1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
2 | ! Copyright (c) 2009, Lawrence Livemore National Security Limited Liability |
---|
3 | ! All rights reserved. |
---|
4 | |
---|
5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
6 | ! permitted provided that the following conditions are met: |
---|
7 | |
---|
8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
9 | ! conditions and the following disclaimer. |
---|
10 | |
---|
11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
13 | ! materials provided with the distribution. |
---|
14 | |
---|
15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
16 | ! used to endorse or promote products derived from this software without specific prior |
---|
17 | ! written permission. |
---|
18 | |
---|
19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
28 | |
---|
29 | ! History |
---|
30 | ! May 2015 - D. Swales - Modified for COSPv2.0 |
---|
31 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
32 | MODULE MOD_ICARUS |
---|
33 | USE COSP_KINDS, ONLY: wp |
---|
34 | USE COSP_PHYS_CONSTANTS, ONLY: amd,amw,avo,grav |
---|
35 | use MOD_COSP_STATS, ONLY: hist2D |
---|
36 | USE MOD_COSP_CONFIG, ONLY: R_UNDEF,numISCCPTauBins,numISCCPPresBins,isccp_histTau, & |
---|
37 | isccp_histPres |
---|
38 | implicit none |
---|
39 | |
---|
40 | ! Shared Parameters |
---|
41 | integer,parameter :: & |
---|
42 | ncolprint = 0 ! Flag for debug printing (set as parameter to increase performance) |
---|
43 | |
---|
44 | ! Cloud-top height determination |
---|
45 | integer :: & |
---|
46 | isccp_top_height, & ! Top height adjustment method |
---|
47 | isccp_top_height_direction ! Direction for finding atmosphere pressure level |
---|
48 | |
---|
49 | ! Parameters used by icarus |
---|
50 | real(wp),parameter :: & |
---|
51 | tauchk = -1._wp*log(0.9999999_wp), & ! Lower limit on optical depth |
---|
52 | isccp_taumin = 0.3_wp, & ! Minimum optical depth for joint-hostogram |
---|
53 | pstd = 1013250._wp, & ! Mean sea-level pressure (Pa) |
---|
54 | isccp_t0 = 296._wp, & ! Mean surface temperature (K) |
---|
55 | output_missing_value = -1.E+30 ! Missing values |
---|
56 | |
---|
57 | contains |
---|
58 | ! ########################################################################## |
---|
59 | ! ########################################################################## |
---|
60 | SUBROUTINE ICARUS(debug,debugcol,npoints,sunlit,nlev,ncol,pfull, & |
---|
61 | phalf,qv,cc,conv,dtau_s,dtau_c,th,thd,frac_out,skt,emsfc_lw,at,& |
---|
62 | dem_s,dem_c,fq_isccp,totalcldarea, meanptop,meantaucld, & |
---|
63 | meanalbedocld, meantb,meantbclr,boxtau,boxptop,levmatch) |
---|
64 | |
---|
65 | ! INPUTS |
---|
66 | INTEGER,intent(in) :: & ! |
---|
67 | npoints, & ! Number of model points in the horizontal |
---|
68 | nlev, & ! Number of model levels in column |
---|
69 | ncol, & ! Number of subcolumns |
---|
70 | debug, & ! Debug flag |
---|
71 | debugcol ! Debug column flag |
---|
72 | INTEGER,intent(in),dimension(npoints) :: & ! |
---|
73 | sunlit ! 1 for day points, 0 for night time |
---|
74 | REAL(WP),intent(in) :: & ! |
---|
75 | emsfc_lw ! 10.5 micron emissivity of surface (fraction) |
---|
76 | REAL(WP),intent(in),dimension(npoints) :: & ! |
---|
77 | skt ! Skin Temperature (K) |
---|
78 | REAL(WP),intent(in),dimension(npoints,ncol,nlev) :: & ! |
---|
79 | frac_out ! Boxes gridbox divided up into subcolumns |
---|
80 | REAL(WP),intent(in),dimension(npoints,nlev) :: & ! |
---|
81 | pfull, & ! Pressure of full model levels (Pascals) |
---|
82 | qv, & ! Water vapor specific humidity (kg vapor/ kg air) |
---|
83 | cc, & ! Cloud cover in each model level (fraction) |
---|
84 | conv, & ! Convective cloud cover in each model |
---|
85 | at, & ! Temperature in each model level (K) |
---|
86 | dem_c, & ! Emissivity for convective clouds |
---|
87 | dem_s, & ! Emissivity for stratiform clouds |
---|
88 | dtau_c, & ! Optical depth for convective clouds |
