[1992] | 1 | |
---|
[1403] | 2 | ! $Id: cv3p1_closure.F90 5160 2024-08-03 12:56:58Z abarral $ |
---|
[879] | 3 | |
---|
[1992] | 4 | SUBROUTINE cv3p1_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
---|
[2201] | 5 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
---|
[1992] | 6 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmf, plfc, & |
---|
| 7 | wbeff) |
---|
[879] | 8 | |
---|
| 9 | |
---|
[1992] | 10 | ! ************************************************************** |
---|
| 11 | ! * |
---|
| 12 | ! CV3P1_CLOSURE * |
---|
| 13 | ! Ale & Alp Closure of Convect3 * |
---|
| 14 | ! * |
---|
| 15 | ! written by : Kerry Emanuel * |
---|
| 16 | ! vectorization: S. Bony * |
---|
| 17 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
| 18 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
| 19 | ! ************************************************************** |
---|
[879] | 20 | |
---|
[5112] | 21 | USE lmdz_print_control, ONLY: prt_level, lunout |
---|
[5111] | 22 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
[5140] | 23 | USE lmdz_conema3 |
---|
[5141] | 24 | USE lmdz_cvthermo |
---|
| 25 | USE lmdz_cv3param |
---|
[5144] | 26 | USE lmdz_yomcst |
---|
[5158] | 27 | USE lmdz_yomcst2 |
---|
[5140] | 28 | |
---|
[1992] | 29 | IMPLICIT NONE |
---|
[879] | 30 | |
---|
[1992] | 31 | ! input: |
---|
[2253] | 32 | INTEGER, INTENT (IN) :: ncum, nd, nloc |
---|
| 33 | INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
---|
| 34 | REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
---|
| 35 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
---|
| 36 | REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
---|
| 37 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
---|
| 38 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
---|
| 39 | LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
---|
| 40 | REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
---|
| 41 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
---|
[879] | 42 | |
---|
[1992] | 43 | ! input/output: |
---|
[3671] | 44 | INTEGER, DIMENSION (nloc), INTENT (INOUT) :: iflag |
---|
[2253] | 45 | REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
---|
| 46 | REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
---|
[879] | 47 | |
---|
[1992] | 48 | ! output: |
---|
[2253] | 49 | REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
---|
| 50 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
---|
| 51 | REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
---|
| 52 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
---|
| 53 | REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
---|
| 54 | REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
---|
| 55 | REAL, DIMENSION (nloc), INTENT (OUT) :: cbmf, plfc |
---|
| 56 | REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
---|
[879] | 57 | |
---|
[1992] | 58 | ! local variables: |
---|
[2224] | 59 | INTEGER il, i, j, k, icbmax, i0(nloc), klfc(nloc) |
---|
[1992] | 60 | REAL deltap, fac, w, amu |
---|
[2420] | 61 | REAL rhodp, dz |
---|
[1992] | 62 | REAL pbmxup |
---|
| 63 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
| 64 | REAL coefmix(nloc, nd) |
---|
| 65 | REAL pzero(nloc), ptop2old(nloc) |
---|
| 66 | REAL cina(nloc), cinb(nloc) |
---|
| 67 | INTEGER ibeg(nloc) |
---|
| 68 | INTEGER nsupmax(nloc) |
---|
| 69 | REAL supcrit, temp(nloc, nd) |
---|
| 70 | REAL p1(nloc), pmin(nloc) |
---|
| 71 | REAL asupmax0(nloc) |
---|
| 72 | LOGICAL ok(nloc) |
---|
| 73 | REAL siglim(nloc, nd), wlim(nloc, nd), mlim(nloc, nd) |
---|
| 74 | REAL wb2(nloc) |
---|
| 75 | REAL cbmflim(nloc), cbmf1(nloc), cbmfmax(nloc) |
---|
| 76 | REAL cbmflast(nloc) |
---|
| 77 | REAL coef(nloc) |
---|
| 78 | REAL xp(nloc), xq(nloc), xr(nloc), discr(nloc), b3(nloc), b4(nloc) |
---|
| 79 | REAL theta(nloc), bb(nloc) |
---|
| 80 | REAL term1, term2, term3 |
---|
| 81 | REAL alp2(nloc) ! Alp with offset |
