1 | ! $Id: cv3_cine.F90 5144 2024-07-29 21:01:04Z fhourdin $ |
---|
2 | |
---|
3 | SUBROUTINE cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, & |
---|
4 | cina, cinb, plfc) |
---|
5 | |
---|
6 | ! ************************************************************** |
---|
7 | ! * |
---|
8 | ! CV3_CINE * |
---|
9 | ! * |
---|
10 | ! * |
---|
11 | ! written by : Frederique Cheruy * |
---|
12 | ! vectorization: Jean-Yves Grandpeix, 19/06/2003, 11.54.43 * |
---|
13 | ! modified by : * |
---|
14 | ! ************************************************************** |
---|
15 | USE lmdz_cvthermo |
---|
16 | USE lmdz_cv3param |
---|
17 | USE lmdz_yomcst |
---|
18 | |
---|
19 | IMPLICIT NONE |
---|
20 | |
---|
21 | ! input: |
---|
22 | INTEGER ncum, nd, nloc |
---|
23 | INTEGER icb(nloc), inb(nloc) |
---|
24 | REAL pbase(nloc), plcl(nloc) |
---|
25 | REAL p(nloc, nd), ph(nloc, nd + 1) |
---|
26 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
27 | |
---|
28 | ! output |
---|
29 | REAL cina(nloc), cinb(nloc), plfc(nloc) |
---|
30 | |
---|
31 | ! local variables |
---|
32 | INTEGER il, i, j, k |
---|
33 | INTEGER itop(nloc), ineg(nloc), ilow(nloc) |
---|
34 | INTEGER ifst(nloc), isublcl(nloc) |
---|
35 | LOGICAL lswitch(nloc), lswitch1(nloc), lswitch2(nloc), lswitch3(nloc) |
---|
36 | LOGICAL exist_lfc(nloc) |
---|
37 | REAL dpmax |
---|
38 | REAL deltap, dcin |
---|
39 | REAL buoylcl(nloc), tvplcl(nloc), tvlcl(nloc) |
---|
40 | REAL p0(nloc) |
---|
41 | REAL buoyz(nloc), buoy(nloc, nd) |
---|
42 | |
---|
43 | ! ------------------------------------------------------------- |
---|
44 | ! Initialization |
---|
45 | ! ------------------------------------------------------------- |
---|
46 | DO il = 1, ncum |
---|
47 | cina(il) = 0. |
---|
48 | cinb(il) = 0. |
---|
49 | END DO |
---|
50 | |
---|
51 | ! -------------------------------------------------------------- |
---|
52 | ! Recompute buoyancies |
---|
53 | ! -------------------------------------------------------------- |
---|
54 | DO k = 1, nd |
---|
55 | DO il = 1, ncum |
---|
56 | ! PRINT*,'tvp tv=',tvp(il,k),tv(il,k) |
---|
57 | buoy(il, k) = tvp(il, k) - tv(il, k) |
---|
58 | END DO |
---|
59 | END DO |
---|
60 | ! --------------------------------------------------------------- |
---|
61 | |
---|
62 | ! calcul de la flottabilite a LCL (Buoylcl) |
---|
63 | ! ifst = first P-level above lcl |
---|
64 | ! isublcl = highest P-level below lcl. |
---|
65 | ! --------------------------------------------------------------- |
---|
66 | |
---|
67 | DO il = 1, ncum |
---|
68 | tvplcl(il) = tvp(il, 1) * (plcl(il) / p(il, 1))**(2. / 7.) !For dry air, R/Cp=2/7 |
---|
69 | END DO |
---|
70 | |
---|
71 | DO il = 1, ncum |
---|
72 | IF (plcl(il)>p(il, icb(il))) THEN |
---|
73 | ifst(il) = icb(il) |
---|
74 | isublcl(il) = icb(il) - 1 |
---|
75 | ELSE |
---|
76 | ifst(il) = icb(il) + 1 |
---|
77 | isublcl(il) = icb(il) |
---|
78 | END IF |