---|
89 | dtau_s ! Optical depth for stratiform clouds |
---|
90 | REAL(WP),intent(in),dimension(npoints,nlev+1) :: & ! |
---|
91 | phalf ! Pressure of half model levels (Pascals)! |
---|
92 | integer,intent(in) :: th,thd |
---|
93 | |
---|
94 | ! OUTPUTS |
---|
95 | REAL(WP),intent(out),dimension(npoints,7,7) :: & |
---|
96 | fq_isccp ! The fraction of the model grid box covered by clouds |
---|
97 | REAL(WP),intent(out),dimension(npoints) :: & |
---|
98 | totalcldarea, & ! The fraction of model grid box columns with cloud present |
---|
99 | meanptop, & ! Mean cloud top pressure (mb) - linear averaging |
---|
100 | meantaucld, & ! Mean optical thickness |
---|
101 | meanalbedocld, & ! Mean cloud albedo |
---|
102 | meantb, & ! Mean all-sky 10.5 micron brightness temperature |
---|
103 | meantbclr ! Mean clear-sky 10.5 micron brightness temperature |
---|
104 | REAL(WP),intent(out),dimension(npoints,ncol) :: & |
---|
105 | boxtau, & ! Optical thickness in each column |
---|
106 | boxptop ! Cloud top pressure (mb) in each column |
---|
107 | INTEGER,intent(out),dimension(npoints,ncol) :: & |
---|
108 | levmatch ! Used for icarus unit testing only |
---|
109 | |
---|
110 | |
---|
111 | ! INTERNAL VARIABLES |
---|
112 | CHARACTER(len=10) :: ftn09 |
---|
113 | REAL(WP),dimension(npoints,ncol) :: boxttop |
---|
114 | REAL(WP),dimension(npoints,ncol,nlev) :: dtau,demIN |
---|
115 | INTEGER :: j,ilev,ibox |
---|
116 | INTEGER,dimension(nlev,ncol ) :: acc |
---|
117 | |
---|
118 | ! PARAMETERS |
---|
119 | character ,parameter, dimension(6) :: cchar=(/' ','-','1','+','I','+'/) |
---|
120 | character(len=1),parameter,dimension(6) :: cchar_realtops=(/ ' ',' ','1','1','I','I'/) |
---|
121 | ! ########################################################################## |
---|
122 | |
---|
123 | call cosp_simulator_optics(npoints,ncol,nlev,frac_out,dem_c,dem_s,demIN) |
---|
124 | call cosp_simulator_optics(npoints,ncol,nlev,frac_out,dtau_c,dtau_s,dtau) |
---|
125 | |
---|
126 | call ICARUS_SUBCOLUMN(npoints,ncol,nlev,sunlit,dtau,demIN,skt,emsfc_lw,qv,at, & |
---|
127 | pfull,phalf,frac_out,levmatch,boxtau,boxptop,boxttop,meantbclr) |
---|
128 | |
---|
129 | call ICARUS_COLUMN(npoints,ncol,boxtau,boxptop/100._wp,sunlit,boxttop,& |
---|
130 | fq_isccp,meanalbedocld,meanptop,meantaucld,totalcldarea,meantb) |
---|
131 | |
---|
132 | ! ########################################################################## |
---|
133 | ! OPTIONAL PRINTOUT OF DATA TO CHECK PROGRAM |
---|
134 | ! ########################################################################## |
---|
135 | |
---|
136 | if (debugcol.ne.0) then |
---|
137 | DO j=1,npoints,debugcol |
---|
138 | |
---|
139 | ! Produce character output |
---|
140 | DO ilev=1,nlev |
---|
141 | acc(ilev,1:ncol)=frac_out(j,1:ncol,ilev)*2 |
---|
142 | where(levmatch(j,1:ncol) .eq. ilev) acc(ilev,1:ncol)=acc(ilev,1:ncol)+1 |
---|
143 | enddo |
---|
144 | |
---|
145 | write(ftn09,11) j |
---|
146 | 11 format('ftn09.',i4.4) |
---|
147 | open(9, FILE=ftn09, FORM='FORMATTED') |
---|
148 | |
---|
149 | write(9,'(a1)') ' ' |
---|
150 | write(9,'(10i5)') (ilev,ilev=5,nlev,5) |
---|
151 | write(9,'(a1)') ' ' |
---|
152 | |
---|
153 | DO ibox=1,ncol |
---|
154 | write(9,'(40(a1),1x,40(a1))') & |
---|
155 | (cchar_realtops(acc(ilev,ibox)+1),ilev=1,nlev),& |
---|
156 | (cchar(acc(ilev,ibox)+1),ilev=1,nlev) |
---|
157 | end do |
---|
158 | close(9) |
---|
159 | |
---|
160 | enddo |
---|
161 | end if |
---|
162 | |
---|
163 | return |
---|
164 | END SUBROUTINE ICARUS |
---|
165 | |
---|
166 | ! ############################################################################ |
---|
167 | ! ############################################################################ |
---|
168 | ! ############################################################################ |
---|
169 | SUBROUTINE ICARUS_SUBCOLUMN(npoints,ncol,nlev,sunlit,dtau,demiN,skt,emsfc_lw,qv,at, & |
