1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
2 | ! Copyright (c) 2009, Centre National de la Recherche Scientifique |
---|
3 | ! All rights reserved. |
---|
4 | |
---|
5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
6 | ! permitted provided that the following conditions are met: |
---|
7 | |
---|
8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
9 | ! conditions and the following disclaimer. |
---|
10 | |
---|
11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
13 | ! materials provided with the distribution. |
---|
14 | |
---|
15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
16 | ! used to endorse or promote products derived from this software without specific prior |
---|
17 | ! written permission. |
---|
18 | |
---|
19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
28 | |
---|
29 | ! History |
---|
30 | ! May 2007: ActSim code of M. Chiriaco and H. Chepfer rewritten by S. Bony |
---|
31 | |
---|
32 | ! May 2008, H. Chepfer: |
---|
33 | ! - Units of pressure inputs: Pa |
---|
34 | ! - Non Spherical particles : LS Ice NS coefficients, CONV Ice NS coefficients |
---|
35 | ! - New input: ice_type (0=ice-spheres ; 1=ice-non-spherical) |
---|
36 | |
---|
37 | ! June 2008, A. Bodas-Salcedo: |
---|
38 | ! - Ported to Fortran 90 and optimisation changes |
---|
39 | |
---|
40 | ! August 2008, J-L Dufresne: |
---|
41 | ! - Optimisation changes (sum instructions suppressed) |
---|
42 | |
---|
43 | ! October 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
44 | ! - Interface with COSP v2.0: |
---|
45 | ! cloud fraction removed from inputs |
---|
46 | ! in-cloud condensed water now in input (instead of grid-averaged value) |
---|
47 | ! depolarisation diagnostic removed |
---|
48 | ! parasol (polder) reflectances (for 5 different solar zenith angles) added |
---|
49 | |
---|
50 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
51 | ! - Modification of the integration of the lidar equation. |
---|
52 | ! - change the cloud detection threshold |
---|
53 | |
---|
54 | ! April 2008, A. Bodas-Salcedo: |
---|
55 | ! - Bug fix in computation of pmol and pnorm of upper layer |
---|
56 | |
---|
57 | ! April 2008, J-L. Dufresne |
---|
58 | ! - Bug fix in computation of pmol and pnorm, thanks to Masaki Satoh: a factor 2 |
---|
59 | ! was missing. This affects the ATB values but not the cloud fraction. |
---|
60 | |
---|
61 | ! January 2013, G. Cesana and H. Chepfer: |
---|
62 | ! - Add the perpendicular component of the backscattered signal (pnorm_perp_tot) in the arguments |
---|
63 | ! - Add the temperature for each levels (temp) in the arguments |
---|
64 | ! - Add the computation of the perpendicular component of the backscattered lidar signal |
---|
65 | ! Reference: Cesana G. and H. Chepfer (2013): Evaluation of the cloud water phase |
---|
66 | ! in a climate model using CALIPSO-GOCCP, J. Geophys. Res., doi: 10.1002/jgrd.50376 |
---|
67 | |
---|
68 | ! May 2015 - D. Swales - Modified for COSPv2.0 |
---|
69 | |
---|
70 | ! Mar 2018 - R. Guzman - Added OPAQ subroutines |
---|
71 | ! References OPAQ: |
---|
72 | |
---|
73 | ! Guzman et al. (2017): Direct atmosphere opacity observations from CALIPSO provide |
---|
74 | ! new constraints on cloud-radiation interactions. JGR-Atmospheres, DOI: 10.1002/2016JD025946 |
---|
75 | ! Vaillant de Guelis et al. (2017a): The link between outgoing longwave radiation and |
---|
76 | ! the altitude at which a spaceborne lidar beam is fully attenuated. AMT, 10, 4659-4685, |
---|
77 | ! https://doi.org/10.5194/amt-10-4659-2017 |
---|
78 | |
---|
79 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
80 | module mod_lidar_simulator |
---|
81 | USE COSP_KINDS, ONLY: wp |
---|
82 | USE MOD_COSP_CONFIG, ONLY: SR_BINS,S_CLD,S_ATT,S_CLD_ATT,R_UNDEF,calipso_histBsct, & |
---|
83 | use_vgrid,vgrid_zl,vgrid_zu,vgrid_z,atlid_histBsct, & |
---|
84 | grLidar532_histBsct,S_CLD_ATLID,S_ATT_ATLID,S_CLD_ATT_ATLID |
---|
85 | USE MOD_COSP_STATS, ONLY: COSP_CHANGE_VERTICAL_GRID,hist1d |
---|
86 | implicit none |
---|
87 | |
---|
88 | ! Polynomial coefficients (Alpha, Beta, Gamma) which allow to compute the |
---|
89 | ! ATBperpendicular as a function of the ATB for ice or liquid cloud particles |
---|
90 | ! derived from CALIPSO-GOCCP observations at 120m vertical grid |
---|
91 | ! (Cesana and Chepfer, JGR, 2013). |
---|
92 | |
---|
93 | ! Relationship between ATBice and ATBperp,ice for ice particles: |
---|
94 | ! ATBperp,ice = Alpha*ATBice |
---|
95 | ! Relationship between ATBice and ATBperp,ice for liquid particles: |
---|
96 | ! ATBperp,ice = Beta*ATBice^2 + Gamma*ATBice |
---|
97 | real(wp) :: & |
---|
98 | alpha,beta,gamma |
---|
99 | |
---|
100 | contains |
---|
101 | ! ###################################################################################### |
---|
102 | ! SUBROUTINE lidar_subcolumn |
---|
103 | ! Inputs with a vertical dimensions (nlev) should ordered in along the vertical |
---|
104 | ! dimension from TOA-2-SFC, for example: varIN(nlev) is varIN @ SFC. |
---|
105 | ! ###################################################################################### |
---|
106 | subroutine lidar_subcolumn(npoints, ncolumns, nlev, lground, beta_mol, tau_mol, & |
---|
107 | betatot, tautot, pmol, pnorm, betatot_ice, tautot_ice, betatot_liq, tautot_liq, & |
---|
108 | pnorm_perp_tot) |
---|
109 | |
---|
110 | ! INPUTS |
---|
111 | INTEGER,intent(in) :: & |
---|
112 | npoints, & ! Number of gridpoints |
---|
113 | ncolumns, & ! Number of subcolumns |
---|
114 | nlev ! Number of levels |
---|
115 | logical,intent(in) :: & |
---|
116 | lground ! True for ground-based lidar simulator |
---|
117 | REAL(WP),intent(in),dimension(npoints,nlev) :: & |
---|
118 | beta_mol, & ! Molecular backscatter coefficient |
---|
119 | tau_mol ! Molecular optical depth |
---|
120 | REAL(WP),intent(in),dimension(npoints,ncolumns,nlev) :: & |
---|
121 | betatot, & ! |
---|
122 | tautot ! Optical thickess integrated from top |
---|
123 | ! Optional Inputs |
---|
124 | REAL(WP),intent(in),dimension(npoints,ncolumns,nlev),optional :: & |
---|
125 | betatot_ice, & ! Backscatter coefficient for ice particles |
---|
126 | betatot_liq, & ! Backscatter coefficient for liquid particles |
---|
127 | tautot_ice, & ! Total optical thickness of ice |
---|
128 | tautot_liq ! Total optical thickness of liq |
---|
129 | |
---|
130 | ! OUTPUTS |
---|
131 | REAL(WP),intent(out),dimension(npoints,nlev) :: & |
---|
132 | pmol ! Molecular attenuated backscatter lidar signal power(m^-1.sr^-1) |
---|
133 | REAL(WP),intent(out),dimension(npoints,ncolumns,nlev) :: & |
---|
134 | pnorm ! Molecular backscatter signal power (m^-1.sr^-1) |
---|
135 | ! Optional outputs |
---|
136 | REAL(WP),intent(out),dimension(npoints,ncolumns,nlev),optional :: & |
---|
137 | pnorm_perp_tot ! Perpendicular lidar backscattered signal power |
---|
138 | |
---|
139 | ! LOCAL VARIABLES |
---|
140 | INTEGER :: k,icol,zi,zf,zinc |
---|
141 | logical :: lphaseoptics |
---|
142 | REAL(WP),dimension(npoints) :: & |
---|
143 | tautot_lay ! |
---|
144 | REAL(WP),dimension(npoints,ncolumns,nlev) :: & |
---|
145 | pnorm_liq, & ! Lidar backscattered signal power for liquid |
---|
146 | pnorm_ice, & ! Lidar backscattered signal power for ice |
---|
147 | pnorm_perp_ice, & ! Perpendicular lidar backscattered signal power for ice |
---|
148 | pnorm_perp_liq, & ! Perpendicular lidar backscattered signal power for liq |
---|
149 | beta_perp_ice, & ! Perpendicular backscatter coefficient for ice |
---|
150 | beta_perp_liq ! Perpendicular backscatter coefficient for liquid |
---|
151 | |
---|
152 | ! Phase optics? |
---|
153 | lphaseoptics=.false. |
---|
154 | if (present(betatot_ice) .AND. present(betatot_liq) .AND. present(tautot_liq) .AND. & |
---|
155 | present(tautot_ice)) lphaseoptics=.true. |
---|
156 | |
---|
157 | ! Is this lidar spaceborne (default) or ground-based? |
---|
158 | if (lground) then |
---|
159 | zi = nlev |
---|
160 | zf = 1 |
---|
161 | zinc = -1 |
---|
162 | else |
---|
163 | zi = 1 |
---|
164 | zf = nlev |
---|
165 | zinc = 1 |
---|
166 | endif |
---|
167 | |
---|
168 | ! #################################################################################### |
---|
169 | ! *) Molecular signal |
---|
170 | ! #################################################################################### |
---|
171 | call cmp_backsignal(nlev,npoints,beta_mol(1:npoints,zi:zf:zinc),& |
---|
172 | tau_mol(1:npoints,zi:zf:zinc),pmol(1:npoints,zi:zf:zinc)) |
---|
173 | |
---|
174 | ! #################################################################################### |
---|
175 | ! PLANE PARRALLEL FIELDS |
---|
176 | ! #################################################################################### |
---|
177 | DO icol=1,ncolumns |
---|
178 | ! ################################################################################# |
---|
179 | ! *) Total Backscatter signal |
---|
180 | ! ################################################################################# |
---|
181 | call cmp_backsignal(nlev,npoints,betatot(1:npoints,icol,zi:zf:zinc),& |
---|
182 | tautot(1:npoints,icol,zi:zf:zinc),pnorm(1:npoints,icol,zi:zf:zinc)) |
---|
183 | |
---|
184 | ! ################################################################################# |
---|