---|
[2420] | 82 | !CR: variables for new erosion of adiabiatic ascent |
---|
| 83 | REAL mad(nloc, nd), me(nloc, nd), betalim(nloc, nd), beta_coef(nloc, nd) |
---|
| 84 | REAL med(nloc, nd), md(nloc,nd) |
---|
[2458] | 85 | !jyg< |
---|
| 86 | ! coef_peel is now in the common cv3_param |
---|
| 87 | !! REAL coef_peel |
---|
| 88 | !! PARAMETER (coef_peel=0.25) |
---|
| 89 | !>jyg |
---|
[879] | 90 | |
---|
[1992] | 91 | REAL sigmax |
---|
| 92 | PARAMETER (sigmax=0.1) |
---|
[879] | 93 | |
---|
[1992] | 94 | CHARACTER (LEN=20) :: modname = 'cv3p1_closure' |
---|
| 95 | CHARACTER (LEN=80) :: abort_message |
---|
[879] | 96 | |
---|
[5160] | 97 | ! PRINT *,' -> cv3p1_closure, Ale ',ale(1) |
---|
[879] | 98 | |
---|
| 99 | |
---|
[1992] | 100 | ! ------------------------------------------------------- |
---|
| 101 | ! -- Initialization |
---|
| 102 | ! ------------------------------------------------------- |
---|
[879] | 103 | |
---|
| 104 | |
---|
[1992] | 105 | DO il = 1, ncum |
---|
| 106 | alp2(il) = max(alp(il), 1.E-5) |
---|
| 107 | ! IM |
---|
| 108 | alp2(il) = max(alp(il), 1.E-12) |
---|
| 109 | END DO |
---|
[879] | 110 | |
---|
[1992] | 111 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
| 112 | ! exist (if any) |
---|
[879] | 113 | |
---|
[1992] | 114 | IF (prt_level>=20) PRINT *, 'cv3p1_param nloc ncum nd icb inb nl', nloc, & |
---|
| 115 | ncum, nd, icb(nloc), inb(nloc), nl |
---|
[2502] | 116 | DO k = 1, nd !jyg: initialization up to nd |
---|
[1992] | 117 | DO il = 1, ncum |
---|
| 118 | m(il, k) = 0.0 |
---|
| 119 | END DO |
---|
| 120 | END DO |
---|
[879] | 121 | |
---|
[2420] | 122 | !CR: initializations for erosion of adiabatic ascent |
---|
[2502] | 123 | DO k = 1,nd !jyg: initialization up to nd |
---|
[2420] | 124 | DO il = 1, ncum |
---|
| 125 | mad(il,k)=0. |
---|
| 126 | me(il,k)=0. |
---|
| 127 | betalim(il,k)=1. |
---|
| 128 | wlim(il,k)=0. |
---|
| 129 | ENDDO |
---|
| 130 | ENDDO |
---|
| 131 | |
---|
[1992] | 132 | ! ------------------------------------------------------- |
---|
| 133 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 134 | ! ------------------------------------------------------- |
---|
[879] | 135 | |
---|
[1992] | 136 | ! update sig and w0 above LNB: |
---|
[879] | 137 | |
---|
[1992] | 138 | DO k = 1, nl - 1 |
---|
| 139 | DO il = 1, ncum |
---|
| 140 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
---|
| 141 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il & |
---|
| 142 | ,inb(il))) |
---|
| 143 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 144 | w0(il, k) = beta*w0(il, k) |
---|
| 145 | END IF |
---|
| 146 | END DO |
---|
| 147 | END DO |
---|
[879] | 148 | |
---|
[5116] | 149 | ! IF(prt.level.GE.20) PRINT*,'cv3p1_param apres 100' |
---|
[1992] | 150 | ! compute icbmax: |
---|
[879] | 151 | |
---|
[1992] | 152 | icbmax = 2 |
---|
| 153 | DO il = 1, ncum |
---|
| 154 | icbmax = max(icbmax, icb(il)) |
---|
| 155 | END DO |
---|
[5116] | 156 | ! IF(prt.level.GE.20) PRINT*,'cv3p1_param apres 200' |
---|
[879] | 157 | |
---|
[1992] | 158 | ! update sig and w0 below cloud base: |
---|
[973] | 159 | |
---|
[1992] | 160 | DO k = 1, icbmax |
---|
| 161 | DO il = 1, ncum |
---|
| 162 | IF (k<=icb(il)) THEN |
---|
| 163 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il, & |
---|
| 164 | icb(il)) |
---|
| 165 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 166 | w0(il, k) = beta*w0(il, k) |
---|
| 167 | END IF |
---|
| 168 | END DO |
---|
| 169 | END DO |
---|
| 170 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 300' |
---|
| 171 | ! ------------------------------------------------------------- |
---|
| 172 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 173 | ! -- and after 10 time steps of no convection |
---|
| 174 | ! ------------------------------------------------------------- |
---|
[879] | 175 | |
---|
[1992] | 176 | DO k = 1, nl - 1 |
---|