---|
170 | pfull,phalf,frac_out,levmatch,boxtau,boxptop,boxttop,meantbclr) |
---|
171 | ! Inputs |
---|
172 | INTEGER, intent(in) :: & |
---|
173 | ncol, & ! Number of subcolumns |
---|
174 | npoints, & ! Number of horizontal gridpoints |
---|
175 | nlev ! Number of vertical levels |
---|
176 | INTEGER, intent(in), dimension(npoints) :: & |
---|
177 | sunlit ! 1=day 0=night |
---|
178 | REAL(WP),intent(in) :: & |
---|
179 | emsfc_lw ! 10.5 micron emissivity of surface (fraction) |
---|
180 | REAL(WP),intent(in), dimension(npoints) :: & |
---|
181 | skt ! Skin temperature |
---|
182 | REAL(WP),intent(in), dimension(npoints,nlev) :: & |
---|
183 | at, & ! Temperature |
---|
184 | pfull, & ! Presure |
---|
185 | qv ! Specific humidity |
---|
186 | REAL(WP),intent(in), dimension(npoints,ncol,nlev) :: & |
---|
187 | frac_out, & ! Subcolumn cloud cover |
---|
188 | dtau, & ! Subcolumn optical thickness |
---|
189 | demIN ! Subcolumn emissivity |
---|
190 | REAL(WP),intent(in), dimension(npoints,nlev+1) :: & |
---|
191 | phalf ! Pressure at model half levels |
---|
192 | |
---|
193 | ! Outputs |
---|
194 | REAL(WP),intent(inout),dimension(npoints) :: & |
---|
195 | meantbclr ! Mean clear-sky 10.5 micron brightness temperature |
---|
196 | REAL(WP),intent(inout),dimension(npoints,ncol) :: & |
---|
197 | boxtau, & ! Optical thickness in each column |
---|
198 | boxptop, & ! Cloud top pressure (mb) in each column |
---|
199 | boxttop ! Cloud top temperature in each column |
---|
200 | INTEGER, intent(inout),dimension(npoints,ncol) :: levmatch |
---|
201 | |
---|
202 | ! Local Variables |
---|
203 | INTEGER :: & |
---|
204 | j,ibox,ilev,k1,k2,icycle |
---|
205 | INTEGER,dimension(npoints) :: & |
---|
206 | nmatch,itrop |
---|
207 | INTEGER,dimension(npoints,nlev-1) :: & |
---|
208 | match |
---|
209 | REAL(WP) :: & |
---|
210 | logp,logp1,logp2,atd |
---|
211 | REAL(WP),dimension(npoints) :: & |
---|
212 | bb,attropmin,attrop,ptrop,atmax,btcmin,transmax,tauir,taumin,fluxtopinit,press, & |
---|
213 | dpress,atmden,rvh20,rhoave,rh20s,rfrgn,tmpexp,tauwv,wk,trans_layers_above_clrsky, & |
---|
214 | fluxtop_clrsky |
---|
215 | REAL(WP),dimension(npoints,nlev) :: & |
---|
216 | dem_wv |
---|
217 | REAL(WP),dimension(npoints,ncol) :: & |
---|
218 | trans_layers_above,dem,tb,emcld,fluxtop,tau,ptop |
---|
219 | |
---|
220 | ! #################################################################################### |
---|
221 | ! Compute cloud optical depth for each column by summing up subcolumns |
---|
222 | tau(1:npoints,1:ncol) = 0._wp |
---|
223 | tau(1:npoints,1:ncol) = sum(dtau,dim=3) |
---|
224 | |
---|
225 | ! Set tropopause values |
---|
226 | if (isccp_top_height .eq. 1 .or. isccp_top_height .eq. 3) then |
---|
227 | ptrop(1:npoints) = 5000._wp |
---|
228 | attropmin(1:npoints) = 400._wp |
---|
229 | atmax(1:npoints) = 0._wp |
---|
230 | attrop(1:npoints) = 120._wp |
---|
231 | itrop(1:npoints) = 1 |
---|
232 | |
---|
233 | DO ilev=1,nlev |
---|
234 | where(pfull(1:npoints,ilev) .lt. 40000. .AND. & |
---|
235 | pfull(1:npoints,ilev) .gt. 5000. .AND. & |
---|
236 | at(1:npoints,ilev) .lt. attropmin(1:npoints)) |
---|
237 | ptrop(1:npoints) = pfull(1:npoints,ilev) |
---|
238 | attropmin(1:npoints) = at(1:npoints,ilev) |
---|
239 | attrop(1:npoints) = attropmin(1:npoints) |
---|
240 | itrop = ilev |
---|
241 | endwhere |
---|
242 | enddo |
---|
243 | |
---|
244 | DO ilev=1,nlev |
---|
245 | atmax(1:npoints) = merge(at(1:npoints,ilev),atmax(1:npoints),& |
---|
246 | at(1:npoints,ilev) .gt. atmax(1:npoints) .AND. ilev .ge. itrop(1:npoints)) |
---|
247 | enddo |
---|
248 | end if |
---|
249 | |
---|
250 | if (isccp_top_height .eq. 1 .or. isccp_top_height .eq. 3) then |
---|
251 | ! ############################################################################ |
---|
252 | ! Clear-sky radiance calculation |
---|
253 | |
---|
254 | ! Compute water vapor continuum emissivity this treatment follows Schwarkzopf |