185 | ! *) Ice/Liq Backscatter signal |
---|
186 | ! ################################################################################# |
---|
187 | if (lphaseoptics) then |
---|
188 | ! Computation of the ice and liquid lidar backscattered signal (ATBice and ATBliq) |
---|
189 | ! Ice only |
---|
190 | call cmp_backsignal(nlev,npoints,betatot_ice(1:npoints,icol,zi:zf:zinc),& |
---|
191 | tautot_ice(1:npoints,icol,zi:zf:zinc), pnorm_ice(1:npoints,icol,zi:zf:zinc)) |
---|
192 | ! Liquid only |
---|
193 | call cmp_backsignal(nlev,npoints,betatot_liq(1:npoints,icol,zi:zf:zinc),& |
---|
194 | tautot_liq(1:npoints,icol,zi:zf:zinc), pnorm_liq(1:npoints,icol,zi:zf:zinc)) |
---|
195 | endif |
---|
196 | enddo |
---|
197 | |
---|
198 | ! #################################################################################### |
---|
199 | ! PERDENDICULAR FIELDS (Only needed if distinguishing by phase (ice/liquid)) |
---|
200 | ! #################################################################################### |
---|
201 | if (lphaseoptics) then |
---|
202 | DO icol=1,ncolumns |
---|
203 | ! ################################################################################# |
---|
204 | ! *) Ice/Liq Perpendicular Backscatter signal |
---|
205 | ! ################################################################################# |
---|
206 | ! Computation of ATBperp,ice/liq from ATBice/liq including the multiple scattering |
---|
207 | ! contribution (Cesana and Chepfer 2013, JGR) |
---|
208 | DO k=1,nlev |
---|
209 | ! Ice particles |
---|
210 | pnorm_perp_ice(1:npoints,icol,k) = Alpha * pnorm_ice(1:npoints,icol,k) |
---|
211 | |
---|
212 | ! Liquid particles |
---|
213 | pnorm_perp_liq(1:npoints,icol,k) = 1000._wp*Beta*pnorm_liq(1:npoints,icol,k)**2+& |
---|
214 | Gamma*pnorm_liq(1:npoints,icol,k) |
---|
215 | enddo |
---|
216 | |
---|
217 | ! ################################################################################# |
---|
218 | ! *) Computation of beta_perp_ice/liq using the lidar equation |
---|
219 | ! ################################################################################# |
---|
220 | ! Ice only |
---|
221 | call cmp_beta(nlev,npoints,pnorm_perp_ice(1:npoints,icol,zi:zf:zinc),& |
---|
222 | tautot_ice(1:npoints,icol,zi:zf:zinc),beta_perp_ice(1:npoints,icol,zi:zf:zinc)) |
---|
223 | |
---|
224 | ! Liquid only |
---|
225 | call cmp_beta(nlev,npoints,pnorm_perp_liq(1:npoints,icol,zi:zf:zinc),& |
---|
226 | tautot_liq(1:npoints,icol,zi:zf:zinc),beta_perp_liq(1:npoints,icol,zi:zf:zinc)) |
---|
227 | |
---|
228 | ! ################################################################################# |
---|
229 | ! *) Perpendicular Backscatter signal |
---|
230 | ! ################################################################################# |
---|
231 | ! Computation of the total perpendicular lidar signal (ATBperp for liq+ice) |
---|
232 | ! Upper layer |
---|
233 | WHERE(tautot(1:npoints,icol,1) .gt. 0) |
---|
234 | pnorm_perp_tot(1:npoints,icol,1) = (beta_perp_ice(1:npoints,icol,1)+ & |
---|
235 | beta_perp_liq(1:npoints,icol,1)- & |
---|
236 | (beta_mol(1:npoints,1)/(1._wp+1._wp/0.0284_wp))) / & |
---|
237 | (2._wp*tautot(1:npoints,icol,1))* & |
---|
238 | (1._wp-exp(-2._wp*tautot(1:npoints,icol,1))) |
---|
239 | ELSEWHERE |
---|
240 | pnorm_perp_tot(1:npoints,icol,1) = 0._wp |
---|
241 | ENDWHERE |
---|
242 | |
---|
243 | ! Other layers |
---|
244 | DO k=2,nlev |
---|
245 | ! Optical thickness of layer k |
---|
246 | tautot_lay(1:npoints) = tautot(1:npoints,icol,k)-tautot(1:npoints,icol,k-1) |
---|
247 | |
---|
248 | ! The perpendicular component of the molecular backscattered signal (Betaperp) |
---|
249 | ! has been taken into account two times (once for liquid and once for ice). |
---|
250 | ! We remove one contribution using |
---|
251 | ! Betaperp=beta_mol(:,k)/(1+1/0.0284)) [bodhaine et al. 1999] in the following |
---|
252 | ! equations: |
---|
253 | WHERE (pnorm(1:npoints,icol,k) .eq. 0) |
---|
254 | pnorm_perp_tot(1:npoints,icol,k)=0._wp |
---|
255 | ELSEWHERE |
---|
256 | where(tautot_lay(1:npoints) .gt. 0.) |
---|
257 | pnorm_perp_tot(1:npoints,icol,k) = (beta_perp_ice(1:npoints,icol,k)+ & |
---|
258 | beta_perp_liq(1:npoints,icol,k)-(beta_mol(1:npoints,k)/(1._wp+1._wp/ & |
---|
259 | 0.0284_wp)))*EXP(-2._wp*tautot(1:npoints,icol,k-1))/ & |
---|
260 | (2._wp*tautot_lay(1:npoints))* (1._wp-EXP(-2._wp*tautot_lay(1:npoints))) |
---|
261 | elsewhere |
---|
262 | pnorm_perp_tot(1:npoints,icol,k) = (beta_perp_ice(1:npoints,icol,k)+ & |
---|
263 | beta_perp_liq(1:npoints,icol,k)-(beta_mol(1:npoints,k)/(1._wp+1._wp/ & |
---|
264 | 0.0284_wp)))*EXP(-2._wp*tautot(1:npoints,icol,k-1)) |
---|
265 | endwhere |
---|
266 | ENDWHERE |
---|
267 | END DO |
---|
268 | enddo |
---|
269 | end if |
---|
270 | end subroutine lidar_subcolumn |
---|
271 | |
---|
272 | ! ###################################################################################### |
---|
273 | ! SUBROUTINE lidar_column |
---|
274 | ! ###################################################################################### |
---|
275 | subroutine lidar_column(npoints, ncol, nlevels, llm, max_bin, ntype, platform, pnorm, pmol, & |
---|
276 | pplay, zlev, zlev_half, vgrid_z, ok_lidar_cfad, ncat, cfad2, lidarcld, cldlayer, & |
---|
277 | ! Optional stuff below |
---|
278 | tmp, pnorm_perp, surfelev, lidarcldphase, lidarcldtype, cldtype, cldtypetemp, & |
---|
279 | cldtypemeanz, cldtypemeanzse, cldthinemis, cldlayerphase, lidarcldtmp) |
---|
280 | |
---|
281 | integer,parameter :: & |
---|
282 | nphase = 6 ! Number of cloud layer phase types |
---|
283 | |
---|
284 | ! Inputs |
---|
285 | integer,intent(in) :: & |
---|
286 | npoints, & ! Number of horizontal grid points |
---|
287 | ncol, & ! Number of subcolumns |
---|
288 | nlevels, & ! Number of vertical layers (OLD grid) |
---|
289 | llm, & ! Number of vertical layers (NEW grid) |
---|
290 | max_bin, & ! Number of bins for SR CFADs |
---|
291 | ncat, & ! Number of cloud layer types (low,mid,high,total) |
---|
292 | ntype ! Number of OPAQ products (opaque/thin cloud + z_opaque) |
---|
293 | character(len=*),intent(in) :: & |
---|
294 | platform ! Name of platform (e.g. calipso,atlid,grLidar532) |
---|
295 | real(wp),intent(in),dimension(npoints,ncol,Nlevels) :: & |
---|
296 | pnorm ! Lidar ATB |
---|
297 | real(wp),intent(in),dimension(npoints,Nlevels) :: & |
---|
298 | pmol, & ! Molecular ATB |
---|
299 | pplay ! Pressure on model levels (Pa) |
---|
300 | logical,intent(in) :: & |
---|
301 | ok_lidar_cfad ! True if lidar CFAD diagnostics need to be computed |
---|
302 | real(wp),intent(in),dimension(npoints,nlevels) :: & |
---|
303 | zlev ! Model full levels |
---|
304 | real(wp),intent(in),dimension(npoints,nlevels+1) :: & |
---|
305 | zlev_half ! Model half levels |
---|
306 | real(wp),intent(in),dimension(llm) :: & |
---|
307 | vgrid_z ! mid-level altitude of the output vertical grid |
---|
308 | ! Optional Inputs |
---|
309 | real(wp),intent(in),dimension(npoints,ncol,Nlevels),optional :: & |
---|
310 | pnorm_perp ! Lidar perpendicular ATB |
---|
311 | real(wp),intent(in),dimension(npoints),optional :: & |
---|
312 | surfelev ! Surface Elevation (m) |
---|
313 | real(wp),intent(in),dimension(npoints,Nlevels),optional :: & |
---|
314 | tmp ! Temperature at each levels |
---|
315 | |
---|
316 | ! Outputs |
---|
317 | real(wp),intent(inout),dimension(npoints,llm) :: & |
---|
318 | lidarcld ! 3D "lidar" cloud fraction |
---|
319 | real(wp),intent(inout),dimension(npoints,ncat) :: & |
---|
320 | cldlayer ! "lidar" cloud layer fraction (low, mid, high, total) |
---|
321 | real(wp),intent(inout),dimension(npoints,max_bin,llm) :: & |
---|
322 | cfad2 ! CFADs of SR |
---|
323 | ! Optional Outputs |
---|
324 | real(wp),intent(out),dimension(npoints,ntype),optional :: & |
---|
325 | cldtype, & ! "lidar" OPAQ type covers (opaque/thin cloud + z_opaque) |
---|
326 | cldtypetemp ! Opaque and thin clouds + z_opaque temperature |
---|
327 | real(wp),intent(out),dimension(npoints,2),optional :: & |
---|
328 | cldtypemeanz ! Opaque and thin clouds altitude |
---|
329 | real(wp),intent(out),dimension(npoints,3),optional :: & |
---|
330 | cldtypemeanzse ! Opaque, thin clouds and z_opaque altitude with respect to SE |
---|
331 | real(wp),intent(out),dimension(npoints),optional :: & |
---|
332 | cldthinemis ! Thin clouds emissivity computed from SR |
---|
333 | real(wp),intent(out),dimension(npoints,llm,nphase),optional :: & |
---|
334 | lidarcldphase ! 3D "lidar" phase cloud fraction |
---|
335 | real(wp),intent(out),dimension(npoints,llm,ntype+1),optional :: & |
---|
336 | lidarcldtype ! 3D "lidar" OPAQ type fraction |
---|
337 | real(wp),intent(out),dimension(npoints,40,5),optional :: & |
---|
338 | lidarcldtmp ! 3D "lidar" phase cloud fraction as a function of temp |
---|
339 | real(wp),intent(out),dimension(npoints,ncat,nphase),optional :: & |
---|
340 | cldlayerphase ! "lidar" phase low mid high cloud fraction |
---|
341 | |
---|
342 | ! Local Variables |
---|
343 | integer :: ic,i,j |
---|
344 | logical :: lcalipso,latlid,lgrlidar532 |
---|
345 | real(wp),dimension(npoints,ncol,llm) :: & |
---|
346 | x3d |
---|
347 | real(wp),dimension(npoints,llm) :: & |
---|
348 | x3d_c,pnorm_c |
---|
349 | real(wp) :: & |
---|
350 | xmax |