| 177 | DO il = 1, ncum |
---|
| 178 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
---|
| 179 | sig(il, k) = 0.0 |
---|
| 180 | w0(il, k) = 0.0 |
---|
| 181 | END IF |
---|
| 182 | END DO |
---|
| 183 | END DO |
---|
| 184 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 400' |
---|
[879] | 185 | |
---|
[1992] | 186 | ! ------------------------------------------------------------- |
---|
| 187 | ! jyg1 |
---|
| 188 | ! -- Calculate adiabatic ascent top pressure (ptop) |
---|
| 189 | ! ------------------------------------------------------------- |
---|
[879] | 190 | |
---|
| 191 | |
---|
[1992] | 192 | ! c 1. Start at first level where precipitations form |
---|
| 193 | DO il = 1, ncum |
---|
| 194 | pzero(il) = plcl(il) - pbcrit |
---|
| 195 | END DO |
---|
[879] | 196 | |
---|
[1992] | 197 | ! c 2. Add offset |
---|
| 198 | DO il = 1, ncum |
---|
| 199 | pzero(il) = pzero(il) - pbmxup |
---|
| 200 | END DO |
---|
| 201 | DO il = 1, ncum |
---|
| 202 | ptop2old(il) = ptop2(il) |
---|
| 203 | END DO |
---|
[879] | 204 | |
---|
[1992] | 205 | DO il = 1, ncum |
---|
| 206 | ! CR:c est quoi ce 300?? |
---|
| 207 | p1(il) = pzero(il) - 300. |
---|
| 208 | END DO |
---|
[879] | 209 | |
---|
[1992] | 210 | ! compute asupmax=abs(supmax) up to lnm+1 |
---|
[879] | 211 | |
---|
[1992] | 212 | DO il = 1, ncum |
---|
| 213 | ok(il) = .TRUE. |
---|
| 214 | nsupmax(il) = inb(il) |
---|
| 215 | END DO |
---|
[879] | 216 | |
---|
[1992] | 217 | DO i = 1, nl |
---|
| 218 | DO il = 1, ncum |
---|
| 219 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 220 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
---|
| 221 | nsupmax(il) = i |
---|
| 222 | ok(il) = .FALSE. |
---|
| 223 | END IF ! end IF (P(i) ... ) |
---|
| 224 | END IF ! end IF (icb+1 le i le inb) |
---|
| 225 | END DO |
---|
| 226 | END DO |
---|
[879] | 227 | |
---|
[1992] | 228 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 2.' |
---|
| 229 | DO i = 1, nl |
---|
| 230 | DO il = 1, ncum |
---|
| 231 | asupmax(il, i) = abs(supmax(il,i)) |
---|
| 232 | END DO |
---|
| 233 | END DO |
---|
[879] | 234 | |
---|
| 235 | |
---|
[1992] | 236 | DO il = 1, ncum |
---|
| 237 | asupmaxmin(il) = 10. |
---|
| 238 | pmin(il) = 100. |
---|
| 239 | ! IM ?? |
---|
| 240 | asupmax0(il) = 0. |
---|
| 241 | END DO |
---|
[879] | 242 | |
---|
[1992] | 243 | ! c 3. Compute in which level is Pzero |
---|
[879] | 244 | |
---|
[1992] | 245 | ! IM bug i0 = 18 |
---|
| 246 | DO il = 1, ncum |
---|
| 247 | i0(il) = nl |
---|
| 248 | END DO |
---|
[879] | 249 | |
---|
[1992] | 250 | DO i = 1, nl |
---|
| 251 | DO il = 1, ncum |
---|
| 252 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 253 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 254 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
---|
| 255 | i0(il) = i |
---|
| 256 | END IF |
---|
| 257 | END IF |
---|
| 258 | END IF |
---|
| 259 | END DO |
---|
| 260 | END DO |
---|
| 261 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 3.' |
---|
[879] | 262 | |
---|
[1992] | 263 | ! c 4. Compute asupmax at Pzero |
---|
[879] | 264 | |
---|
[1992] | 265 | DO i = 1, nl |
---|
| 266 | DO il = 1, ncum |
---|
| 267 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 268 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 269 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))-( & |
---|
| 270 | pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il, & |
---|
| 271 | i0(il)-1)) |
---|
| 272 | END IF |
---|
| 273 | END IF |
---|
| 274 | END DO |
---|
| 275 | END DO |
---|
[879] | 276 | |
---|
| 277 | |
---|
[1992] | 278 | DO i = 1, nl |
---|
| 279 | DO il = 1, ncum |
---|
| 280 | IF (p(il,i)==pzero(il)) THEN |
---|
| 281 | asupmax(i, il) = asupmax0(il) |
---|
| 282 | END IF |
---|
| 283 | END DO |
---|
| 284 | END DO |
---|
| 285 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 4.' |
---|
[879] | 286 | |
---|
[1992] | 287 | ! c 5. Compute asupmaxmin, minimum of asupmax |