---|
255 | ! and Ramasamy JGR 1999,vol 104, pages 9467-9499. The emissivity is calculated |
---|
256 | ! at a wavenumber of 955 cm-1, or 10.47 microns |
---|
257 | ! ############################################################################ |
---|
258 | DO ilev=1,nlev |
---|
259 | press(1:npoints) = pfull(1:npoints,ilev)*10._wp |
---|
260 | dpress(1:npoints) = (phalf(1:npoints,ilev+1)-phalf(1:npoints,ilev))*10 |
---|
261 | atmden(1:npoints) = dpress(1:npoints)/(grav*100._wp) |
---|
262 | rvh20(1:npoints) = qv(1:npoints,ilev)*amd/amw |
---|
263 | wk(1:npoints) = rvh20(1:npoints)*avo*atmden/amd |
---|
264 | rhoave(1:npoints) = (press(1:npoints)/pstd)*(isccp_t0/at(1:npoints,ilev)) |
---|
265 | rh20s(1:npoints) = rvh20(1:npoints)*rhoave(1:npoints) |
---|
266 | rfrgn(1:npoints) = rhoave(1:npoints)-rh20s(1:npoints) |
---|
267 | tmpexp(1:npoints) = exp(-0.02_wp*(at(1:npoints,ilev)-isccp_t0)) |
---|
268 | tauwv(1:npoints) = wk(1:npoints)*1.e-20*((0.0224697_wp*rh20s(1:npoints)* & |
---|
269 | tmpexp(1:npoints))+(3.41817e-7*rfrgn(1:npoints)))*0.98_wp |
---|
270 | dem_wv(1:npoints,ilev) = 1._wp - exp( -1._wp * tauwv(1:npoints)) |
---|
271 | enddo |
---|
272 | |
---|
273 | fluxtop_clrsky(1:npoints) = 0._wp |
---|
274 | trans_layers_above_clrsky(1:npoints) = 1._wp |
---|
275 | DO ilev=1,nlev |
---|
276 | ! Black body emission at temperature of the layer |
---|
277 | bb(1:npoints) = 1._wp / ( exp(1307.27_wp/at(1:npoints,ilev)) - 1._wp ) |
---|
278 | |
---|
279 | ! Increase TOA flux by flux emitted from layer times total transmittance in layers above |
---|
280 | fluxtop_clrsky(1:npoints) = fluxtop_clrsky(1:npoints) + & |
---|
281 | dem_wv(1:npoints,ilev)*bb(1:npoints)*trans_layers_above_clrsky(1:npoints) |
---|
282 | |
---|
283 | ! Update trans_layers_above with transmissivity from this layer for next time around loop |
---|
284 | trans_layers_above_clrsky(1:npoints) = trans_layers_above_clrsky(1:npoints)*& |
---|
285 | (1.-dem_wv(1:npoints,ilev)) |
---|
286 | enddo |
---|
287 | |
---|
288 | ! Add in surface emission |
---|
289 | bb(1:npoints) = 1._wp/( exp(1307.27_wp/skt(1:npoints)) - 1._wp ) |
---|
290 | fluxtop_clrsky(1:npoints) = fluxtop_clrsky(1:npoints) + & |
---|
291 | emsfc_lw * bb(1:npoints)*trans_layers_above_clrsky(1:npoints) |
---|
292 | |
---|
293 | ! Clear Sky brightness temperature |
---|
294 | meantbclr(1:npoints) = 1307.27_wp/(log(1._wp+(1._wp/fluxtop_clrsky(1:npoints)))) |
---|
295 | |
---|
296 | ! ################################################################################# |
---|
297 | ! All-sky radiance calculation |
---|
298 | ! ################################################################################# |
---|
299 | |
---|
300 | fluxtop(1:npoints,1:ncol) = 0._wp |
---|
301 | trans_layers_above(1:npoints,1:ncol) = 1._wp |
---|
302 | DO ilev=1,nlev |
---|
303 | ! Black body emission at temperature of the layer |
---|
304 | bb=1._wp/(exp(1307.27_wp/at(1:npoints,ilev)) - 1._wp) |
---|
305 | |
---|
306 | DO ibox=1,ncol |
---|
307 | ! Emissivity |
---|
308 | dem(1:npoints,ibox) = merge(dem_wv(1:npoints,ilev), & |
---|
309 | 1._wp-(1._wp-demIN(1:npoints,ibox,ilev))*(1._wp-dem_wv(1:npoints,ilev)), & |
---|
310 | demIN(1:npoints,ibox,ilev) .eq. 0) |
---|
311 | |
---|
312 | ! Increase TOA flux emitted from layer |
---|
313 | fluxtop(1:npoints,ibox) = fluxtop(1:npoints,ibox) + dem(1:npoints,ibox)*bb*trans_layers_above(1:npoints,ibox) |
---|
314 | |
---|
315 | ! Update trans_layer by emitted layer from above |
---|
316 | trans_layers_above(1:npoints,ibox) = trans_layers_above(1:npoints,ibox)*(1._wp-dem(1:npoints,ibox)) |
---|
317 | enddo |
---|
318 | enddo |
---|
319 | |
---|
320 | ! Add in surface emission |
---|
321 | bb(1:npoints)=1._wp/( exp(1307.27_wp/skt(1:npoints)) - 1._wp ) |
---|
322 | DO ibox=1,ncol |
---|
323 | fluxtop(1:npoints,ibox) = fluxtop(1:npoints,ibox) + emsfc_lw*bb(1:npoints)*trans_layers_above(1:npoints,ibox) |