---|
79 | END DO |
---|
80 | |
---|
81 | DO il = 1, ncum |
---|
82 | tvlcl(il) = tv(il, ifst(il) - 1) + (tv(il, ifst(il)) - tv(il, ifst(il) - 1)) * (& |
---|
83 | plcl(il) - p(il, ifst(il) - 1)) / (p(il, ifst(il)) - p(il, ifst(il) - 1)) |
---|
84 | END DO |
---|
85 | |
---|
86 | DO il = 1, ncum |
---|
87 | buoylcl(il) = tvplcl(il) - tvlcl(il) |
---|
88 | END DO |
---|
89 | |
---|
90 | ! --------------------------------------------------------------- |
---|
91 | ! premiere couche contenant un niveau de flotabilite positive |
---|
92 | ! et premiere couche contenant un niveau de flotabilite negative |
---|
93 | ! au dessus du niveau de condensation |
---|
94 | ! --------------------------------------------------------------- |
---|
95 | DO il = 1, ncum |
---|
96 | itop(il) = nl - 1 |
---|
97 | ineg(il) = nl - 1 |
---|
98 | exist_lfc(il) = .FALSE. |
---|
99 | END DO |
---|
100 | DO k = nl - 1, 1, -1 |
---|
101 | DO il = 1, ncum |
---|
102 | IF (k>=ifst(il)) THEN |
---|
103 | IF (buoy(il, k)>0.) THEN |
---|
104 | itop(il) = k |
---|
105 | exist_lfc(il) = .TRUE. |
---|
106 | ELSE |
---|
107 | ineg(il) = k |
---|
108 | END IF |
---|
109 | END IF |
---|
110 | END DO |
---|
111 | END DO |
---|
112 | |
---|
113 | ! --------------------------------------------------------------- |
---|
114 | ! When there is no positive buoyancy level, set Plfc, Cina and Cinb |
---|
115 | ! to arbitrary extreme values. |
---|
116 | ! --------------------------------------------------------------- |
---|
117 | DO il = 1, ncum |
---|
118 | IF (.NOT. exist_lfc(il)) THEN |
---|
119 | plfc(il) = 1.111 |
---|
120 | cinb(il) = -1111. |
---|
121 | cina(il) = -1112. |
---|
122 | END IF |
---|
123 | END DO |
---|
124 | |
---|
125 | |
---|
126 | ! --------------------------------------------------------------- |
---|
127 | ! -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0. |
---|
128 | ! --------------------------------------------------------------- |
---|
129 | |
---|
130 | ! -------------------- |
---|
131 | ! -- 1.0 BUOYlcl >=0. |
---|
132 | ! -------------------- |
---|
133 | |
---|
134 | dpmax = 50. |
---|
135 | DO il = 1, ncum |
---|
136 | lswitch1(il) = buoylcl(il) >= 0. .AND. exist_lfc(il) |
---|
137 | lswitch(il) = lswitch1(il) |
---|
138 | END DO |
---|
139 | |
---|
140 | ! 1.1 No inhibition case |
---|
141 | ! ---------------------- |
---|
142 | ! If buoyancy is positive at LCL and stays positive over a large enough |
---|
143 | ! pressure interval (=DPMAX), inhibition is set to zero, |
---|
144 | |
---|
145 | DO il = 1, ncum |
---|
146 | IF (lswitch(il)) THEN |
---|
147 | IF (p(il, ineg(il))<p(il, icb(il)) - dpmax) THEN |
---|
148 | plfc(il) = plcl(il) |
---|
149 | cina(il) = 0. |
---|
150 | cinb(il) = 0. |
---|
151 | END IF |
---|
152 | END IF |
---|
153 | END DO |
---|
154 | |
---|
155 | ! 1.2 Upper inhibition only case |
---|
156 | ! ------------------------------ |
---|