---|
[879] | 288 | |
---|
[1992] | 289 | DO i = 1, nl |
---|
| 290 | DO il = 1, ncum |
---|
| 291 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 292 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 293 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
---|
| 294 | asupmaxmin(il) = asupmax(il, i) |
---|
| 295 | pmin(il) = p(il, i) |
---|
| 296 | END IF |
---|
| 297 | END IF |
---|
| 298 | END IF |
---|
| 299 | END DO |
---|
| 300 | END DO |
---|
[879] | 301 | |
---|
[1992] | 302 | DO il = 1, ncum |
---|
| 303 | ! IM |
---|
| 304 | IF (prt_level>=20) THEN |
---|
| 305 | PRINT *, 'cv3p1_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
---|
| 306 | asupmaxmin(il), pzero(il), pmin(il) |
---|
| 307 | END IF |
---|
| 308 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
---|
| 309 | asupmaxmin(il) = asupmax0(il) |
---|
| 310 | pmin(il) = pzero(il) |
---|
| 311 | END IF |
---|
| 312 | END DO |
---|
| 313 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 5.' |
---|
[879] | 314 | |
---|
| 315 | |
---|
[1992] | 316 | ! Compute Supmax at Pzero |
---|
[879] | 317 | |
---|
[1992] | 318 | DO i = 1, nl |
---|
| 319 | DO il = 1, ncum |
---|
| 320 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 321 | IF (p(il,i)<=pzero(il)) THEN |
---|
| 322 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)-(p(il, & |
---|
| 323 | i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
---|
| 324 | GO TO 425 |
---|
| 325 | END IF ! end IF (P(i) ... ) |
---|
| 326 | END IF ! end IF (icb+1 le i le inb) |
---|
| 327 | END DO |
---|
| 328 | END DO |
---|
[879] | 329 | |
---|
[1992] | 330 | 425 CONTINUE |
---|
| 331 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 425.' |
---|
[879] | 332 | |
---|
[1992] | 333 | ! c 6. Calculate ptop2 |
---|
[879] | 334 | |
---|
[1992] | 335 | DO il = 1, ncum |
---|
| 336 | IF (asupmaxmin(il)<supcrit1) THEN |
---|
| 337 | ptop2(il) = pmin(il) |
---|
| 338 | END IF |
---|
[973] | 339 | |
---|
[1992] | 340 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
---|
| 341 | ptop2(il) = ptop2old(il) |
---|
| 342 | END IF |
---|
[879] | 343 | |
---|
[1992] | 344 | IF (asupmaxmin(il)>supcrit2) THEN |
---|
| 345 | ptop2(il) = ph(il, inb(il)) |
---|
| 346 | END IF |
---|
| 347 | END DO |
---|
[973] | 348 | |
---|
[1992] | 349 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 6.' |
---|
[1574] | 350 | |
---|
[1992] | 351 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | IF (ok_inhib) THEN |
---|
| 355 | |
---|
| 356 | DO i = 1, nl |
---|
[1574] | 357 | DO il = 1, ncum |
---|
[1992] | 358 | IF (i<=nl) THEN |
---|
| 359 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph( & |
---|
| 360 | il,i)) |
---|
| 361 | coefmix(il, i) = min(coefmix(il,i), 1.) |
---|
| 362 | END IF |
---|
[1574] | 363 | END DO |
---|
[1992] | 364 | END DO |
---|
[1574] | 365 | |
---|
| 366 | |
---|
[1992] | 367 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
[879] | 368 | |
---|
| 369 | |
---|
[1992] | 370 | |
---|
| 371 | DO i = 1, nl |
---|
| 372 | DO il = 1, ncum |
---|
| 373 | IF (i<=nl) THEN |
---|
| 374 | coefmix(il, i) = 1. |
---|
| 375 | END IF |
---|
| 376 | END DO |
---|
| 377 | END DO |
---|
| 378 | |
---|
| 379 | END IF ! ok_inhib |
---|
| 380 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 7.' |
---|
| 381 | ! ------------------------------------------------------------------- |
---|
| 382 | ! ------------------------------------------------------------------- |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | ! jyg2 |
---|
| 386 | |
---|
| 387 | ! ========================================================================== |
---|
| 388 | |
---|
| 389 | |
---|
| 390 | ! ------------------------------------------------------------- |
---|
| 391 | ! -- Calculate convective inhibition (CIN) |
---|
| 392 | ! ------------------------------------------------------------- |
---|
| 393 | |
---|