---|
324 | end do |
---|
325 | |
---|
326 | ! All Sky brightness temperature |
---|
327 | boxttop(1:npoints,1:ncol) = 1307.27_wp/(log(1._wp+(1._wp/fluxtop(1:npoints,1:ncol)))) |
---|
328 | |
---|
329 | ! ################################################################################# |
---|
330 | ! Cloud-Top Temperature |
---|
331 | |
---|
332 | ! Now that you have the top of atmosphere radiance, account for ISCCP |
---|
333 | ! procedures to determine cloud top temperature account for partially |
---|
334 | ! transmitting cloud recompute flux ISCCP would see assuming a single layer |
---|
335 | ! cloud. *NOTE* choice here of 2.13, as it is primarily ice clouds which have |
---|
336 | ! partial emissivity and need the adjustment performed in this section. If it |
---|
337 | ! turns out that the cloud brightness temperature is greater than 260K, then |
---|
338 | ! the liquid cloud conversion factor of 2.56 is used. *NOTE* that this is |
---|
339 | ! discussed on pages 85-87 of the ISCCP D level documentation |
---|
340 | ! (Rossow et al. 1996) |
---|
341 | ! ################################################################################# |
---|
342 | |
---|
343 | ! Compute minimum brightness temperature and optical depth |
---|
344 | btcmin(1:npoints) = 1._wp / ( exp(1307.27_wp/(attrop(1:npoints)-5._wp)) - 1._wp ) |
---|
345 | |
---|
346 | DO ibox=1,ncol |
---|
347 | transmax(1:npoints) = (fluxtop(1:npoints,ibox)-btcmin) /(fluxtop_clrsky(1:npoints)-btcmin(1:npoints)) |
---|
348 | tauir(1:npoints) = tau(1:npoints,ibox)/2.13_wp |
---|
349 | taumin(1:npoints) = -log(max(min(transmax(1:npoints),0.9999999_wp),0.001_wp)) |
---|
350 | if (isccp_top_height .eq. 1) then |
---|
351 | DO j=1,npoints |
---|
352 | if (transmax(j) .gt. 0.001 .AND. transmax(j) .le. 0.9999999) then |
---|
353 | fluxtopinit(j) = fluxtop(j,ibox) |
---|
354 | tauir(j) = tau(j,ibox)/2.13_wp |
---|
355 | endif |
---|
356 | enddo |
---|
357 | DO icycle=1,2 |
---|
358 | DO j=1,npoints |
---|
359 | if (tau(j,ibox) .gt. (tauchk)) then |
---|
360 | if (transmax(j) .gt. 0.001 .AND. transmax(j) .le. 0.9999999) then |
---|
361 | emcld(j,ibox) = 1._wp - exp(-1._wp * tauir(j) ) |
---|
362 | fluxtop(j,ibox) = fluxtopinit(j) - ((1.-emcld(j,ibox))*fluxtop_clrsky(j)) |
---|
363 | fluxtop(j,ibox)=max(1.E-06_wp,(fluxtop(j,ibox)/emcld(j,ibox))) |
---|
364 | tb(j,ibox)= 1307.27_wp / (log(1._wp + (1._wp/fluxtop(j,ibox)))) |
---|
365 | if (tb(j,ibox) .gt. 260.) then |
---|
366 | tauir(j) = tau(j,ibox) / 2.56_wp |
---|
367 | end if |
---|
368 | end if |
---|
369 | end if |
---|
370 | enddo |
---|
371 | enddo |
---|
372 | endif |
---|
373 | |
---|
374 | ! Cloud-top temperature |
---|
375 | where(tau(1:npoints,ibox) .gt. tauchk) |
---|
376 | tb(1:npoints,ibox)= 1307.27_wp/ (log(1. + (1._wp/fluxtop(1:npoints,ibox)))) |
---|
377 | where (isccp_top_height .eq. 1 .AND. tauir(1:npoints) .lt. taumin(1:npoints)) |
---|
378 | tb(1:npoints,ibox) = attrop(1:npoints) - 5._wp |
---|
379 | tau(1:npoints,ibox) = 2.13_wp*taumin(1:npoints) |
---|
380 | endwhere |
---|
381 | endwhere |
---|
382 | |
---|
383 | ! Clear-sky brightness temperature |
---|
384 | where(tau(1:npoints,ibox) .le. tauchk) |
---|
385 | tb(1:npoints,ibox) = meantbclr(1:npoints) |
---|
386 | endwhere |
---|
387 | enddo |
---|
388 | else |
---|
389 | meantbclr(1:npoints) = output_missing_value |
---|
390 | end if |
---|
391 | |
---|
392 | ! #################################################################################### |
---|
393 | ! Cloud-Top Pressure |
---|
394 | |
---|
395 | ! The 2 methods differ according to whether or not you use the physical cloud |
---|
396 | ! top pressure (isccp_top_height = 2) or the radiatively determined cloud top |
---|
397 | ! pressure (isccp_top_height = 1 or 3) |
---|
398 | ! #################################################################################### |
---|
399 | DO ibox=1,ncol |
---|
400 | !segregate according to optical thickness |