157 | DO il = 1, ncum |
---|
158 | lswitch2(il) = p(il, ineg(il)) >= p(il, icb(il)) - dpmax |
---|
159 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
160 | END DO |
---|
161 | |
---|
162 | ! 1.2.1 Recompute itop (=1st layer with positive buoyancy above ineg) |
---|
163 | ! ------------------------------------------------------------------- |
---|
164 | |
---|
165 | DO il = 1, ncum |
---|
166 | IF (lswitch(il)) THEN |
---|
167 | itop(il) = nl - 1 |
---|
168 | END IF |
---|
169 | END DO |
---|
170 | |
---|
171 | DO k = nl, 1, -1 |
---|
172 | DO il = 1, ncum |
---|
173 | IF (lswitch(il)) THEN |
---|
174 | IF (k>=ineg(il) .AND. buoy(il, k)>0) THEN |
---|
175 | itop(il) = k |
---|
176 | END IF |
---|
177 | END IF |
---|
178 | END DO |
---|
179 | END DO |
---|
180 | |
---|
181 | ! If there is no layer with positive buoyancy above ineg, set Plfc, |
---|
182 | ! Cina and Cinb to arbitrary extreme values. |
---|
183 | DO il = 1, ncum |
---|
184 | IF (lswitch(il) .AND. itop(il) == nl - 1) THEN |
---|
185 | plfc(il) = 1.121 |
---|
186 | cinb(il) = -1121. |
---|
187 | cina(il) = -1122. |
---|
188 | END IF |
---|
189 | END DO |
---|
190 | |
---|
191 | DO il = 1, ncum |
---|
192 | lswitch3(il) = itop(il) < nl - 1 |
---|
193 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) .AND. lswitch3(il) |
---|
194 | END DO |
---|
195 | |
---|
196 | DO il = 1, ncum |
---|
197 | IF (lswitch(il)) THEN |
---|
198 | cinb(il) = 0. |
---|
199 | |
---|
200 | ! 1.2.2 Calcul de la pression du niveau de flot. nulle juste au-dessus |
---|
201 | ! de LCL |
---|
202 | ! --------------------------------------------------------------------------- |
---|
203 | IF (ineg(il)>isublcl(il) + 1) THEN |
---|
204 | ! In order to get P0, one may interpolate linearly buoyancies |
---|
205 | ! between P(ineg) and P(ineg-1). |
---|
206 | p0(il) = (buoy(il, ineg(il)) * p(il, ineg(il) - 1) - buoy(il, ineg(il) - 1) * p(il, ineg(il))) / & |
---|
207 | (buoy(il, ineg(il)) - buoy(il, ineg(il) - 1)) |
---|
208 | ELSE |
---|
209 | ! In order to get P0, one has to interpolate between P(ineg) and |
---|
210 | ! Plcl. |
---|
211 | p0(il) = (buoy(il, ineg(il)) * plcl(il) - buoylcl(il) * p(il, ineg(il))) / & |
---|
212 | (buoy(il, ineg(il)) - buoylcl(il)) |
---|
213 | END IF |
---|
214 | END IF |
---|
215 | END DO |
---|
216 | |
---|
217 | ! 1.2.3 Computation of PLFC |
---|
218 | ! ------------------------- |
---|
219 | DO il = 1, ncum |
---|
220 | IF (lswitch(il)) THEN |
---|
221 | plfc(il) = (buoy(il, itop(il)) * p(il, itop(il) - 1) - buoy(il, itop(& |
---|
222 | il) - 1) * p(il, itop(il))) / (buoy(il, itop(il)) - buoy(il, itop(il) - 1)) |
---|
223 | END IF |
---|
224 | END DO |
---|
225 | |
---|
226 | ! 1.2.4 Computation of CINA |
---|
227 | ! ------------------------- |
---|
228 | |
---|
229 | ! Upper part of CINA : integral from P(itop-1) to Plfc |
---|
230 | DO il = 1, ncum |
---|
231 | IF (lswitch(il)) THEN |
---|