| 394 | ! do i=1,nloc |
---|
[5103] | 395 | ! PRINT*,'avant cine p',pbase(i),plcl(i) |
---|
[1992] | 396 | ! enddo |
---|
| 397 | ! do j=1,nd |
---|
| 398 | ! do i=1,nloc |
---|
[5103] | 399 | ! PRINT*,'avant cine t',tv(i),tvp(i) |
---|
[1992] | 400 | ! enddo |
---|
| 401 | ! enddo |
---|
| 402 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
---|
| 403 | cinb, plfc) |
---|
| 404 | |
---|
| 405 | DO il = 1, ncum |
---|
| 406 | cin(il) = cina(il) + cinb(il) |
---|
| 407 | END DO |
---|
| 408 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_cine' |
---|
| 409 | ! ------------------------------------------------------------- |
---|
| 410 | ! --Update buoyancies to account for Ale |
---|
| 411 | ! ------------------------------------------------------------- |
---|
| 412 | |
---|
| 413 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
---|
| 414 | tvp, buoy) |
---|
| 415 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_buoy' |
---|
| 416 | |
---|
| 417 | ! ------------------------------------------------------------- |
---|
| 418 | ! -- Calculate convective available potential energy (cape), |
---|
| 419 | ! -- vertical velocity (w), fractional area covered by |
---|
| 420 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 421 | ! ------------------------------------------------------------- |
---|
| 422 | |
---|
| 423 | DO il = 1, ncum |
---|
| 424 | cape(il) = 0.0 |
---|
| 425 | END DO |
---|
| 426 | |
---|
| 427 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 428 | |
---|
| 429 | DO k = 1, nl |
---|
| 430 | DO il = 1, ncum |
---|
| 431 | dtmin(il, k) = 100.0 |
---|
| 432 | END DO |
---|
| 433 | END DO |
---|
| 434 | |
---|
| 435 | DO k = 1, nl |
---|
| 436 | DO j = minorig, nl |
---|
| 437 | DO il = 1, ncum |
---|
| 438 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) .AND. (j<= & |
---|
| 439 | (k-1))) THEN |
---|
| 440 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
---|
| 441 | END IF |
---|
| 442 | END DO |
---|
| 443 | END DO |
---|
| 444 | END DO |
---|
| 445 | |
---|
| 446 | ! the interval on which cape is computed starts at pbase : |
---|
| 447 | |
---|
| 448 | DO k = 1, nl |
---|
| 449 | DO il = 1, ncum |
---|
| 450 | |
---|
| 451 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
[5082] | 452 | IF (iflag_mix_adiab==1) THEN |
---|
[2420] | 453 | !CR:computation of cape from LCL: keep flag or to modify in all cases? |
---|
| 454 | deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
---|
| 455 | ELSE |
---|
[1992] | 456 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
---|
[2420] | 457 | ENDIF |
---|
[1992] | 458 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
---|
| 459 | cape(il) = amax1(0.0, cape(il)) |
---|
| 460 | sigold(il, k) = sig(il, k) |
---|
| 461 | |
---|
| 462 | |
---|
| 463 | ! jyg Coefficient coefmix limits convection to levels where a |
---|
| 464 | ! sufficient |
---|
| 465 | ! fraction of mixed draughts are ascending. |
---|
| 466 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
---|
| 467 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
---|
| 468 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
---|
| 469 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
| 470 | fac = 1. |
---|
| 471 | wlim(il, k) = fac*sqrt(cape(il)) |
---|
| 472 | amu = siglim(il, k)*wlim(il, k) |
---|
| 473 | rhodp = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 474 | mlim(il, k) = amu*rhodp |
---|
[5103] | 475 | ! PRINT*, 'siglim ', k,siglim(1,k) |
---|
[1992] | 476 | END IF |
---|
| 477 | |
---|
| 478 | END DO |
---|
| 479 | END DO |
---|
| 480 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 600' |
---|
| 481 | |
---|
| 482 | DO il = 1, ncum |
---|
| 483 | ! IM beg |
---|
| 484 | IF (prt_level>=20) THEN |
---|
| 485 | PRINT *, 'cv3p1_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
---|
| 486 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
---|
| 487 | ph(il, icb(il)+2) |