---|
401 | if (isccp_top_height .eq. 1 .or. isccp_top_height .eq. 3) then |
---|
402 | |
---|
403 | ! Find level whose temperature most closely matches brightness temperature |
---|
404 | nmatch(1:npoints)=0 |
---|
405 | DO k1=1,nlev-1 |
---|
406 | ilev = merge(nlev-k1,k1,isccp_top_height_direction .eq. 2) |
---|
407 | DO j=1,npoints |
---|
408 | if (ilev .ge. itrop(j) .AND. & |
---|
409 | ((at(j,ilev) .ge. tb(j,ibox) .AND. & |
---|
410 | at(j,ilev+1) .le. tb(j,ibox)) .or. & |
---|
411 | (at(j,ilev) .le. tb(j,ibox) .AND. & |
---|
412 | at(j,ilev+1) .ge. tb(j,ibox)))) then |
---|
413 | nmatch(j)=nmatch(j)+1 |
---|
414 | match(j,nmatch(j))=ilev |
---|
415 | endif |
---|
416 | enddo |
---|
417 | enddo |
---|
418 | |
---|
419 | DO j=1,npoints |
---|
420 | if (nmatch(j) .ge. 1) then |
---|
421 | k1 = match(j,nmatch(j)) |
---|
422 | k2 = k1 + 1 |
---|
423 | logp1 = log(pfull(j,k1)) |
---|
424 | logp2 = log(pfull(j,k2)) |
---|
425 | atd = max(tauchk,abs(at(j,k2) - at(j,k1))) |
---|
426 | logp=logp1+(logp2-logp1)*abs(tb(j,ibox)-at(j,k1))/atd |
---|
427 | ptop(j,ibox) = exp(logp) |
---|
428 | levmatch(j,ibox) = merge(k1,k2,abs(pfull(j,k1)-ptop(j,ibox)) .lt. abs(pfull(j,k2)-ptop(j,ibox))) |
---|
429 | else |
---|
430 | if (tb(j,ibox) .le. attrop(j)) then |
---|
431 | ptop(j,ibox)=ptrop(j) |
---|
432 | levmatch(j,ibox)=itrop(j) |
---|
433 | end if |
---|
434 | if (tb(j,ibox) .ge. atmax(j)) then |
---|
435 | ptop(j,ibox)=pfull(j,nlev) |
---|
436 | levmatch(j,ibox)=nlev |
---|
437 | end if |
---|
438 | end if |
---|
439 | enddo |
---|
440 | else |
---|
441 | ptop(1:npoints,ibox)=0. |
---|
442 | DO ilev=1,nlev |
---|
443 | where((ptop(1:npoints,ibox) .eq. 0. ) .AND.(frac_out(1:npoints,ibox,ilev) .ne. 0)) |
---|
444 | ptop(1:npoints,ibox)=phalf(1:npoints,ilev) |
---|
445 | levmatch(1:npoints,ibox)=ilev |
---|
446 | endwhere |
---|
447 | end do |
---|
448 | end if |
---|
449 | where(tau(1:npoints,ibox) .le. tauchk) |
---|
450 | ptop(1:npoints,ibox)=0._wp |
---|
451 | levmatch(1:npoints,ibox)=0._wp |
---|
452 | endwhere |
---|
453 | enddo |
---|
454 | |
---|
455 | ! #################################################################################### |
---|
456 | ! Compute subcolumn pressure and optical depth |
---|
457 | ! #################################################################################### |
---|
458 | boxtau(1:npoints,1:ncol) = output_missing_value |
---|
459 | boxptop(1:npoints,1:ncol) = output_missing_value |
---|
460 | DO ibox=1,ncol |
---|
461 | DO j=1,npoints |
---|
462 | if (tau(j,ibox) .gt. (tauchk) .AND. ptop(j,ibox) .gt. 0.) then |
---|
463 | if (sunlit(j).eq.1 .or. isccp_top_height .eq. 3) then |
---|
464 | boxtau(j,ibox) = tau(j,ibox) |
---|
465 | boxptop(j,ibox) = ptop(j,ibox)!/100._wp |
---|
466 | endif |
---|
467 | endif |
---|
468 | enddo |
---|
469 | enddo |
---|
470 | |
---|
471 | END SUBROUTINE ICARUS_SUBCOLUMN |
---|
472 | |
---|
473 | ! ###################################################################################### |
---|
474 | ! SUBROUTINE icarus_column |
---|
475 | ! ###################################################################################### |
---|
476 | SUBROUTINE ICARUS_column(npoints,ncol,boxtau,boxptop,sunlit,boxttop,fq_isccp, & |
---|
477 | meanalbedocld,meanptop,meantaucld,totalcldarea,meantb) |
---|
478 | ! Inputs |
---|
479 | INTEGER, intent(in) :: & |
---|
480 | ncol, & ! Number of subcolumns |
---|
481 | npoints ! Number of horizontal gridpoints |
---|
482 | INTEGER, intent(in),dimension(npoints) :: & |
---|
483 | sunlit ! day=1 night=0 |
---|
484 | REAL(WP),intent(in),dimension(npoints,ncol) :: & |
---|
485 | boxttop, & ! Subcolumn top temperature |
---|
486 | boxptop, & ! Subcolumn cloud top pressure |
---|
487 | boxtau ! Subcolumn optical depth |
---|
488 | |
---|
489 | ! Outputs |
---|
490 | REAL(WP),intent(inout),dimension(npoints) :: & |
---|
491 | meanalbedocld, & ! Gridmean cloud albedo |