---|
351 | real(wp),dimension(npoints,1,Nlevels) :: t_in,ph_in,betamol_in |
---|
352 | real(wp),dimension(npoints,ncol,llm) :: pnormFlip,pnorm_perpFlip |
---|
353 | real(wp),dimension(npoints,1,llm) :: tmpFlip,pplayFlip,betamolFlip |
---|
354 | real(wp),dimension(SR_BINS+1) :: histBsct |
---|
355 | |
---|
356 | ! Which lidar platform? |
---|
357 | lcalipso = .false. |
---|
358 | latlid = .false. |
---|
359 | lgrlidar532 = .false. |
---|
360 | if (platform .eq. 'calipso') lcalipso=.true. |
---|
361 | if (platform .eq. 'atlid') latlid=.true. |
---|
362 | if (platform .eq. 'grlidar532') lgrlidar532=.true. |
---|
363 | |
---|
364 | ! Vertically regrid input data |
---|
365 | if (use_vgrid) then |
---|
366 | ph_in(:,1,:) = pplay(:,nlevels:1:-1) |
---|
367 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
368 | ph_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pplayFlip(:,1,llm:1:-1)) |
---|
369 | betamol_in(:,1,:) = pmol(:,nlevels:1:-1) |
---|
370 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
371 | betamol_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),betamolFlip(:,1,llm:1:-1)) |
---|
372 | call cosp_change_vertical_grid(Npoints,Ncol,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
373 | pnorm(:,:,nlevels:1:-1),llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pnormFlip(:,:,llm:1:-1)) |
---|
374 | if (lcalipso) then |
---|
375 | t_in(:,1,:)=tmp(:,nlevels:1:-1) |
---|
376 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
377 | t_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),tmpFlip(:,1,llm:1:-1)) |
---|
378 | call cosp_change_vertical_grid(Npoints,Ncol,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
379 | pnorm_perp(:,:,nlevels:1:-1),llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pnorm_perpFlip(:,:,llm:1:-1)) |
---|
380 | endif |
---|
381 | endif |
---|
382 | |
---|
383 | ! Initialization (The histogram bins, are set up during initialization and the |
---|
384 | ! maximum value is used as the upper bounds.) |
---|
385 | if (lcalipso) then |
---|
386 | xmax = maxval(calipso_histBsct) |
---|
387 | histBsct = calipso_histBsct |
---|
388 | endif |
---|
389 | if (latlid) then |
---|
390 | xmax = maxval(atlid_histBsct) |
---|
391 | histBsct = atlid_histBsct |
---|
392 | endif |
---|
393 | if (lgrlidar532) then |
---|
394 | xmax = maxval(grLidar532_histBsct) |
---|
395 | histBsct = grLidar532_histBsct |
---|
396 | endif |
---|
397 | |
---|
398 | ! Compute LIDAR scattering ratio |
---|
399 | if (use_vgrid) then |
---|
400 | DO ic = 1, ncol |
---|
401 | pnorm_c = pnormFlip(:,ic,:) |
---|
402 | where ((pnorm_c .lt. xmax) .AND. (betamolFlip(:,1,:) .lt. xmax) .AND. & |
---|
403 | (betamolFlip(:,1,:) .gt. 0.0 )) |
---|
404 | x3d_c = pnorm_c/betamolFlip(:,1,:) |
---|
405 | elsewhere |
---|
406 | x3d_c = R_UNDEF |
---|
407 | end where |
---|
408 | x3d(:,ic,:) = x3d_c |
---|
409 | enddo |
---|
410 | if (lcalipso) then |
---|
411 | ! Diagnose cloud fractions for subcolumn lidar scattering ratios |
---|
412 | CALL COSP_CLDFRAC(npoints,ncol,llm,ncat,nphase,tmpFlip,x3d,pnormFlip,pnorm_perpFlip,& |
---|
413 | pplayFlip,S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer,lidarcldphase,& |
---|
414 | cldlayerphase,lidarcldtmp) |
---|
415 | |
---|
416 | ! Calipso opaque cloud diagnostics |
---|
417 | CALL COSP_OPAQ(npoints,ncol,llm,ntype,tmpFlip,x3d,S_att,S_cld,R_UNDEF,lidarcldtype, & |
---|
418 | cldtype,cldtypetemp,cldtypemeanz,cldtypemeanzse,cldthinemis,vgrid_z,surfelev) |
---|
419 | endif |
---|
420 | if (latlid) then |
---|
421 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,llm,ncat,x3d,pnormFlip,pplayFlip, & |
---|
422 | S_att_atlid,S_cld_atlid,S_cld_att_atlid,R_UNDEF,lidarcld,cldlayer) |
---|
423 | endif |
---|
424 | if (lgrLidar532) then |
---|
425 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,llm,ncat,x3d,pnormFlip,pplayFlip, & |
---|
426 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer) |
---|
427 | endif |
---|
428 | else |
---|
429 | DO ic = 1, ncol |
---|
430 | pnorm_c = pnorm(:,ic,:) |
---|
431 | where ((pnorm_c.lt.xmax) .AND. (pmol.lt.xmax) .AND. (pmol.gt. 0.0 )) |
---|
432 | x3d_c = pnorm_c/pmol |
---|
433 | elsewhere |
---|
434 | x3d_c = R_UNDEF |
---|
435 | end where |
---|
436 | x3d(:,ic,:) = x3d_c |
---|
437 | enddo |
---|
438 | if (lcalipso) then |
---|
439 | ! Diagnose cloud fractions for subcolumn lidar scattering ratios |
---|
440 | CALL COSP_CLDFRAC(npoints,ncol,nlevels,ncat,nphase,tmp,x3d,pnorm,pnorm_perp,pplay,& |
---|
441 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer,lidarcldphase, & |
---|
442 | cldlayerphase,lidarcldtmp) |
---|
443 | ! Calipso opaque cloud diagnostics |
---|
444 | CALL COSP_OPAQ(npoints,ncol,nlevels,ntype,tmp,x3d,S_att,S_cld,R_UNDEF,lidarcldtype, & |
---|
445 | cldtype,cldtypetemp,cldtypemeanz,cldtypemeanzse,cldthinemis,vgrid_z,surfelev) |
---|
446 | endif |
---|
447 | if (latlid) then |
---|
448 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,nlevels,ncat,x3d,pnorm,pplay, & |
---|
449 | S_att_atlid,S_cld_atlid,S_cld_att_atlid, R_UNDEF,lidarcld,cldlayer) |
---|
450 | endif |
---|
451 | if (lgrlidar532) then |
---|
452 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,nlevels,ncat,x3d,pnorm,pplay, & |
---|
453 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer) |
---|
454 | endif |
---|
455 | endif |
---|
456 | |
---|
457 | ! CFADs |
---|
458 | if (ok_lidar_cfad) then |
---|
459 | ! CFADs of subgrid-scale lidar scattering ratios |
---|
460 | DO i=1,Npoints |
---|
461 | DO j=1,llm |
---|
462 | cfad2(i,:,j) = hist1D(ncol,x3d(i,:,j),SR_BINS,histBsct) |
---|
463 | enddo |
---|
464 | enddo |
---|
465 | where(cfad2 .ne. R_UNDEF) cfad2=cfad2/ncol |
---|
466 | endif |
---|
467 | |
---|
468 | ! Unit conversions |
---|
469 | where(lidarcld /= R_UNDEF) lidarcld = lidarcld*100._wp |
---|
470 | where(cldlayer /= R_UNDEF) cldlayer = cldlayer*100._wp |
---|
471 | if (lcalipso) then |
---|
472 | where(cldtype(:,1) /= R_UNDEF) cldtype(:,1) = cldtype(:,1)*100._wp |
---|
473 | where(cldtype(:,2) /= R_UNDEF) cldtype(:,2) = cldtype(:,2)*100._wp |
---|
474 | where(cldlayerphase /= R_UNDEF) cldlayerphase = cldlayerphase*100._wp |
---|
475 | where(lidarcldphase /= R_UNDEF) lidarcldphase = lidarcldphase*100._wp |
---|
476 | where(lidarcldtype /= R_UNDEF) lidarcldtype = lidarcldtype*100._wp |
---|
477 | where(lidarcldtmp /= R_UNDEF) lidarcldtmp = lidarcldtmp*100._wp |
---|
478 | endif |
---|
479 | end subroutine lidar_column |
---|
480 | |
---|
481 | ! ###################################################################################### |
---|
482 | ! The subroutines below compute the attenuated backscatter signal and the lidar |
---|
483 | ! backscatter coefficients using eq (1) from doi:0094-8276/08/2008GL034207 |
---|
484 | ! ###################################################################################### |
---|
485 | subroutine cmp_backsignal(nlev,npoints,beta,tau,pnorm) |
---|
486 | ! INPUTS |
---|
487 | integer, intent(in) :: nlev,npoints |
---|
488 | real(wp),intent(in),dimension(npoints,nlev) :: beta,tau |
---|
489 | |
---|
490 | ! OUTPUTS |
---|
491 | real(wp),intent(out),dimension(npoints,nlev) :: pnorm |
---|
492 | |
---|
493 | ! Internal Variables |
---|
494 | real(wp), dimension(npoints) :: tautot_lay |
---|
495 | integer :: k |
---|
496 | |
---|
497 | ! Uppermost layer |
---|
498 | pnorm(:,1) = beta(:,1) / (2._wp*tau(:,1)) * (1._wp-exp(-2._wp*tau(:,1))) |
---|
499 | |
---|
500 | ! Other layers |
---|
501 | DO k=2,nlev |
---|
502 | tautot_lay(:) = tau(:,k)-tau(:,k-1) |
---|
503 | WHERE (tautot_lay(:) .gt. 0.) |
---|
504 | pnorm(:,k) = beta(:,k)*EXP(-2._wp*tau(:,k-1)) /& |
---|
505 | (2._wp*tautot_lay(:))*(1._wp-EXP(-2._wp*tautot_lay(:))) |
---|
506 | ELSEWHERE |
---|
507 | ! This must never happen, but just in case, to avoid div. by 0 |
---|
508 | pnorm(:,k) = beta(:,k) * EXP(-2._wp*tau(:,k-1)) |
---|
509 | END WHERE |
---|
510 | |
---|
511 | END DO |
---|
512 | end subroutine cmp_backsignal |
---|
513 | |
---|
514 | subroutine cmp_beta(nlev,npoints,pnorm,tau,beta) |
---|
515 | ! INPUTS |
---|
516 | integer, intent(in) :: nlev,npoints |
---|
517 | real(wp),intent(in),dimension(npoints,nlev) :: pnorm,tau |
---|
518 | |
---|
519 | ! OUTPUTS |
---|
520 | real(wp),intent(out),dimension(npoints,nlev) :: beta |
---|
521 | |
---|
522 | ! Internal Variables |
---|
523 | real(wp), dimension(npoints) :: tautot_lay |
---|
524 | integer :: k |
---|
525 | real(wp) :: epsrealwp |
---|
526 | |
---|
527 | epsrealwp = epsilon(1._wp) |
---|
528 | beta(:,1) = pnorm(:,1) * (2._wp*tau(:,1))/(1._wp-exp(-2._wp*tau(:,1))) |
---|
529 | DO k=2,nlev |
---|
530 | tautot_lay(:) = tau(:,k)-tau(:,k-1) |
---|
531 | WHERE ( EXP(-2._wp*tau(:,k-1)) .gt. epsrealwp ) |
---|
532 | WHERE (tautot_lay(:) .gt. 0.) |
---|
533 | beta(:,k) = pnorm(:,k)/ EXP(-2._wp*tau(:,k-1))* & |
---|
534 | (2._wp*tautot_lay(:))/(1._wp-exp(-2._wp*tautot_lay(:))) |
---|
535 | ELSEWHERE |
---|
536 | beta(:,k)=pnorm(:,k)/EXP(-2._wp*tau(:,k-1)) |
---|
537 | END WHERE |
---|
538 | ELSEWHERE |
---|
539 | beta(:,k)=pnorm(:,k)/epsrealwp |
---|
540 | END WHERE |
---|
541 | ENDDO |
---|
542 | |
---|
543 | end subroutine cmp_beta |
---|
544 | ! #################################################################################### |
---|
545 | ! SUBROUTINE cosp_cldfrac |