---|
| 488 | END IF |
---|
| 489 | |
---|
| 490 | IF (icb(il)+1<=inb(il)) THEN |
---|
| 491 | ! IM end |
---|
| 492 | mlim(il, icb(il)) = 0.5*mlim(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb( & |
---|
| 493 | il)+1))/(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 494 | ! IM beg |
---|
[5116] | 495 | END IF !(icb(il.le.inb(il))) THEN |
---|
[1992] | 496 | ! IM end |
---|
| 497 | END DO |
---|
| 498 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 700' |
---|
| 499 | |
---|
| 500 | ! jyg1 |
---|
| 501 | ! ------------------------------------------------------------------------ |
---|
| 502 | ! c Correct mass fluxes so that power used to overcome CIN does not |
---|
| 503 | ! c exceed Power Available for Lifting (PAL). |
---|
| 504 | ! ------------------------------------------------------------------------ |
---|
| 505 | |
---|
| 506 | DO il = 1, ncum |
---|
| 507 | cbmflim(il) = 0. |
---|
| 508 | cbmf(il) = 0. |
---|
| 509 | END DO |
---|
| 510 | |
---|
| 511 | ! c 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
---|
| 512 | |
---|
| 513 | DO k = 1, nl |
---|
| 514 | DO il = 1, ncum |
---|
[5117] | 515 | ! old IF (k .ge. icb(il) .AND. k .le. inb(il)) THEN |
---|
| 516 | ! IM IF (k .ge. icb(il)+1 .AND. k .le. inb(il)) THEN |
---|
[1992] | 517 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
---|
| 518 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
---|
| 519 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
---|
| 520 | END IF |
---|
| 521 | END DO |
---|
| 522 | END DO |
---|
| 523 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim' |
---|
| 524 | |
---|
[2253] | 525 | ! 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
---|
| 526 | ! allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
---|
| 527 | ! Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) |
---|
| 528 | ! is exceedingly small. |
---|
[1992] | 529 | |
---|
| 530 | DO il = 1, ncum |
---|
| 531 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
---|
| 532 | END DO |
---|
| 533 | |
---|
| 534 | DO il = 1, ncum |
---|
| 535 | IF (plfc(il)<100.) THEN |
---|
| 536 | ! This is an irealistic value for plfc => no calculation of wbeff |
---|
| 537 | wbeff(il) = 100.1 |
---|
| 538 | ELSE |
---|
| 539 | ! Calculate wbeff |
---|
[3571] | 540 | IF (NINT(flag_wb)==0) THEN |
---|
[1992] | 541 | wbeff(il) = wbmax |
---|
[3571] | 542 | ELSE IF (NINT(flag_wb)==1) THEN |
---|
[1992] | 543 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
[3571] | 544 | ELSE IF (NINT(flag_wb)==2) THEN |
---|
[1992] | 545 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
---|
[2826] | 546 | ELSE ! Option provisoire ou le iflag_wb/10 est considere comme une vitesse |
---|
| 547 | wbeff(il) = flag_wb*0.01+wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
[1992] | 548 | END IF |
---|
| 549 | END IF |
---|
| 550 | END DO |
---|
| 551 | |
---|
[2201] | 552 | !CR:Compute k at plfc |
---|
[2224] | 553 | DO il=1,ncum |
---|
| 554 | klfc(il)=nl |
---|
| 555 | ENDDO |
---|
[2201] | 556 | DO k=1,nl |
---|
| 557 | DO il=1,ncum |
---|
[5117] | 558 | IF ((plfc(il)<ph(il,k)).AND.(plfc(il)>=ph(il,k+1))) THEN |
---|
[2224] | 559 | klfc(il)=k |
---|
[2201] | 560 | endif |
---|
| 561 | ENDDO |
---|
| 562 | ENDDO |
---|
| 563 | !RC |
---|
[1992] | 564 | |
---|
| 565 | DO il = 1, ncum |
---|
| 566 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
---|
| 567 | ! c cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
| 568 | cbmf1(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
---|
[2201] | 569 | !CR: Add large-scale component to the mass-flux |
---|
| 570 | !encore connu sous le nom "Experience du tube de dentifrice" |
---|
[5117] | 571 | IF ((coef_clos_ls>0.).AND.(plfc(il)>0.)) THEN |
---|
[2224] | 572 | cbmf1(il) = cbmf1(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
---|
[2201] | 573 | endif |
---|
| 574 | !RC |
---|
[1992] | 575 | IF (cbmf1(il)==0 .AND. alp2(il)/=0.) THEN |
