850 | ! c coef(il) = 2.*coef(il) |
|---|
| 851 | coef(il) = 5.*coef(il) |
|---|
| 852 | END DO |
|---|
| 853 | ! version CVS du ..2008 |
|---|
| 854 | ELSE |
|---|
| 855 | IF (iflag_cvl_sigd==0) THEN |
|---|
| 856 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
|---|
| 857 | coef(1:ncum) = 1. |
|---|
| 858 | ELSE |
|---|
| 859 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
|---|
| 860 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
|---|
| 861 | END IF |
|---|
| 862 | END IF |
|---|
| 863 | |
|---|
| 864 | IF (prt_level>=20) PRINT *, 'cv3p2_closure FIN' |
|---|
| 865 | |
|---|
| 866 | END SUBROUTINE cv3p2_closure |
|---|
| 867 | |
|---|
| 868 | |
|---|