---|
546 | ! Conventions: Ncat must be equal to 4 |
---|
547 | ! #################################################################################### |
---|
548 | SUBROUTINE COSP_CLDFRAC(Npoints,Ncolumns,Nlevels,Ncat,Nphase,tmp,x,ATB,ATBperp, & |
---|
549 | pplay,S_att,S_cld,S_cld_att,undef,lidarcld,cldlayer, & |
---|
550 | lidarcldphase,cldlayerphase,lidarcldtemp) |
---|
551 | ! Parameters |
---|
552 | integer,parameter :: Ntemp=40 ! indice of the temperature vector |
---|
553 | real(wp),parameter,dimension(Ntemp+1) :: & |
---|
554 | tempmod = [0.0, 183.15,186.15,189.15,192.15,195.15,198.15,201.15,204.15,207.15, & |
---|
555 | 210.15,213.15,216.15,219.15,222.15,225.15,228.15,231.15,234.15,237.15, & |
---|
556 | 240.15,243.15,246.15,249.15,252.15,255.15,258.15,261.15,264.15,267.15, & |
---|
557 | 270.15,273.15,276.15,279.15,282.15,285.15,288.15,291.15,294.15,297.15, & |
---|
558 | 473.15] |
---|
559 | |
---|
560 | ! Polynomial coefficient of the phase discrimination line used to separate liquid from ice |
---|
561 | ! (Cesana and Chepfer, JGR, 2013) |
---|
562 | ! ATBperp = ATB^5*alpha50 + ATB^4*beta50 + ATB^3*gamma50 + ATB^2*delta50 + ATB*epsilon50 + zeta50 |
---|
563 | real(wp),parameter :: & |
---|
564 | alpha50 = 9.0322e+15_wp, & ! |
---|
565 | beta50 = -2.1358e+12_wp, & ! |
---|
566 | gamma50 = 173.3963e06_wp, & ! |
---|
567 | delta50 = -3.9514e03_wp, & ! |
---|
568 | epsilon50 = 0.2559_wp, & ! |
---|
569 | zeta50 = -9.4776e-07_wp ! |
---|
570 | |
---|
571 | ! Inputs |
---|
572 | integer,intent(in) :: & |
---|
573 | Npoints, & ! Number of gridpoints |
---|
574 | Ncolumns, & ! Number of subcolumns |
---|
575 | Nlevels, & ! Number of vertical levels |
---|
576 | Ncat, & ! Number of cloud layer types |
---|
577 | Nphase ! Number of cloud layer phase types |
---|
578 | ! [ice,liquid,undefined,false ice,false liquid,Percent of ice] |
---|
579 | real(wp),intent(in) :: & |
---|
580 | S_att, & ! |
---|
581 | S_cld, & ! |
---|
582 | S_cld_att,& ! New threshold for undefine cloud phase detection |
---|
583 | undef ! Undefined value |
---|
584 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
585 | x, & ! |
---|
586 | ATB, & ! 3D attenuated backscatter |
---|
587 | ATBperp ! 3D attenuated backscatter (perpendicular) |
---|
588 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
---|
589 | tmp, & ! Temperature |
---|
590 | pplay ! Pressure |
---|
591 | |
---|
592 | ! Outputs |
---|
593 | real(wp),intent(out),dimension(Npoints,Ntemp,5) :: & |
---|
594 | lidarcldtemp ! 3D Temperature 1=tot,2=ice,3=liq,4=undef,5=ice/ice+liq |
---|
595 | real(wp),intent(out),dimension(Npoints,Nlevels,Nphase) :: & |
---|
596 | lidarcldphase ! 3D cloud phase fraction |
---|
597 | real(wp),intent(out),dimension(Npoints,Nlevels) :: & |
---|
598 | lidarcld ! 3D cloud fraction |
---|
599 | real(wp),intent(out),dimension(Npoints,Ncat) :: & |
---|
600 | cldlayer ! Low, middle, high, total cloud fractions |
---|
601 | real(wp),intent(out),dimension(Npoints,Ncat,Nphase) :: & |
---|
602 | cldlayerphase ! Low, middle, high, total cloud fractions for ice liquid and undefine phase |
---|
603 | |
---|
604 | ! Local variables |
---|
605 | integer :: & |
---|
606 | ip, k, iz, ic, ncol, nlev, i, itemp, toplvlsat |
---|
607 | real(wp) :: & |
---|
608 | p1,checktemp, ATBperp_tmp,checkcldlayerphase, checkcldlayerphase2 |
---|
609 | real(wp),dimension(Npoints,Nlevels) :: & |
---|
610 | nsub,lidarcldphasetmp |
---|
611 | real(wp),dimension(Npoints,Ntemp) :: & |
---|
612 | sumlidarcldtemp,lidarcldtempind |
---|
613 | real(wp),dimension(Npoints,Ncolumns,Ncat) :: & |
---|
614 | cldlay,nsublay |
---|
615 | real(wp),dimension(Npoints,Ncat) :: & |
---|
616 | nsublayer,cldlayerphasetmp,cldlayerphasesum |
---|
617 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
618 | tmpi, & ! Temperature of ice cld |
---|
619 | tmpl, & ! Temperature of liquid cld |
---|
620 | tmpu, & ! Temperature of undef cld |
---|
621 | cldy, & ! |
---|
622 | srok ! |
---|
623 | real(wp),dimension(Npoints,Ncolumns,Ncat,Nphase) :: & |
---|
624 | cldlayphase ! subgrided low mid high phase cloud fraction |
---|
625 | |
---|
626 | ! #################################################################################### |
---|
627 | ! 1) Initialize |
---|
628 | ! #################################################################################### |
---|
629 | lidarcld = 0._wp |
---|
630 | nsub = 0._wp |
---|
631 | cldlay = 0._wp |
---|
632 | nsublay = 0._wp |
---|
633 | ATBperp_tmp = 0._wp |
---|
634 | lidarcldphase(:,:,:) = 0._wp |
---|
635 | cldlayphase(:,:,:,:) = 0._wp |
---|
636 | cldlayerphase(:,:,:) = 0._wp |
---|
637 | tmpi(:,:,:) = 0._wp |
---|
638 | tmpl(:,:,:) = 0._wp |
---|
639 | tmpu(:,:,:) = 0._wp |
---|
640 | cldlayerphasesum(:,:) = 0._wp |
---|
641 | lidarcldtemp(:,:,:) = 0._wp |
---|
642 | lidarcldtempind(:,:) = 0._wp |
---|
643 | sumlidarcldtemp(:,:) = 0._wp |
---|
644 | lidarcldphasetmp(:,:) = 0._wp |
---|
645 | toplvlsat = 0 |
---|
646 | |
---|
647 | ! #################################################################################### |
---|
648 | ! 2) Cloud detection |
---|
649 | ! #################################################################################### |
---|
650 | DO k=1,Nlevels |
---|
651 | ! Cloud detection at subgrid-scale: |
---|
652 | where ((x(:,:,k) .gt. S_cld) .AND. (x(:,:,k) .ne. undef) ) |
---|
653 | cldy(:,:,k)=1._wp |
---|
654 | elsewhere |
---|
655 | cldy(:,:,k)=0._wp |
---|
656 | endwhere |
---|
657 | |
---|
658 | ! Number of usefull sub-columns: |
---|
659 | where ((x(:,:,k) .gt. S_att) .AND. (x(:,:,k) .ne. undef) ) |
---|
660 | srok(:,:,k)=1._wp |
---|
661 | elsewhere |
---|
662 | srok(:,:,k)=0._wp |
---|
663 | endwhere |
---|
664 | enddo |
---|
665 | |
---|
666 | ! #################################################################################### |
---|
667 | ! 3) Grid-box 3D cloud fraction and layered cloud fractions(ISCCP pressure categories) |
---|
668 | ! #################################################################################### |
---|
669 | lidarcld = 0._wp |
---|
670 | nsub = 0._wp |
---|
671 | cldlay = 0._wp |
---|
672 | nsublay = 0._wp |
---|
673 | DO k=1,Nlevels |
---|
674 | DO ic = 1, Ncolumns |
---|
675 | DO ip = 1, Npoints |
---|
676 | |
---|
677 | ! Computation of the cloud fraction as a function of the temperature instead |
---|
678 | ! of height, for ice,liquid and all clouds |
---|
679 | if(srok(ip,ic,k).gt.0.)then |
---|
680 | DO itemp=1,Ntemp |
---|
681 | if( (tmp(ip,k).ge.tempmod(itemp)).AND.(tmp(ip,k).lt.tempmod(itemp+1)) )then |
---|
682 | lidarcldtempind(ip,itemp)=lidarcldtempind(ip,itemp)+1._wp |
---|
683 | endif |
---|
684 | enddo |
---|
685 | endif |
---|
686 | |
---|
687 | if(cldy(ip,ic,k).eq.1.)then |
---|
688 | DO itemp=1,Ntemp |
---|
689 | if( (tmp(ip,k) .ge. tempmod(itemp)).AND.(tmp(ip,k) .lt. tempmod(itemp+1)) )then |
---|
690 | lidarcldtemp(ip,itemp,1)=lidarcldtemp(ip,itemp,1)+1._wp |
---|
691 | endif |
---|
692 | enddo |
---|
693 | endif |
---|
694 | |
---|
695 | iz=1 |
---|
696 | p1 = pplay(ip,k) |
---|
697 | if ( p1.gt.0. .AND. p1.lt.(440._wp*100._wp)) then ! high clouds |
---|
698 | iz=3 |
---|
699 | else if(p1.ge.(440._wp*100._wp) .AND. p1.lt.(680._wp*100._wp)) then ! mid clouds |
---|
700 | iz=2 |
---|
701 | endif |
---|
702 | |
---|
703 | cldlay(ip,ic,iz) = MAX(cldlay(ip,ic,iz),cldy(ip,ic,k)) |
---|
704 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) |
---|
705 | lidarcld(ip,k) = lidarcld(ip,k) + cldy(ip,ic,k) |
---|
706 | |
---|
707 | nsublay(ip,ic,iz) = MAX(nsublay(ip,ic,iz),srok(ip,ic,k)) |
---|
708 | nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
---|
709 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
---|
710 | |
---|
711 | enddo |
---|
712 | enddo |
---|
713 | enddo |
---|
714 | |
---|
715 | ! Grid-box 3D cloud fraction |
---|
716 | where ( nsub(:,:).gt.0.0 ) |
---|
717 | lidarcld(:,:) = lidarcld(:,:)/nsub(:,:) |
---|
718 | elsewhere |
---|
719 | lidarcld(:,:) = undef |
---|
720 | endwhere |
---|
721 | |
---|
722 | ! Layered cloud fractions |
---|
723 | cldlayer = 0._wp |
---|
724 | nsublayer = 0._wp |
---|
725 | DO iz = 1, Ncat |
---|
726 | DO ic = 1, Ncolumns |
---|
727 | cldlayer(:,iz) = cldlayer(:,iz) + cldlay(:,ic,iz) |
---|
728 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
---|
729 | enddo |
---|
730 | enddo |
---|
731 | where (nsublayer(:,:) .gt. 0.0) |
---|
732 | cldlayer(:,:) = cldlayer(:,:)/nsublayer(:,:) |
---|
733 | elsewhere |
---|
734 | cldlayer(:,:) = undef |
---|
735 | endwhere |
---|
736 | |
---|
737 | ! #################################################################################### |
---|
738 | ! 4) Grid-box 3D cloud Phase |
---|
739 | ! #################################################################################### |
---|
740 | |
---|
741 | ! #################################################################################### |
---|
742 | ! 4.1) For Cloudy pixels with 8.16km < z < 19.2km |
---|
743 | ! #################################################################################### |
---|
744 | DO ncol=1,Ncolumns |
---|
745 | DO i=1,Npoints |
---|
746 | DO nlev=1,23 ! from 19.2km until 8.16km |
---|
747 | p1 = pplay(1,nlev) |
---|
748 | |
---|
749 | ! Avoid zero values |
---|
750 | if( (cldy(i,ncol,nlev).eq.1.) .AND. (ATBperp(i,ncol,nlev).gt.0.) )then |