232 | deltap = p(il, itop(il) - 1) - plfc(il) |
---|
233 | dcin = rd * buoy(il, itop(il) - 1) * deltap / (p(il, itop(il) - 1) + plfc(il)) |
---|
234 | cina(il) = min(0., dcin) |
---|
235 | END IF |
---|
236 | END DO |
---|
237 | |
---|
238 | ! Middle part of CINA : integral from P(ineg) to P(itop-1) |
---|
239 | DO k = 1, nl |
---|
240 | DO il = 1, ncum |
---|
241 | IF (lswitch(il)) THEN |
---|
242 | IF (k>=ineg(il) .AND. k<=itop(il) - 2) THEN |
---|
243 | deltap = p(il, k) - p(il, k + 1) |
---|
244 | dcin = 0.5 * rd * (buoy(il, k) + buoy(il, k + 1)) * deltap / ph(il, k + 1) |
---|
245 | cina(il) = cina(il) + min(0., dcin) |
---|
246 | END IF |
---|
247 | END IF |
---|
248 | END DO |
---|
249 | END DO |
---|
250 | |
---|
251 | ! Lower part of CINA : integral from P0 to P(ineg) |
---|
252 | DO il = 1, ncum |
---|
253 | IF (lswitch(il)) THEN |
---|
254 | deltap = p0(il) - p(il, ineg(il)) |
---|
255 | dcin = rd * buoy(il, ineg(il)) * deltap / (p(il, ineg(il)) + p0(il)) |
---|
256 | cina(il) = cina(il) + min(0., dcin) |
---|
257 | END IF |
---|
258 | END DO |
---|
259 | |
---|
260 | |
---|
261 | ! ------------------ |
---|
262 | ! -- 2.0 BUOYlcl <0. |
---|
263 | ! ------------------ |
---|
264 | |
---|
265 | DO il = 1, ncum |
---|
266 | lswitch1(il) = buoylcl(il) < 0. .AND. exist_lfc(il) |
---|
267 | lswitch(il) = lswitch1(il) |
---|
268 | END DO |
---|
269 | |
---|
270 | ! 2.0.1 Premiere couche ou la flotabilite est negative au dessus du sol |
---|
271 | ! ---------------------------------------------------- |
---|
272 | ! au cas ou elle existe sinon ilow=1 (nk apres) |
---|
273 | ! on suppose que la parcelle part de la premiere couche |
---|
274 | |
---|
275 | DO il = 1, ncum |
---|
276 | IF (lswitch(il)) THEN |
---|
277 | ilow(il) = 1 |
---|
278 | END IF |
---|
279 | END DO |
---|
280 | |
---|
281 | DO k = nl, 1, -1 |
---|
282 | DO il = 1, ncum |
---|
283 | IF (lswitch(il) .AND. k<=icb(il) - 1) THEN |
---|
284 | IF (buoy(il, k)<0.) THEN |
---|
285 | ilow(il) = k |
---|
286 | END IF |
---|
287 | END IF |
---|
288 | END DO |
---|
289 | END DO |
---|
290 | |
---|
291 | ! 2.0.2 Calcul de la pression du niveau de flot. nulle sous le nuage |
---|
292 | ! ---------------------------------------------------- |
---|
293 | DO il = 1, ncum |
---|
294 | IF (lswitch(il)) THEN |
---|
295 | IF (ilow(il)>1) THEN |
---|
296 | p0(il) = (buoy(il, ilow(il)) * p(il, ilow(il) - 1) - buoy(il, ilow(& |
---|
297 | il) - 1) * p(il, ilow(il))) / (buoy(il, ilow(il)) - buoy(il, ilow(il) - 1)) |
---|
298 | buoyz(il) = 0. |
---|
299 | ELSE |
---|
300 | p0(il) = p(il, 1) |
---|
301 | buoyz(il) = buoy(il, 1) |
---|
302 | END IF |
---|
303 | END IF |
---|
304 | END DO |
---|
305 | |
---|
306 | ! 2.1. Computation of CINB |
---|
307 | ! ----------------------- |
---|
308 | |
---|
309 | DO il = 1, ncum |
---|
310 | lswitch2(il) = (isublcl(il)==1 .AND. ilow(il)==1) .OR. & |
---|
311 | (isublcl(il)==ilow(il) - 1) |
---|