---|
| 576 | WRITE (lunout, *) 'cv3p1_closure cbmf1=0 and alp NE 0 il alp2 alp cin ' & |
---|
| 577 | , il, alp2(il), alp(il), cin(il) |
---|
| 578 | abort_message = '' |
---|
[2311] | 579 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 580 | END IF |
---|
| 581 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
---|
| 582 | END DO |
---|
| 583 | |
---|
| 584 | DO il = 1, ncum |
---|
| 585 | IF (cbmflim(il)>1.E-6) THEN |
---|
| 586 | ! ATTENTION TEST CR |
---|
[5116] | 587 | ! if (cbmfmax(il).lt.1.e-12) THEN |
---|
[1992] | 588 | cbmf(il) = min(cbmf1(il), cbmfmax(il)) |
---|
| 589 | ! else |
---|
| 590 | ! cbmf(il) = cbmf1(il) |
---|
[5117] | 591 | ! END IF |
---|
[5103] | 592 | ! PRINT*,'cbmf',cbmf1(il),cbmfmax(il) |
---|
[1992] | 593 | END IF |
---|
| 594 | END DO |
---|
| 595 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim_testCR' |
---|
| 596 | |
---|
| 597 | ! c 2. Compute coefficient and apply correction |
---|
| 598 | |
---|
| 599 | DO il = 1, ncum |
---|
| 600 | coef(il) = (cbmf(il)+1.E-10)/(cbmflim(il)+1.E-10) |
---|
| 601 | END DO |
---|
| 602 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres coef_plantePLUS' |
---|
| 603 | |
---|
| 604 | DO k = 1, nl |
---|
| 605 | DO il = 1, ncum |
---|
| 606 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
---|
| 607 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)* & |
---|
| 608 | wlim(il, k) |
---|
| 609 | w0(il, k) = wlim(il, k) |
---|
| 610 | w0(il, k) = max(w0(il,k), 1.E-10) |
---|
| 611 | sig(il, k) = amu/w0(il, k) |
---|
| 612 | sig(il, k) = min(sig(il,k), 1.) |
---|
| 613 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
| 614 | m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 615 | END IF |
---|
| 616 | END DO |
---|
| 617 | END DO |
---|
| 618 | ! jyg2 |
---|
| 619 | DO il = 1, ncum |
---|
| 620 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
---|
| 621 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
| 622 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 623 | sig(il, icb(il)) = sig(il, icb(il)+1) |
---|
| 624 | sig(il, icb(il)-1) = sig(il, icb(il)) |
---|
| 625 | END DO |
---|
| 626 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres w0_sig_M' |
---|
| 627 | |
---|
[2420] | 628 | !CR: new erosion of adiabatic ascent: modification of m |
---|
| 629 | !computation of the sum of ascending fluxes |
---|
[5082] | 630 | IF (iflag_mix_adiab==1) THEN |
---|
[2420] | 631 | |
---|
| 632 | !Verification sum(me)=sum(m) |
---|
[2502] | 633 | DO k = 1,nd !jyg: initialization up to nd |
---|
[2420] | 634 | DO il = 1, ncum |
---|
| 635 | md(il,k)=0. |
---|
| 636 | med(il,k)=0. |
---|
| 637 | ENDDO |
---|
| 638 | ENDDO |
---|
| 639 | |
---|
| 640 | DO k = nl,1,-1 |
---|
| 641 | DO il = 1, ncum |
---|
| 642 | md(il,k)=md(il,k+1)+m(il,k+1) |
---|
| 643 | ENDDO |
---|
| 644 | ENDDO |
---|
| 645 | |
---|
| 646 | DO k = nl,1,-1 |
---|
| 647 | DO il = 1, ncum |
---|
| 648 | IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
---|
| 649 | mad(il,k)=mad(il,k+1)+m(il,k+1) |
---|
| 650 | ENDIF |
---|
[5103] | 651 | ! PRINT*,"mad",il,k,mad(il,k) |
---|
[2420] | 652 | ENDDO |
---|
| 653 | ENDDO |
---|
| 654 | |
---|
| 655 | !CR: erosion of each adiabatic ascent during its ascent |
---|
| 656 | |
---|
| 657 | !Computation of erosion coefficient beta_coef |
---|
| 658 | DO k = 1, nl |
---|
| 659 | DO il = 1, ncum |
---|
[5082] | 660 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k)>0.)) THEN |
---|
[5103] | 661 | ! PRINT*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
---|
[2420] | 662 | beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
---|
| 663 | ELSE |
---|
| 664 | beta_coef(il,k)=0. |
---|
| 665 | ENDIF |
---|
| 666 | ENDDO |
---|
| 667 | ENDDO |
---|
| 668 | |
---|
[5103] | 669 | ! PRINT*,"apres beta_coef" |
---|
[2420] | 670 | |
---|
| 671 | DO k = 1, nl |
---|
| 672 | DO il = 1, ncum |
---|
| 673 | |
---|