---|
751 | ! Computation of the ATBperp along the phase discrimination line |
---|
752 | ATBperp_tmp = (ATB(i,ncol,nlev)**5)*alpha50 + (ATB(i,ncol,nlev)**4)*beta50 + & |
---|
753 | (ATB(i,ncol,nlev)**3)*gamma50 + (ATB(i,ncol,nlev)**2)*delta50 + & |
---|
754 | ATB(i,ncol,nlev)*epsilon50 + zeta50 |
---|
755 | ! ######################################################################## |
---|
756 | ! 4.1.a) Ice: ATBperp above the phase discrimination line |
---|
757 | ! ######################################################################## |
---|
758 | if((ATBperp(i,ncol,nlev)-ATBperp_tmp) .ge. 0.)then ! Ice clouds |
---|
759 | |
---|
760 | ! ICE with temperature above 273,15°K = Liquid (false ice) |
---|
761 | if(tmp(i,nlev) .gt. 273.15) then ! Temperature above 273,15 K |
---|
762 | ! Liquid: False ice corrected by the temperature to Liquid |
---|
763 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp ! False ice detection ==> added to Liquid |
---|
764 | |
---|
765 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
766 | lidarcldphase(i,nlev,5) = lidarcldphase(i,nlev,5)+1._wp ! Keep the information "temperature criterium used" |
---|
767 | ! to classify the phase cloud |
---|
768 | cldlayphase(i,ncol,4,2) = 1. ! tot cloud |
---|
769 | if (p1 .gt. 0. .AND. p1.lt.(440._wp*100._wp)) then ! high cloud |
---|
770 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
771 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then ! mid cloud |
---|
772 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
773 | else ! low cloud |
---|
774 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
775 | endif |
---|
776 | cldlayphase(i,ncol,4,5) = 1._wp ! tot cloud |
---|
777 | ! High cloud |
---|
778 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
779 | cldlayphase(i,ncol,3,5) = 1._wp |
---|
780 | ! Middle cloud |
---|
781 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
782 | cldlayphase(i,ncol,2,5) = 1._wp |
---|
783 | ! Low cloud |
---|
784 | else |
---|
785 | cldlayphase(i,ncol,1,5) = 1._wp |
---|
786 | endif |
---|
787 | else |
---|
788 | ! ICE with temperature below 273,15°K |
---|
789 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp |
---|
790 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
791 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
792 | ! High cloud |
---|
793 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
794 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
795 | ! Middle cloud |
---|
796 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
797 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
798 | ! Low cloud |
---|
799 | else |
---|
800 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
801 | endif |
---|
802 | endif |
---|
803 | ! ######################################################################## |
---|
804 | ! 4.1.b) Liquid: ATBperp below the phase discrimination line |
---|
805 | ! ######################################################################## |
---|
806 | else |
---|
807 | ! Liquid with temperature above 231,15°K |
---|
808 | if(tmp(i,nlev) .gt. 231.15_wp) then |
---|
809 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp |
---|
810 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
811 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
---|
812 | ! High cloud |
---|
813 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
814 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
815 | ! Middle cloud |
---|
816 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
817 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
818 | ! Low cloud |
---|
819 | else |
---|
820 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
821 | endif |
---|
822 | else |
---|
823 | ! Liquid with temperature below 231,15°K = Ice (false liquid) |
---|
824 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
825 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp ! false liquid detection ==> added to ice |
---|
826 | lidarcldphase(i,nlev,4) = lidarcldphase(i,nlev,4)+1._wp |
---|
827 | cldlayphase(i,ncol,4,4) = 1._wp ! tot cloud |
---|
828 | ! High cloud |
---|
829 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
830 | cldlayphase(i,ncol,3,4) = 1._wp |
---|
831 | ! Middle cloud |
---|
832 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
833 | cldlayphase(i,ncol,2,4) = 1._wp |
---|
834 | ! Low cloud |
---|
835 | else |
---|
836 | cldlayphase(i,ncol,1,4) = 1._wp |
---|
837 | endif |
---|
838 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
839 | ! High cloud |
---|
840 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
841 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
842 | ! Middle cloud |
---|
843 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
844 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
845 | ! Low cloud |
---|
846 | else |
---|
847 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
848 | endif |
---|
849 | endif |
---|
850 | endif ! end of discrimination condition |
---|
851 | endif ! end of cloud condition |
---|
852 | enddo ! end of altitude loop |
---|
853 | |
---|
854 | ! ############################################################################## |
---|
855 | ! 4.2) For Cloudy pixels with 0km < z < 8.16km |
---|
856 | ! ############################################################################## |
---|
857 | toplvlsat = 0 |
---|
858 | DO nlev=24,Nlevels! from 8.16km until 0km |
---|
859 | p1 = pplay(i,nlev) |
---|
860 | |
---|
861 | if((cldy(i,ncol,nlev) .eq. 1.) .AND. (ATBperp(i,ncol,nlev) .gt. 0.) )then |
---|
862 | ! Computation of the ATBperp of the phase discrimination line |
---|
863 | ATBperp_tmp = (ATB(i,ncol,nlev)**5)*alpha50 + (ATB(i,ncol,nlev)**4)*beta50 + & |
---|
864 | (ATB(i,ncol,nlev)**3)*gamma50 + (ATB(i,ncol,nlev)**2)*delta50 + & |
---|
865 | ATB(i,ncol,nlev)*epsilon50 + zeta50 |
---|
866 | ! ######################################################################## |
---|
867 | ! 4.2.a) Ice: ATBperp above the phase discrimination line |
---|
868 | ! ######################################################################## |
---|
869 | ! ICE with temperature above 273,15°K = Liquid (false ice) |
---|
870 | if((ATBperp(i,ncol,nlev)-ATBperp_tmp) .ge. 0.)then ! Ice clouds |
---|
871 | if(tmp(i,nlev) .gt. 273.15)then |
---|
872 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp ! false ice ==> liq |
---|
873 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
874 | lidarcldphase(i,nlev,5) = lidarcldphase(i,nlev,5)+1._wp |
---|
875 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
---|
876 | ! High cloud |
---|
877 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
878 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
879 | ! Middle cloud |
---|
880 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
881 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
882 | ! Low cloud |
---|
883 | else |
---|
884 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
885 | endif |
---|
886 | |
---|
887 | cldlayphase(i,ncol,4,5) = 1. ! tot cloud |
---|
888 | ! High cloud |
---|
889 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
890 | cldlayphase(i,ncol,3,5) = 1._wp |
---|
891 | ! Middle cloud |
---|
892 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
893 | cldlayphase(i,ncol,2,5) = 1._wp |
---|
894 | ! Low cloud |
---|
895 | else |
---|
896 | cldlayphase(i,ncol,1,5) = 1._wp |
---|
897 | endif |
---|
898 | else |
---|
899 | ! ICE with temperature below 273,15°K |
---|
900 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp |
---|
901 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
902 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
903 | ! High cloud |
---|
904 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
905 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
906 | ! Middle cloud |
---|
907 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt.(680._wp*100._wp)) then |
---|
908 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
909 | ! Low cloud |
---|
910 | else |
---|
911 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
912 | endif |
---|
913 | endif |
---|
914 | |
---|
915 | ! ######################################################################## |
---|
916 | ! 4.2.b) Liquid: ATBperp below the phase discrimination line |
---|
917 | ! ######################################################################## |
---|
918 | else |
---|
919 | ! Liquid with temperature above 231,15°K |
---|
920 | if(tmp(i,nlev) .gt. 231.15)then |
---|
921 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp |
---|
922 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
923 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
---|
924 | ! High cloud |
---|
925 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
926 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
927 | ! Middle cloud |
---|
928 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
929 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
930 | ! Low cloud |
---|
931 | else |
---|
932 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
933 | endif |
---|
934 | else |
---|
935 | ! Liquid with temperature below 231,15°K = Ice (false liquid) |
---|
936 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