312 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
313 | END DO |
---|
314 | ! c IF ( (isublcl .EQ. 1 .AND. ilow .EQ. 1) |
---|
315 | ! c $ .OR.(isublcl .EQ. ilow-1)) THEN |
---|
316 | |
---|
317 | ! 2.1.1 First case : Plcl just above P0 |
---|
318 | ! ------------------------------------- |
---|
319 | DO il = 1, ncum |
---|
320 | IF (lswitch(il)) THEN |
---|
321 | deltap = p0(il) - plcl(il) |
---|
322 | dcin = rd * (buoyz(il) + buoylcl(il)) * deltap / (p0(il) + plcl(il)) |
---|
323 | cinb(il) = min(0., dcin) |
---|
324 | END IF |
---|
325 | END DO |
---|
326 | |
---|
327 | DO il = 1, ncum |
---|
328 | lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) |
---|
329 | END DO |
---|
330 | ! c ELSE |
---|
331 | |
---|
332 | ! 2.1.2 Second case : there is at least one P-level between P0 and Plcl |
---|
333 | ! --------------------------------------------------------------------- |
---|
334 | |
---|
335 | ! Lower part of CINB : integral from P0 to P(ilow) |
---|
336 | DO il = 1, ncum |
---|
337 | IF (lswitch(il)) THEN |
---|
338 | deltap = p0(il) - p(il, ilow(il)) |
---|
339 | dcin = rd * (buoyz(il) + buoy(il, ilow(il))) * deltap / (p0(il) + p(il, ilow(il))) |
---|
340 | cinb(il) = min(0., dcin) |
---|
341 | END IF |
---|
342 | END DO |
---|
343 | |
---|
344 | |
---|
345 | ! Middle part of CINB : integral from P(ilow) to P(isublcl) |
---|
346 | ! c DO k = ilow,isublcl-1 |
---|
347 | DO k = 1, nl |
---|
348 | DO il = 1, ncum |
---|
349 | IF (lswitch(il) .AND. k>=ilow(il) .AND. k<=isublcl(il) - 1) THEN |
---|
350 | deltap = p(il, k) - p(il, k + 1) |
---|
351 | dcin = 0.5 * rd * (buoy(il, k) + buoy(il, k + 1)) * deltap / ph(il, k + 1) |
---|
352 | cinb(il) = cinb(il) + min(0., dcin) |
---|
353 | END IF |
---|
354 | END DO |
---|
355 | END DO |
---|
356 | |
---|
357 | ! Upper part of CINB : integral from P(isublcl) to Plcl |
---|
358 | DO il = 1, ncum |
---|
359 | IF (lswitch(il)) THEN |
---|
360 | deltap = p(il, isublcl(il)) - plcl(il) |
---|
361 | dcin = rd * (buoy(il, isublcl(il)) + buoylcl(il)) * deltap / & |
---|
362 | (p(il, isublcl(il)) + plcl(il)) |
---|
363 | cinb(il) = cinb(il) + min(0., dcin) |
---|
364 | END IF |
---|
365 | END DO |
---|
366 | |
---|
367 | |
---|
368 | ! c ENDIF |
---|
369 | |
---|
370 | ! 2.2 Computation of CINA |
---|
371 | ! --------------------- |
---|
372 | |
---|
373 | DO il = 1, ncum |
---|
374 | lswitch2(il) = plcl(il) > p(il, itop(il) - 1) |
---|
375 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
376 | END DO |
---|
377 | |
---|
378 | ! 2.2.1 FIrst case : Plcl > P(itop-1) |
---|
379 | ! --------------------------------- |
---|
380 | ! In order to get Plfc, one may interpolate linearly buoyancies |
---|
381 | ! between P(itop) and P(itop-1). |
---|
382 | DO il = 1, ncum |
---|
383 | IF (lswitch(il)) THEN |
---|
384 | plfc(il) = (buoy(il, itop(il)) * p(il, itop(il) - 1) - buoy(il, itop(& |
---|