---|
492 | meanptop, & ! Gridmean cloud top pressure (mb) - linear averaging |
---|
493 | meantaucld, & ! Gridmean optical thickness |
---|
494 | totalcldarea, & ! The fraction of model grid box columns with cloud present |
---|
495 | meantb ! Gridmean all-sky 10.5 micron brightness temperature |
---|
496 | REAL(WP),intent(inout),dimension(npoints,7,7) :: & |
---|
497 | fq_isccp ! The fraction of the model grid box covered by clouds |
---|
498 | |
---|
499 | ! Local Variables |
---|
500 | INTEGER :: j,ilev,ilev2 |
---|
501 | REAL(WP),dimension(npoints,ncol) :: albedocld |
---|
502 | LOGICAL, dimension(npoints,ncol) :: box_cloudy |
---|
503 | |
---|
504 | ! Variables for new joint-histogram implementation |
---|
505 | logical,dimension(ncol) :: box_cloudy2 |
---|
506 | |
---|
507 | ! #################################################################################### |
---|
508 | ! Brightness Temperature |
---|
509 | ! #################################################################################### |
---|
510 | if (isccp_top_height .eq. 1 .or. isccp_top_height .eq. 3) then |
---|
511 | meantb(1:npoints)=sum(boxttop,2)/ncol |
---|
512 | else |
---|
513 | meantb(1:npoints) = output_missing_value |
---|
514 | endif |
---|
515 | |
---|
516 | ! #################################################################################### |
---|
517 | ! Determines ISCCP cloud type frequencies |
---|
518 | |
---|
519 | ! Now that boxptop and boxtau have been determined, determine amount of each of the |
---|
520 | ! 49 ISCCP cloud types. Also compute grid box mean cloud top pressure and |
---|
521 | ! optical thickness. The mean cloud top pressure and optical thickness are |
---|
522 | ! averages over the cloudy area only. The mean cloud top pressure is a linear |
---|
523 | ! average of the cloud top pressures. The mean cloud optical thickness is |
---|
524 | ! computed by converting optical thickness to an albedo, averaging in albedo |
---|
525 | ! units, then converting the average albedo back to a mean optical thickness. |
---|
526 | ! #################################################################################### |
---|
527 | |
---|
528 | ! Initialize |
---|
529 | albedocld(1:npoints,1:ncol) = 0._wp |
---|
530 | box_cloudy(1:npoints,1:ncol) = .false. |
---|
531 | |
---|
532 | ! Reset frequencies |
---|
533 | !fq_isccp = spread(spread(merge(0._wp,output_missing_value,sunlit .eq. 1 .or. isccp_top_height .eq. 3),2,7),2,7) |
---|
534 | DO ilev=1,7 |
---|
535 | DO ilev2=1,7 |
---|
536 | DO j=1,npoints ! |
---|
537 | if (sunlit(j).eq.1 .or. isccp_top_height .eq. 3) then |
---|
538 | fq_isccp(j,ilev,ilev2)= 0. |
---|
539 | else |
---|
540 | fq_isccp(j,ilev,ilev2)= output_missing_value |
---|
541 | end if |
---|
542 | enddo |
---|
543 | enddo |
---|
544 | enddo |
---|
545 | |
---|
546 | |
---|
547 | ! Reset variables need for averaging cloud properties |
---|
548 | where(sunlit .eq. 1 .or. isccp_top_height .eq. 3) |
---|
549 | totalcldarea(1:npoints) = 0._wp |
---|
550 | meanalbedocld(1:npoints) = 0._wp |
---|
551 | meanptop(1:npoints) = 0._wp |
---|
552 | meantaucld(1:npoints) = 0._wp |
---|
553 | elsewhere |
---|
554 | totalcldarea(1:npoints) = output_missing_value |
---|
555 | meanalbedocld(1:npoints) = output_missing_value |
---|
556 | meanptop(1:npoints) = output_missing_value |
---|
557 | meantaucld(1:npoints) = output_missing_value |
---|
558 | endwhere |
---|
559 | |
---|
560 | ! Compute column quantities and joint-histogram |
---|
561 | DO j=1,npoints |
---|
562 | ! Subcolumns that are cloudy(true) and not(false) |
---|
563 | box_cloudy2(1:ncol) = merge(.true.,.false.,boxtau(j,1:ncol) .gt. tauchk .AND. boxptop(j,1:ncol) .gt. 0.) |
---|
564 | |
---|
565 | ! Compute joint histogram and column quantities for points that are sunlit and cloudy |
---|
566 | if (sunlit(j) .eq.1 .or. isccp_top_height .eq. 3) then |
---|
567 | ! Joint-histogram |
---|