937 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp ! false liq ==> ice |
---|
938 | lidarcldphase(i,nlev,4) = lidarcldphase(i,nlev,4)+1._wp ! false liq ==> ice |
---|
939 | cldlayphase(i,ncol,4,4) = 1._wp ! tot cloud |
---|
940 | ! High cloud |
---|
941 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
942 | cldlayphase(i,ncol,3,4) = 1._wp |
---|
943 | ! Middle |
---|
944 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
945 | cldlayphase(i,ncol,2,4) = 1._wp |
---|
946 | ! Low cloud |
---|
947 | else |
---|
948 | cldlayphase(i,ncol,1,4) = 1._wp |
---|
949 | endif |
---|
950 | |
---|
951 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
952 | ! High cloud |
---|
953 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
954 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
955 | ! Middle cloud |
---|
956 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
957 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
958 | ! Low cloud |
---|
959 | else |
---|
960 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
961 | endif |
---|
962 | endif |
---|
963 | endif ! end of discrimination condition |
---|
964 | |
---|
965 | toplvlsat=0 |
---|
966 | |
---|
967 | ! Find the level of the highest cloud with SR>30 |
---|
968 | if(x(i,ncol,nlev) .gt. S_cld_att) then ! SR > 30. |
---|
969 | toplvlsat = nlev+1 |
---|
970 | goto 99 |
---|
971 | endif |
---|
972 | endif ! end of cloud condition |
---|
973 | enddo ! end of altitude loop |
---|
974 | 99 continue |
---|
975 | |
---|
976 | ! ############################################################################## |
---|
977 | ! Undefined phase: For a cloud located below another cloud with SR>30 |
---|
978 | ! see Cesana and Chepfer 2013 Sect.III.2 |
---|
979 | ! ############################################################################## |
---|
980 | if(toplvlsat.ne.0) then |
---|
981 | DO nlev = toplvlsat,Nlevels |
---|
982 | p1 = pplay(i,nlev) |
---|
983 | if(cldy(i,ncol,nlev).eq.1.)then |
---|
984 | lidarcldphase(i,nlev,3) = lidarcldphase(i,nlev,3)+1._wp |
---|
985 | tmpu(i,ncol,nlev) = tmp(i,nlev) |
---|
986 | cldlayphase(i,ncol,4,3) = 1._wp ! tot cloud |
---|
987 | ! High cloud |
---|
988 | if (p1 .gt. 0. .AND. p1 .lt. (440._wp*100._wp)) then |
---|
989 | cldlayphase(i,ncol,3,3) = 1._wp |
---|
990 | ! Middle cloud |
---|
991 | else if(p1 .ge. (440._wp*100._wp) .AND. p1 .lt. (680._wp*100._wp)) then |
---|
992 | cldlayphase(i,ncol,2,3) = 1._wp |
---|
993 | ! Low cloud |
---|
994 | else |
---|
995 | cldlayphase(i,ncol,1,3) = 1._wp |
---|
996 | endif |
---|
997 | endif |
---|
998 | enddo |
---|
999 | endif |
---|
1000 | toplvlsat=0 |
---|
1001 | enddo |
---|
1002 | enddo |
---|
1003 | |
---|
1004 | ! #################################################################################### |
---|
1005 | ! Computation of final cloud phase diagnosis |
---|
1006 | ! #################################################################################### |
---|
1007 | |
---|
1008 | ! Compute the Ice percentage in cloud = ice/(ice+liq) as a function of the occurrences |
---|
1009 | lidarcldphasetmp(:,:) = lidarcldphase(:,:,1)+lidarcldphase(:,:,2); |
---|
1010 | WHERE (lidarcldphasetmp(:,:) .gt. 0.) |
---|
1011 | lidarcldphase(:,:,6)=lidarcldphase(:,:,1)/lidarcldphasetmp(:,:) |
---|
1012 | ELSEWHERE |
---|
1013 | lidarcldphase(:,:,6) = undef |
---|
1014 | ENDWHERE |
---|
1015 | |
---|
1016 | ! Compute Phase 3D Cloud Fraction |
---|
1017 | !WHERE (nsub(:,Nlevels:1:-1) .gt. 0.0 ) |
---|
1018 | WHERE (nsub(:,:) .gt. 0.0 ) |
---|
1019 | lidarcldphase(:,:,1)=lidarcldphase(:,:,1)/nsub(:,:) |
---|
1020 | lidarcldphase(:,:,2)=lidarcldphase(:,:,2)/nsub(:,:) |
---|
1021 | lidarcldphase(:,:,3)=lidarcldphase(:,:,3)/nsub(:,:) |
---|
1022 | lidarcldphase(:,:,4)=lidarcldphase(:,:,4)/nsub(:,:) |
---|
1023 | lidarcldphase(:,:,5)=lidarcldphase(:,:,5)/nsub(:,:) |
---|
1024 | ELSEWHERE |
---|
1025 | lidarcldphase(:,:,1) = undef |
---|
1026 | lidarcldphase(:,:,2) = undef |
---|
1027 | lidarcldphase(:,:,3) = undef |
---|
1028 | lidarcldphase(:,:,4) = undef |
---|
1029 | lidarcldphase(:,:,5) = undef |
---|
1030 | ENDWHERE |
---|
1031 | |
---|
1032 | ! Compute Phase low mid high cloud fractions |
---|
1033 | DO iz = 1, Ncat |
---|
1034 | DO i=1,Nphase-3 |
---|
1035 | DO ic = 1, Ncolumns |
---|
1036 | cldlayerphase(:,iz,i) = cldlayerphase(:,iz,i) + cldlayphase(:,ic,iz,i) |
---|
1037 | cldlayerphasesum(:,iz) = cldlayerphasesum(:,iz) + cldlayphase(:,ic,iz,i) |
---|
1038 | enddo |
---|
1039 | enddo |
---|
1040 | enddo |
---|
1041 | DO iz = 1, Ncat |
---|
1042 | DO i=4,5 |
---|
1043 | DO ic = 1, Ncolumns |
---|
1044 | cldlayerphase(:,iz,i) = cldlayerphase(:,iz,i) + cldlayphase(:,ic,iz,i) |
---|
1045 | enddo |
---|
1046 | enddo |
---|
1047 | enddo |
---|
1048 | |
---|
1049 | ! Compute the Ice percentage in cloud = ice/(ice+liq) |
---|
1050 | cldlayerphasetmp(:,:)=cldlayerphase(:,:,1)+cldlayerphase(:,:,2) |
---|
1051 | WHERE (cldlayerphasetmp(:,:).gt. 0.) |
---|
1052 | cldlayerphase(:,:,6)=cldlayerphase(:,:,1)/cldlayerphasetmp(:,:) |
---|
1053 | ELSEWHERE |
---|
1054 | cldlayerphase(:,:,6) = undef |
---|
1055 | ENDWHERE |
---|
1056 | |
---|
1057 | DO i=1,Nphase-1 |
---|
1058 | WHERE ( cldlayerphasesum(:,:).gt.0.0 ) |
---|
1059 | cldlayerphase(:,:,i) = (cldlayerphase(:,:,i)/cldlayerphasesum(:,:)) * cldlayer(:,:) |
---|
1060 | ENDWHERE |
---|
1061 | enddo |
---|
1062 | |
---|
1063 | DO i=1,Npoints |
---|
1064 | DO iz=1,Ncat |
---|
1065 | checkcldlayerphase=0. |
---|
1066 | checkcldlayerphase2=0. |
---|
1067 | if (cldlayerphasesum(i,iz) .gt. 0.0 )then |
---|
1068 | DO ic=1,Nphase-3 |
---|
1069 | checkcldlayerphase = checkcldlayerphase+cldlayerphase(i,iz,ic) |
---|
1070 | enddo |
---|
1071 | checkcldlayerphase2 = cldlayer(i,iz)-checkcldlayerphase |
---|
1072 | if((checkcldlayerphase2 .gt. 0.01) .or. (checkcldlayerphase2 .lt. -0.01) ) PRINT *, checkcldlayerphase,cldlayer(i,iz) |
---|
1073 | endif |
---|
1074 | enddo |
---|
1075 | enddo |
---|
1076 | |
---|
1077 | DO i=1,Nphase-1 |
---|
1078 | WHERE (nsublayer(:,:) .eq. 0.0) |
---|
1079 | cldlayerphase(:,:,i) = undef |
---|
1080 | ENDWHERE |
---|
1081 | enddo |
---|
1082 | |
---|
1083 | ! Compute Phase 3D as a function of temperature |
---|
1084 | DO nlev=1,Nlevels |
---|
1085 | DO ncol=1,Ncolumns |
---|
1086 | DO i=1,Npoints |
---|
1087 | DO itemp=1,Ntemp |
---|
1088 | if(tmpi(i,ncol,nlev).gt.0.)then |
---|
1089 | if((tmpi(i,ncol,nlev) .ge. tempmod(itemp)) .AND. (tmpi(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
---|
1090 | lidarcldtemp(i,itemp,2)=lidarcldtemp(i,itemp,2)+1._wp |
---|
1091 | endif |
---|
1092 | elseif(tmpl(i,ncol,nlev) .gt. 0.)then |
---|
1093 | if((tmpl(i,ncol,nlev) .ge. tempmod(itemp)) .AND. (tmpl(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
---|
1094 | lidarcldtemp(i,itemp,3)=lidarcldtemp(i,itemp,3)+1._wp |
---|
1095 | endif |
---|
1096 | elseif(tmpu(i,ncol,nlev) .gt. 0.)then |
---|
1097 | if((tmpu(i,ncol,nlev) .ge. tempmod(itemp)) .AND. (tmpu(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
---|
1098 | lidarcldtemp(i,itemp,4)=lidarcldtemp(i,itemp,4)+1._wp |
---|
1099 | endif |
---|
1100 | endif |
---|
1101 | enddo |
---|
1102 | enddo |
---|
1103 | enddo |
---|
1104 | enddo |
---|
1105 | |
---|
1106 | ! Check temperature cloud fraction |
---|
1107 | DO i=1,Npoints |
---|
1108 | DO itemp=1,Ntemp |
---|
1109 | checktemp=lidarcldtemp(i,itemp,2)+lidarcldtemp(i,itemp,3)+lidarcldtemp(i,itemp,4) |
---|
1110 | !if(checktemp .NE. lidarcldtemp(i,itemp,1))then |
---|
1111 | ! PRINT *, i,itemp |
---|
1112 | ! PRINT *, lidarcldtemp(i,itemp,1:4) |
---|
1113 | !endif |
---|
1114 | |
---|
1115 | enddo |
---|
1116 | enddo |
---|
1117 | |
---|
1118 | ! Compute the Ice percentage in cloud = ice/(ice+liq) |
---|
1119 | sumlidarcldtemp(:,:)=lidarcldtemp(:,:,2)+lidarcldtemp(:,:,3) |
---|
1120 | WHERE(sumlidarcldtemp(:,:) .gt. 0.) |
---|
1121 | lidarcldtemp(:,:,5)=lidarcldtemp(:,:,2)/sumlidarcldtemp(:,:) |
---|
1122 | ELSEWHERE |
---|
1123 | lidarcldtemp(:,:,5)=undef |
---|
1124 | ENDWHERE |
---|
1125 | |
---|
1126 | DO i=1,4 |
---|
1127 | WHERE(lidarcldtempind(:,:) .gt. 0.) |
---|
1128 | lidarcldtemp(:,:,i) = lidarcldtemp(:,:,i)/lidarcldtempind(:,:) |
---|
1129 | ELSEWHERE |
---|
1130 | lidarcldtemp(:,:,i) = undef |
---|
1131 | ENDWHERE |
---|
1132 | enddo |
---|
1133 | |
---|
1134 | RETURN |
---|
1135 | END SUBROUTINE COSP_CLDFRAC |
---|
1136 | |
---|
1137 | ! #################################################################################### |
---|
1138 | ! SUBROUTINE cosp_cldfrac_nophase |
---|
1139 | ! Conventions: Ncat must be equal to 4 |
---|
1140 | ! #################################################################################### |
---|
1141 | SUBROUTINE COSP_CLDFRAC_NOPHASE(Npoints,Ncolumns,Nlevels,Ncat,x,ATB,pplay, & |
---|
1142 | S_att,S_cld,S_cld_att,undef,lidarcld,cldlayer) |
---|
1143 | |
---|
1144 | ! Inputs |
---|
1145 | integer,intent(in) :: & |
---|
1146 | Npoints, & ! Number of gridpoints |
---|
1147 | Ncolumns, & ! Number of subcolumns |
---|
1148 | Nlevels, & ! Number of vertical levels |
---|
1149 | Ncat ! Number of cloud layer types |
---|
1150 | real(wp),intent(in) :: & |
---|
1151 | S_att, & ! |
---|
1152 | S_cld, & ! |
---|
1153 | S_cld_att,& ! New threshold for undefine cloud phase detection |
---|
1154 | undef ! Undefined value |
---|