| 674 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
| 675 | |
---|
[5103] | 676 | ! PRINT*,"dz",il,k,tv(il, k-1) |
---|
[2420] | 677 | dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
---|
| 678 | betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
---|
| 679 | ! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
---|
[5103] | 680 | ! PRINT*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
---|
[2420] | 681 | dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
---|
| 682 | ! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
---|
| 683 | me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
---|
[5103] | 684 | ! PRINT*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
---|
[2420] | 685 | |
---|
| 686 | END IF |
---|
| 687 | |
---|
| 688 | !Modification of m |
---|
| 689 | m(il,k)=me(il,k) |
---|
| 690 | END DO |
---|
| 691 | END DO |
---|
| 692 | |
---|
| 693 | ! DO il = 1, ncum |
---|
| 694 | ! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
---|
| 695 | ! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
---|
| 696 | ! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
---|
[5103] | 697 | ! PRINT*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
---|
[2420] | 698 | ! ENDDO |
---|
| 699 | |
---|
| 700 | !Verification sum(me)=sum(m) |
---|
| 701 | DO k = nl,1,-1 |
---|
| 702 | DO il = 1, ncum |
---|
| 703 | med(il,k)=med(il,k+1)+m(il,k+1) |
---|
[5103] | 704 | ! PRINT*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
---|
[2420] | 705 | ENDDO |
---|
| 706 | ENDDO |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | ENDIF !(iflag_mix_adiab) |
---|
| 710 | !RC |
---|
| 711 | |
---|
| 712 | |
---|
| 713 | |
---|
[1992] | 714 | ! c 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
| 715 | ! c cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
| 716 | ! c the final mass flux (cbmflast) is greater than the target mass flux |
---|
| 717 | ! c (cbmf)). |
---|
| 718 | |
---|
| 719 | DO il = 1, ncum |
---|
| 720 | cbmflast(il) = 0. |
---|
| 721 | END DO |
---|
| 722 | |
---|
| 723 | DO k = 1, nl |
---|
| 724 | DO il = 1, ncum |
---|
| 725 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
---|
[5117] | 726 | !IMpropo?? IF ((k.ge.(icb(il)+1)).AND.(k.le.inb(il))) THEN |
---|
[1992] | 727 | cbmflast(il) = cbmflast(il) + m(il, k) |
---|
| 728 | END IF |
---|
| 729 | END DO |
---|
| 730 | END DO |
---|
| 731 | |
---|
| 732 | DO il = 1, ncum |
---|
| 733 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmf(il)) THEN |
---|
| 734 | iflag(il) = 3 |
---|
| 735 | END IF |
---|
| 736 | END DO |
---|
| 737 | |
---|
| 738 | DO k = 1, nl |
---|
| 739 | DO il = 1, ncum |
---|
| 740 | IF (iflag(il)>=3) THEN |
---|
| 741 | m(il, k) = 0. |
---|
| 742 | sig(il, k) = 0. |
---|
| 743 | w0(il, k) = 0. |
---|
| 744 | END IF |
---|
| 745 | END DO |
---|
| 746 | END DO |
---|
| 747 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres iflag' |
---|
| 748 | |
---|
| 749 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
---|
| 750 | ! effective |
---|
| 751 | ! c sigdz larger in the present case (using cv3p1_closure) than in the |
---|
| 752 | ! old |
---|
| 753 | ! c closure (using cv3_closure). |
---|
| 754 | IF (1==0) THEN |
---|
| 755 | DO il = 1, ncum |
---|
| 756 | ! c coef(il) = 2.*coef(il) |
---|
| 757 | coef(il) = 5.*coef(il) |
---|
| 758 | END DO |
---|
| 759 | ! version CVS du ..2008 |
---|
| 760 | ELSE |
---|
| 761 | IF (iflag_cvl_sigd==0) THEN |
---|
| 762 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
---|
| 763 | coef(1:ncum) = 1. |
---|
| 764 | ELSE |
---|
| 765 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
---|
| 766 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
---|
| 767 | END IF |
---|
| 768 | END IF |
---|
| 769 | |
---|
| 770 | IF (prt_level>=20) PRINT *, 'cv3p1_param FIN' |
---|
[5105] | 771 | |
---|
[1992] | 772 | END SUBROUTINE cv3p1_closure |
---|
| 773 | |
---|
| 774 | |
---|