568 | call hist2D(boxtau(j,1:ncol),boxptop(j,1:ncol),ncol,isccp_histTau,numISCCPTauBins, & |
---|
569 | isccp_histPres,numISCCPPresBins,fq_isccp(j,1:numISCCPTauBins,1:numISCCPPresBins)) |
---|
570 | fq_isccp(j,1:numISCCPTauBins,1:numISCCPPresBins) = & |
---|
571 | fq_isccp(j,1:numISCCPTauBins,1:numISCCPPresBins)/ncol |
---|
572 | |
---|
573 | ! Column cloud area |
---|
574 | totalcldarea(j) = real(count(box_cloudy2(1:ncol) .AND. boxtau(j,1:ncol) .gt. isccp_taumin))/ncol |
---|
575 | |
---|
576 | ! Subcolumn cloud albedo |
---|
577 | !albedocld(j,1:ncol) = merge((boxtau(j,1:ncol)**0.895_wp)/((boxtau(j,1:ncol)**0.895_wp)+6.82_wp),& |
---|
578 | ! 0._wp,box_cloudy2(1:ncol) .AND. boxtau(j,1:ncol) .gt. isccp_taumin) |
---|
579 | where(box_cloudy2(1:ncol) .AND. boxtau(j,1:ncol) .gt. isccp_taumin) |
---|
580 | albedocld(j,1:ncol) = (boxtau(j,1:ncol)**0.895_wp)/((boxtau(j,1:ncol)**0.895_wp)+6.82_wp) |
---|
581 | elsewhere |
---|
582 | albedocld(j,1:ncol) = 0._wp |
---|
583 | endwhere |
---|
584 | |
---|
585 | ! Column cloud albedo |
---|
586 | meanalbedocld(j) = sum(albedocld(j,1:ncol))/ncol |
---|
587 | |
---|
588 | ! Column cloud top pressure |
---|
589 | meanptop(j) = sum(boxptop(j,1:ncol),box_cloudy2(1:ncol) .AND. boxtau(j,1:ncol) .gt. isccp_taumin)/ncol |
---|
590 | endif |
---|
591 | enddo |
---|
592 | |
---|
593 | ! Compute mean cloud properties. Set to mssing value in the event that totalcldarea=0 |
---|
594 | where(totalcldarea(1:npoints) .gt. 0) |
---|
595 | meanptop(1:npoints) = 100._wp*meanptop(1:npoints)/totalcldarea(1:npoints) |
---|
596 | meanalbedocld(1:npoints) = meanalbedocld(1:npoints)/totalcldarea(1:npoints) |
---|
597 | meantaucld(1:npoints) = (6.82_wp/((1._wp/meanalbedocld(1:npoints))-1.))**(1._wp/0.895_wp) |
---|
598 | elsewhere |
---|
599 | meanptop(1:nPoints) = output_missing_value |
---|
600 | meanalbedocld(1:nPoints) = output_missing_value |
---|
601 | meantaucld(1:nPoints) = output_missing_value |
---|
602 | endwhere |
---|
603 | !meanptop(1:npoints) = merge(100._wp*meanptop(1:npoints)/totalcldarea(1:npoints),& |
---|
604 | ! output_missing_value,totalcldarea(1:npoints) .gt. 0) |
---|
605 | !meanalbedocld(1:npoints) = merge(meanalbedocld(1:npoints)/totalcldarea(1:npoints), & |
---|
606 | ! output_missing_value,totalcldarea(1:npoints) .gt. 0) |
---|
607 | !meantaucld(1:npoints) = merge((6.82_wp/((1._wp/meanalbedocld(1:npoints))-1.))**(1._wp/0.895_wp), & |
---|
608 | ! output_missing_value,totalcldarea(1:npoints) .gt. 0) |
---|
609 | |
---|
610 | ! Represent in percent |
---|
611 | where(totalcldarea .ne. output_missing_value) totalcldarea = totalcldarea*100._wp |
---|
612 | where(fq_isccp .ne. output_missing_value) fq_isccp = fq_isccp*100._wp |
---|
613 | |
---|
614 | |
---|
615 | END SUBROUTINE ICARUS_column |
---|
616 | |
---|
617 | subroutine cosp_simulator_optics(dim1,dim2,dim3,flag,varIN1,varIN2,varOUT) |
---|
618 | ! INPUTS |
---|
619 | integer,intent(in) :: & |
---|
620 | dim1, & ! Dimension 1 extent (Horizontal) |
---|
621 | dim2, & ! Dimension 2 extent (Subcolumn) |
---|
622 | dim3 ! Dimension 3 extent (Vertical) |
---|
623 | real(wp),intent(in),dimension(dim1,dim2,dim3) :: & |
---|
624 | flag ! Logical to determine the of merge var1IN and var2IN |
---|
625 | real(wp),intent(in),dimension(dim1, dim3) :: & |
---|
626 | varIN1, & ! Input field 1 |
---|
627 | varIN2 ! Input field 2 |
---|
628 | ! OUTPUTS |
---|
629 | real(wp),intent(out),dimension(dim1,dim2,dim3) :: & |
---|
630 | varOUT ! Merged output field |
---|
631 | ! LOCAL VARIABLES |
---|
632 | integer :: j |
---|
633 | |
---|
634 | varOUT(1:dim1,1:dim2,1:dim3) = 0._wp |
---|
635 | DO j=1,dim2 |
---|
636 | where(flag(:,j,:) .eq. 1) |
---|
637 | varOUT(:,j,:) = varIN2 |
---|
638 | endwhere |
---|
639 | where(flag(:,j,:) .eq. 2) |
---|
640 | varOUT(:,j,:) = varIN1 |
---|
641 | endwhere |
---|
642 | enddo |
---|
643 | end subroutine cosp_simulator_optics |
---|
644 | end module MOD_ICARUS |
---|
645 | |
---|