1155 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
1156 | x, & ! |
---|
1157 | ATB ! 3D attenuated backscatter |
---|
1158 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
---|
1159 | pplay ! Pressure |
---|
1160 | |
---|
1161 | ! Outputs |
---|
1162 | real(wp),intent(out),dimension(Npoints,Nlevels) :: & |
---|
1163 | lidarcld ! 3D cloud fraction |
---|
1164 | real(wp),intent(out),dimension(Npoints,Ncat) :: & |
---|
1165 | cldlayer ! Low, middle, high, total cloud fractions |
---|
1166 | |
---|
1167 | ! Local variables |
---|
1168 | integer :: & |
---|
1169 | ip, k, iz, ic, ncol, nlev, i |
---|
1170 | real(wp) :: & |
---|
1171 | p1 |
---|
1172 | real(wp),dimension(Npoints,Nlevels) :: & |
---|
1173 | nsub |
---|
1174 | real(wp),dimension(Npoints,Ncolumns,Ncat) :: & |
---|
1175 | cldlay,nsublay |
---|
1176 | real(wp),dimension(Npoints,Ncat) :: & |
---|
1177 | nsublayer |
---|
1178 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
1179 | cldy, & ! |
---|
1180 | srok ! |
---|
1181 | |
---|
1182 | ! #################################################################################### |
---|
1183 | ! 1) Initialize |
---|
1184 | ! #################################################################################### |
---|
1185 | lidarcld = 0._wp |
---|
1186 | nsub = 0._wp |
---|
1187 | cldlay = 0._wp |
---|
1188 | nsublay = 0._wp |
---|
1189 | |
---|
1190 | ! #################################################################################### |
---|
1191 | ! 2) Cloud detection |
---|
1192 | ! #################################################################################### |
---|
1193 | DO k=1,Nlevels |
---|
1194 | ! Cloud detection at subgrid-scale: |
---|
1195 | where ((x(:,:,k) .gt. S_cld) .AND. (x(:,:,k) .ne. undef) ) |
---|
1196 | cldy(:,:,k)=1._wp |
---|
1197 | elsewhere |
---|
1198 | cldy(:,:,k)=0._wp |
---|
1199 | endwhere |
---|
1200 | |
---|
1201 | ! Number of usefull sub-columns: |
---|
1202 | where ((x(:,:,k) .gt. S_att) .AND. (x(:,:,k) .ne. undef) ) |
---|
1203 | srok(:,:,k)=1._wp |
---|
1204 | elsewhere |
---|
1205 | srok(:,:,k)=0._wp |
---|
1206 | endwhere |
---|
1207 | enddo |
---|
1208 | |
---|
1209 | ! #################################################################################### |
---|
1210 | ! 3) Grid-box 3D cloud fraction and layered cloud fractions(ISCCP pressure categories) |
---|
1211 | ! #################################################################################### |
---|
1212 | DO k=1,Nlevels |
---|
1213 | DO ic = 1, Ncolumns |
---|
1214 | DO ip = 1, Npoints |
---|
1215 | |
---|
1216 | iz=1 |
---|
1217 | p1 = pplay(ip,k) |
---|
1218 | if ( p1.gt.0. .AND. p1.lt.(440._wp*100._wp)) then ! high clouds |
---|
1219 | iz=3 |
---|
1220 | else if(p1.ge.(440._wp*100._wp) .AND. p1.lt.(680._wp*100._wp)) then ! mid clouds |
---|
1221 | iz=2 |
---|
1222 | endif |
---|
1223 | |
---|
1224 | cldlay(ip,ic,iz) = MAX(cldlay(ip,ic,iz),cldy(ip,ic,k)) |
---|
1225 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) |
---|
1226 | lidarcld(ip,k) = lidarcld(ip,k) + cldy(ip,ic,k) |
---|
1227 | |
---|
1228 | nsublay(ip,ic,iz) = MAX(nsublay(ip,ic,iz),srok(ip,ic,k)) |
---|
1229 | nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
---|
1230 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
---|
1231 | |
---|
1232 | enddo |
---|
1233 | enddo |
---|
1234 | enddo |
---|
1235 | |
---|
1236 | ! Grid-box 3D cloud fraction |
---|
1237 | where ( nsub(:,:).gt.0.0 ) |
---|
1238 | lidarcld(:,:) = lidarcld(:,:)/nsub(:,:) |
---|
1239 | elsewhere |
---|
1240 | lidarcld(:,:) = undef |
---|
1241 | endwhere |
---|
1242 | |
---|
1243 | ! Layered cloud fractions |
---|
1244 | cldlayer = 0._wp |
---|
1245 | nsublayer = 0._wp |
---|
1246 | DO iz = 1, Ncat |
---|
1247 | DO ic = 1, Ncolumns |
---|
1248 | cldlayer(:,iz) = cldlayer(:,iz) + cldlay(:,ic,iz) |
---|
1249 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
---|
1250 | enddo |
---|
1251 | enddo |
---|
1252 | where (nsublayer(:,:) .gt. 0.0) |
---|
1253 | cldlayer(:,:) = cldlayer(:,:)/nsublayer(:,:) |
---|
1254 | elsewhere |
---|
1255 | cldlayer(:,:) = undef |
---|
1256 | endwhere |
---|
1257 | |
---|
1258 | RETURN |
---|
1259 | END SUBROUTINE COSP_CLDFRAC_NOPHASE |
---|
1260 | |
---|
1261 | ! #################################################################################### |
---|
1262 | ! SUBROUTINE cosp_opaq |
---|
1263 | ! Conventions: Ntype must be equal to 3 |
---|
1264 | ! #################################################################################### |
---|
1265 | SUBROUTINE COSP_OPAQ(Npoints,Ncolumns,Nlevels,Ntype,tmp,x,S_att,S_cld,undef,lidarcldtype, & |
---|
1266 | cldtype,cldtypetemp,cldtypemeanz,cldtypemeanzse,cldthinemis,vgrid_z, & |
---|
1267 | surfelev) |
---|
1268 | |
---|
1269 | ! Local parameter |
---|
1270 | real(wp),parameter :: & |
---|
1271 | S_att_opaq = 0.06_wp, & ! Fully Attenuated threshold (Guzman et al. 2017, JGR-Atmospheres) |
---|
1272 | eta = 0.6_wp ! Multiple-scattering factor (Vaillant de Guelis et al. 2017a, AMT) |
---|
1273 | |
---|
1274 | ! Inputs |
---|
1275 | integer,intent(in) :: & |
---|
1276 | Npoints, & ! Number of gridpoints |
---|
1277 | Ncolumns, & ! Number of subcolumns |
---|
1278 | Nlevels, & ! Number of vertical levels |
---|
1279 | Ntype ! Number of OPAQ cloud types (opaque, thin clouds and z_opaque) |
---|
1280 | real(wp),intent(in) :: & |
---|
1281 | S_att, & ! Fully Attenuated legacy threshold |
---|
1282 | S_cld, & ! Cloud detection threshold |
---|
1283 | undef ! Undefined value |
---|
1284 | real(wp),intent(in),dimension(Nlevels) :: & |
---|
1285 | vgrid_z ! mid-level vertical profile altitude (subcolumns) |
---|
1286 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
1287 | x ! SR profiles (subcolumns) |
---|
1288 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
---|
1289 | tmp ! Temperature profiles |
---|
1290 | real(wp),intent(in),dimension(Npoints) :: & |
---|
1291 | surfelev ! Surface Elevation (SE) |
---|
1292 | |
---|
1293 | ! Outputs |
---|
1294 | real(wp),intent(out),dimension(Npoints,Nlevels,Ntype+1) :: & |
---|
1295 | lidarcldtype ! 3D OPAQ product fraction (opaque clouds, thin clouds, z_opaque, opacity) |
---|
1296 | real(wp),intent(out),dimension(Npoints,Ntype) :: & |
---|
1297 | cldtype, & ! Opaque/thin cloud covers + z_opaque altitude |
---|
1298 | cldtypetemp ! Opaque and thin clouds + z_opaque temperature |
---|
1299 | real(wp),intent(out),dimension(Npoints,2) :: & |
---|
1300 | cldtypemeanz ! Opaque and thin clouds altitude |
---|
1301 | real(wp),intent(out),dimension(Npoints,3) :: & |
---|
1302 | cldtypemeanzse ! Opaque, thin clouds and z_opaque altitude with respect to SE |
---|
1303 | real(wp),intent(out),dimension(Npoints) :: & |
---|
1304 | cldthinemis ! Thin clouds emissivity |
---|
1305 | |
---|
1306 | ! Local variables |
---|
1307 | integer :: & |
---|
1308 | ip, k, zopac, ic, iz, z_top, z_base, topcloud |
---|
1309 | real(wp) :: & |
---|
1310 | srmean, srcount, trans2, tau_app, tau_vis, tau_ir, cloudemis |
---|
1311 | real(wp),dimension(Npoints) :: & |
---|
1312 | count_emis |
---|
1313 | real(wp),dimension(Npoints,Nlevels) :: & |
---|
1314 | nsub, nsubopaq |
---|
1315 | real(wp),dimension(Npoints,Ncolumns,Ntype+1) :: & ! Opaque, thin, z_opaque and all cloud cover |
---|
1316 | cldlay, nsublay |
---|
1317 | real(wp),dimension(Npoints,Ntype) :: & |
---|
1318 | nsublayer |
---|
1319 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
1320 | cldy, & ! |
---|
1321 | cldyopaq, & ! |
---|
1322 | srok, & ! |
---|
1323 | srokopaq ! |
---|
1324 | |
---|
1325 | ! #################################################################################### |
---|
1326 | ! 1) Initialize |
---|
1327 | ! #################################################################################### |
---|
1328 | cldtype(:,:) = 0._wp |
---|
1329 | cldtypetemp(:,:) = 0._wp |
---|
1330 | cldtypemeanz(:,:) = 0._wp |
---|
1331 | cldtypemeanzse(:,:) = 0._wp |
---|
1332 | cldthinemis(:) = 0._wp |
---|
1333 | count_emis(:) = 0._wp |
---|
1334 | lidarcldtype(:,:,:) = 0._wp |
---|
1335 | nsub = 0._wp |
---|
1336 | nsubopaq = 0._wp |
---|
1337 | cldlay = 0._wp |
---|
1338 | nsublay = 0._wp |
---|
1339 | nsublayer = 0._wp |
---|
1340 | |
---|
1341 | ! #################################################################################### |
---|
1342 | ! 2) Cloud detection and Fully attenuated layer detection |
---|
1343 | ! #################################################################################### |
---|
1344 | DO k=1,Nlevels |
---|
1345 | ! Cloud detection at subgrid-scale: |
---|
1346 | where ( (x(:,:,k) .gt. S_cld) .AND. (x(:,:,k) .ne. undef) ) |
---|
1347 | cldy(:,:,k)=1._wp |
---|
1348 | elsewhere |
---|
1349 | cldy(:,:,k)=0._wp |
---|
1350 | endwhere |
---|
1351 | ! Fully attenuated layer detection at subgrid-scale: |
---|
1352 | where ( (x(:,:,k) .lt. S_att_opaq) .AND. (x(:,:,k) .ge. 0.) .AND. (x(:,:,k) .ne. undef) ) !DEBUG |
---|
1353 | cldyopaq(:,:,k)=1._wp |
---|
1354 | elsewhere |
---|
1355 | cldyopaq(:,:,k)=0._wp |
---|
1356 | endwhere |
---|
1357 | |
---|
1358 | |
---|
1359 | ! Number of usefull sub-column layers: |
---|
1360 | where ( (x(:,:,k) .gt. S_att) .AND. (x(:,:,k) .ne. undef) ) |
---|
1361 | srok(:,:,k)=1._wp |
---|
1362 | elsewhere |
---|
1363 | srok(:,:,k)=0._wp |
---|