385 | il) - 1) * p(il, itop(il))) / (buoy(il, itop(il)) - buoy(il, itop(il) - 1)) |
---|
386 | END IF |
---|
387 | END DO |
---|
388 | |
---|
389 | ! Upper part of CINA : integral from P(itop-1) to Plfc |
---|
390 | DO il = 1, ncum |
---|
391 | IF (lswitch(il)) THEN |
---|
392 | deltap = p(il, itop(il) - 1) - plfc(il) |
---|
393 | dcin = rd * buoy(il, itop(il) - 1) * deltap / (p(il, itop(il) - 1) + plfc(il)) |
---|
394 | cina(il) = min(0., dcin) |
---|
395 | END IF |
---|
396 | END DO |
---|
397 | |
---|
398 | ! Middle part of CINA : integral from P(icb+1) to P(itop-1) |
---|
399 | DO k = 1, nl |
---|
400 | DO il = 1, ncum |
---|
401 | IF (lswitch(il) .AND. k>=icb(il) + 1 .AND. k<=itop(il) - 2) THEN |
---|
402 | deltap = p(il, k) - p(il, k + 1) |
---|
403 | dcin = 0.5 * rd * (buoy(il, k) + buoy(il, k + 1)) * deltap / ph(il, k + 1) |
---|
404 | cina(il) = cina(il) + min(0., dcin) |
---|
405 | END IF |
---|
406 | END DO |
---|
407 | END DO |
---|
408 | |
---|
409 | ! Lower part of CINA : integral from Plcl to P(icb+1) |
---|
410 | DO il = 1, ncum |
---|
411 | IF (lswitch(il)) THEN |
---|
412 | IF (plcl(il)>p(il, icb(il))) THEN |
---|
413 | IF (icb(il)<itop(il) - 1) THEN |
---|
414 | deltap = p(il, icb(il)) - p(il, icb(il) + 1) |
---|
415 | dcin = 0.5 * rd * (buoy(il, icb(il)) + buoy(il, icb(il) + 1)) * deltap / & |
---|
416 | ph(il, icb(il) + 1) |
---|
417 | cina(il) = cina(il) + min(0., dcin) |
---|
418 | END IF |
---|
419 | |
---|
420 | deltap = plcl(il) - p(il, icb(il)) |
---|
421 | dcin = rd * (buoylcl(il) + buoy(il, icb(il))) * deltap / & |
---|
422 | (plcl(il) + p(il, icb(il))) |
---|
423 | cina(il) = cina(il) + min(0., dcin) |
---|
424 | ELSE |
---|
425 | deltap = plcl(il) - p(il, icb(il) + 1) |
---|
426 | dcin = rd * (buoylcl(il) + buoy(il, icb(il) + 1)) * deltap / & |
---|
427 | (plcl(il) + p(il, icb(il) + 1)) |
---|
428 | cina(il) = cina(il) + min(0., dcin) |
---|
429 | END IF |
---|
430 | END IF |
---|
431 | END DO |
---|
432 | |
---|
433 | DO il = 1, ncum |
---|
434 | lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) |
---|
435 | END DO |
---|
436 | ! c ELSE |
---|
437 | |
---|
438 | ! 2.2.2 Second case : Plcl lies between P(itop-1) and P(itop); |
---|
439 | ! ---------------------------------------------------------- |
---|
440 | ! In order to get Plfc, one has to interpolate between P(itop) and Plcl. |
---|
441 | DO il = 1, ncum |
---|
442 | IF (lswitch(il)) THEN |
---|
443 | plfc(il) = (buoy(il, itop(il)) * plcl(il) - buoylcl(il) * p(il, itop(il))) / & |
---|
444 | (buoy(il, itop(il)) - buoylcl(il)) |
---|
445 | END IF |
---|
446 | END DO |
---|
447 | |
---|
448 | DO il = 1, ncum |
---|
449 | IF (lswitch(il)) THEN |
---|
450 | deltap = plcl(il) - plfc(il) |
---|
451 | dcin = rd * buoylcl(il) * deltap / (plcl(il) + plfc(il)) |
---|
452 | cina(il) = min(0., dcin) |
---|
453 | END IF |
---|
454 | END DO |
---|
455 | ! c ENDIF |
---|
456 | |
---|
457 | END SUBROUTINE cv3_cine |
---|