1364 | endwhere |
---|
1365 | ! Number of usefull sub-columns layers for z_opaque 3D fraction: |
---|
1366 | where ( (x(:,:,k) .ge. 0.) .AND. (x(:,:,k) .ne. undef) ) !DEBUG |
---|
1367 | srokopaq(:,:,k)=1._wp |
---|
1368 | elsewhere |
---|
1369 | srokopaq(:,:,k)=0._wp |
---|
1370 | endwhere |
---|
1371 | enddo |
---|
1372 | |
---|
1373 | ! #################################################################################### |
---|
1374 | ! 3) Grid-box 3D OPAQ product fraction and cloud type cover (opaque/thin) + mean z_opaque |
---|
1375 | ! #################################################################################### |
---|
1376 | |
---|
1377 | DO k=1,Nlevels |
---|
1378 | DO ic = 1, Ncolumns |
---|
1379 | DO ip = 1, Npoints |
---|
1380 | |
---|
1381 | cldlay(ip,ic,1) = MAX(cldlay(ip,ic,1),cldyopaq(ip,ic,k)) ! Opaque cloud |
---|
1382 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) ! All cloud |
---|
1383 | |
---|
1384 | nsublay(ip,ic,1) = MAX(nsublay(ip,ic,1),srok(ip,ic,k)) |
---|
1385 | nsublay(ip,ic,2) = MAX(nsublay(ip,ic,2),srok(ip,ic,k)) |
---|
1386 | ! nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
---|
1387 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
---|
1388 | nsubopaq(ip,k) = nsubopaq(ip,k) + srokopaq(ip,ic,k) |
---|
1389 | |
---|
1390 | enddo |
---|
1391 | enddo |
---|
1392 | enddo |
---|
1393 | |
---|
1394 | ! OPAQ variables |
---|
1395 | DO ic = 1, Ncolumns |
---|
1396 | DO ip = 1, Npoints |
---|
1397 | |
---|
1398 | ! Declaring non-opaque cloudy profiles as thin cloud profiles |
---|
1399 | if ( cldlay(ip,ic,4).gt. 0. .AND. cldlay(ip,ic,1) .eq. 0. ) then |
---|
1400 | cldlay(ip,ic,2) = 1._wp |
---|
1401 | endif |
---|
1402 | |
---|
1403 | ! Filling in 3D and 2D variables |
---|
1404 | |
---|
1405 | ! Opaque cloud profiles |
---|
1406 | if ( cldlay(ip,ic,1) .eq. 1. ) then |
---|
1407 | zopac = 0._wp |
---|
1408 | z_top = 0._wp |
---|
1409 | DO k=1,Nlevels-1 |
---|
1410 | ! Declaring z_opaque altitude and opaque cloud fraction for 3D and 2D variables |
---|
1411 | ! From SFC-2-TOA ( actually from vgrid_z(SFC+1) = vgrid_z(Nlevels-1) ) |
---|
1412 | if ( cldy(ip,ic,Nlevels-k) .eq. 1. .AND. zopac .eq. 0. ) then |
---|
1413 | lidarcldtype(ip,Nlevels-k + 1,3) = lidarcldtype(ip,Nlevels-k + 1,3) + 1._wp |
---|
1414 | cldlay(ip,ic,3) = vgrid_z(Nlevels-k+1) ! z_opaque altitude |
---|
1415 | nsublay(ip,ic,3) = 1._wp |
---|
1416 | zopac = Nlevels-k+1 ! z_opaque vertical index on vgrid_z |
---|
1417 | endif |
---|
1418 | if ( cldy(ip,ic,Nlevels-k) .eq. 1. ) then |
---|
1419 | lidarcldtype(ip,Nlevels-k ,1) = lidarcldtype(ip,Nlevels-k ,1) + 1._wp |
---|
1420 | z_top = Nlevels-k ! top cloud layer vertical index on vgrid_z |
---|
1421 | endif |
---|
1422 | enddo |
---|
1423 | ! Summing opaque cloud mean temperatures and altitudes |
---|
1424 | ! as defined in Vaillant de Guelis et al. 2017a, AMT |
---|
1425 | if (zopac .ne. 0) then |
---|
1426 | cldtypetemp(ip,1) = cldtypetemp(ip,1) + ( tmp(ip,zopac) + tmp(ip,z_top) )/2. |
---|
1427 | cldtypetemp(ip,3) = cldtypetemp(ip,3) + tmp(ip,zopac) ! z_opaque |
---|
1428 | cldtypemeanz(ip,1) = cldtypemeanz(ip,1) + ( vgrid_z(zopac) + vgrid_z(z_top) )/2. |
---|
1429 | cldtypemeanzse(ip,1) = cldtypemeanzse(ip,1) + (( vgrid_z(zopac) + vgrid_z(z_top) )/2.) - surfelev(ip) |
---|
1430 | cldtypemeanzse(ip,3) = cldtypemeanzse(ip,3) + ( vgrid_z(zopac) - surfelev(ip) ) |
---|
1431 | else |
---|
1432 | cldlay(ip,ic,1) = 0 |
---|
1433 | endif |
---|
1434 | endif |
---|
1435 | |
---|
1436 | ! Thin cloud profiles |
---|
1437 | if ( cldlay(ip,ic,2) .eq. 1. ) then |
---|
1438 | topcloud = 0._wp |
---|
1439 | z_top = 0._wp |
---|
1440 | z_base = 0._wp |
---|
1441 | DO k=1,Nlevels |
---|
1442 | ! Declaring thin cloud fraction for 3D variable |
---|
1443 | ! From TOA-2-SFC |
---|
1444 | if ( cldy(ip,ic,k) .eq. 1. .AND. topcloud .eq. 1. ) then |
---|
1445 | lidarcldtype(ip,k,2) = lidarcldtype(ip,k,2) + 1._wp |
---|
1446 | z_base = k ! bottom cloud layer |
---|
1447 | endif |
---|
1448 | if ( cldy(ip,ic,k) .eq. 1. .AND. topcloud .eq. 0. ) then |
---|
1449 | lidarcldtype(ip,k,2) = lidarcldtype(ip,k,2) + 1._wp |
---|
1450 | z_top = k ! top cloud layer |
---|
1451 | z_base = k ! bottom cloud layer |
---|
1452 | topcloud = 1._wp |
---|
1453 | endif |
---|
1454 | enddo |
---|
1455 | ! Computing mean emissivity using layers below the bottom cloud layer to the surface |
---|
1456 | srmean = 0._wp |
---|
1457 | srcount = 0._wp |
---|
1458 | cloudemis = 0._wp |
---|
1459 | DO k=z_base+1,Nlevels |
---|
1460 | if ( (x(ip,ic,k) .gt. S_att_opaq) .AND. (x(ip,ic,k) .lt. 1.0) .AND. (x(ip,ic,k) .ne. undef) ) then |
---|
1461 | srmean = srmean + x(ip,ic,k) |
---|
1462 | srcount = srcount + 1. |
---|
1463 | endif |
---|
1464 | enddo |
---|
1465 | ! If clear sky layers exist below bottom cloud layer |
---|
1466 | if ( srcount .gt. 0. ) then |
---|
1467 | trans2 = srmean/srcount ! thin cloud transmittance**2 |
---|
1468 | tau_app = -(log(trans2))/2. ! apparent cloud optical depth |
---|
1469 | tau_vis = tau_app/eta ! cloud visible optical depth (multiple scat.) |
---|
1470 | tau_ir = tau_vis/2. ! approx. relation between visible and IR ODs |
---|
1471 | cloudemis = 1. - exp(-tau_ir) ! no diffusion in IR considered : emis = 1-T |
---|
1472 | count_emis(ip) = count_emis(ip) + 1. |
---|
1473 | endif |
---|
1474 | ! Summing thin cloud mean temperatures and altitudes |
---|
1475 | ! as defined in Vaillant de Guelis et al. 2017a, AMT |
---|
1476 | cldtypetemp(ip,2) = cldtypetemp(ip,2) + ( tmp(ip,z_base) + tmp(ip,z_top) )/2. |
---|
1477 | cldtypemeanz(ip,2) = cldtypemeanz(ip,2) + ( vgrid_z(z_base) + vgrid_z(z_top) )/2. |
---|
1478 | cldtypemeanzse(ip,2) = cldtypemeanzse(ip,2) + (( vgrid_z(z_base) + vgrid_z(z_top) )/2.) - surfelev(ip) |
---|
1479 | cldthinemis(ip) = cldthinemis(ip) + cloudemis |
---|
1480 | endif |
---|
1481 | |
---|
1482 | enddo |
---|
1483 | enddo |
---|
1484 | |
---|
1485 | ! 3D cloud types fraction (opaque=1 and thin=2 clouds) |
---|
1486 | where ( nsub(:,:) .gt. 0. ) |
---|
1487 | lidarcldtype(:,:,1) = lidarcldtype(:,:,1)/nsub(:,:) |
---|
1488 | lidarcldtype(:,:,2) = lidarcldtype(:,:,2)/nsub(:,:) |
---|
1489 | elsewhere |
---|
1490 | lidarcldtype(:,:,1) = undef |
---|
1491 | lidarcldtype(:,:,2) = undef |
---|
1492 | endwhere |
---|
1493 | ! 3D z_opaque fraction (=3) |
---|
1494 | where ( nsubopaq(:,:) .gt. 0. ) |
---|
1495 | lidarcldtype(:,:,3) = lidarcldtype(:,:,3)/nsubopaq(:,:) |
---|
1496 | elsewhere |
---|
1497 | lidarcldtype(:,:,3) = undef |
---|
1498 | lidarcldtype(:,:,4) = undef !declaring undef for opacity as well |
---|
1499 | endwhere |
---|
1500 | ! 3D opacity fraction (=4) !Summing z_opaque fraction from TOA(k=1) to SFC(k=Nlevels) |
---|
1501 | lidarcldtype(:,1,4) = lidarcldtype(:,1,3) !top layer equal to 3D z_opaque fraction |
---|
1502 | DO ip = 1, Npoints |
---|
1503 | DO k = 2, Nlevels |
---|
1504 | if ( (lidarcldtype(ip,k,3) .ne. undef) .AND. (lidarcldtype(ip,k-1,4) .ne. undef) ) then |
---|
1505 | lidarcldtype(ip,k,4) = lidarcldtype(ip,k,3) + lidarcldtype(ip,k-1,4) |
---|
1506 | else |
---|
1507 | lidarcldtype(ip,k,4) = undef |
---|
1508 | endif |
---|
1509 | enddo |
---|
1510 | enddo |
---|
1511 | |
---|
1512 | ! Layered cloud types (opaque, thin and z_opaque 2D variables) |
---|
1513 | |
---|
1514 | DO iz = 1, Ntype |
---|
1515 | DO ic = 1, Ncolumns |
---|
1516 | cldtype(:,iz) = cldtype(:,iz) + cldlay(:,ic,iz) |
---|
1517 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
---|
1518 | enddo |
---|
1519 | enddo |
---|
1520 | |
---|
1521 | ! Mean temperature and altitude |
---|
1522 | where (cldtype(:,1) .gt. 0.) |
---|
1523 | cldtypetemp(:,1) = cldtypetemp(:,1)/cldtype(:,1) ! opaque cloud temp |
---|
1524 | cldtypetemp(:,3) = cldtypetemp(:,3)/cldtype(:,1) ! z_opaque |
---|
1525 | cldtypemeanz(:,1) = cldtypemeanz(:,1)/cldtype(:,1) ! opaque cloud alt |
---|
1526 | cldtypemeanzse(:,1) = cldtypemeanzse(:,1)/cldtype(:,1) ! opaque cloud alt - SE |
---|
1527 | cldtypemeanzse(:,3) = cldtypemeanzse(:,3)/cldtype(:,1) ! z_opaque - SE |
---|
1528 | elsewhere |
---|
1529 | cldtypetemp(:,1) = undef |
---|
1530 | cldtypetemp(:,3) = undef |
---|
1531 | cldtypemeanz(:,1) = undef |
---|
1532 | cldtypemeanzse(:,1) = undef |
---|
1533 | cldtypemeanzse(:,3) = undef |
---|
1534 | endwhere |
---|
1535 | |
---|
1536 | where (cldtype(:,2) .gt. 0.) ! thin cloud |
---|
1537 | cldtypetemp(:,2) = cldtypetemp(:,2)/cldtype(:,2) |
---|
1538 | cldtypemeanz(:,2) = cldtypemeanz(:,2)/cldtype(:,2) |
---|
1539 | cldtypemeanzse(:,2) = cldtypemeanzse(:,2)/cldtype(:,2) |
---|
1540 | elsewhere |
---|
1541 | cldtypetemp(:,2) = undef |
---|
1542 | cldtypemeanz(:,2) = undef |
---|
1543 | cldtypemeanzse(:,2) = undef |
---|
1544 | endwhere |
---|
1545 | |
---|
1546 | ! Mean thin cloud emissivity |
---|
1547 | where (count_emis(:) .gt. 0.) ! thin cloud |
---|
1548 | cldthinemis(:) = cldthinemis(:)/count_emis(:) |
---|
1549 | elsewhere |
---|
1550 | cldthinemis(:) = undef |
---|
1551 | endwhere |
---|
1552 | |
---|
1553 | where (nsublayer(:,:) .gt. 0.) |
---|
1554 | cldtype(:,:) = cldtype(:,:)/nsublayer(:,:) |
---|
1555 | elsewhere |
---|
1556 | cldtype(:,:) = undef |
---|
1557 | endwhere |
---|
1558 | |
---|
1559 | END SUBROUTINE COSP_OPAQ |
---|
1560 | |
---|
1561 | end module mod_lidar_simulator |
---|