[3358] | 1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 2 | ! Copyright (c) 2009, Centre National de la Recherche Scientifique |
---|
| 3 | ! All rights reserved. |
---|
| 4 | ! |
---|
| 5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
| 6 | ! permitted provided that the following conditions are met: |
---|
| 7 | ! |
---|
| 8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
| 9 | ! conditions and the following disclaimer. |
---|
| 10 | ! |
---|
| 11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
| 12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
| 13 | ! materials provided with the distribution. |
---|
| 14 | ! |
---|
| 15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
| 16 | ! used to endorse or promote products derived from this software without specific prior |
---|
| 17 | ! written permission. |
---|
| 18 | ! |
---|
| 19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
| 20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
| 21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
| 22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
| 24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
| 25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 28 | ! |
---|
| 29 | ! History |
---|
| 30 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
| 31 | ! - optimization for vectorization |
---|
| 32 | ! Version 2.0 (October 2008) |
---|
| 33 | ! Version 2.1 (December 2008) |
---|
| 34 | ! May 2015 - D. Swales - Modified for COSPv2.0 |
---|
| 35 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 36 | module mod_parasol |
---|
| 37 | USE COSP_KINDS, ONLY: wp |
---|
| 38 | USE COSP_MATH_CONSTANTS, ONLY: pi |
---|
| 39 | use mod_cosp_config, ONLY: R_UNDEF,PARASOL_NREFL,PARASOL_NTAU,PARASOL_TAU,PARASOL_SZA,rlumA,rlumB |
---|
| 40 | implicit none |
---|
| 41 | |
---|
| 42 | contains |
---|
| 43 | SUBROUTINE parasol_subcolumn(npoints,nrefl,tautot_S_liq,tautot_S_ice,refl) |
---|
| 44 | ! ########################################################################## |
---|
| 45 | ! Purpose: To compute Parasol reflectance signal from model-simulated profiles |
---|
| 46 | ! of cloud water and cloud fraction in each sub-column of each model |
---|
| 47 | ! gridbox. |
---|
| 48 | ! |
---|
| 49 | ! |
---|
| 50 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
| 51 | ! - optimization for vectorization |
---|
| 52 | ! |
---|
| 53 | ! Version 2.0 (October 2008) |
---|
| 54 | ! Version 2.1 (December 2008) |
---|
| 55 | ! ########################################################################## |
---|
| 56 | |
---|
| 57 | ! INPUTS |
---|
| 58 | INTEGER,intent(in) :: & |
---|
| 59 | npoints, & ! Number of horizontal gridpoints |
---|
| 60 | nrefl ! Number of angles for which the reflectance is computed |
---|
| 61 | REAL(WP),intent(inout),dimension(npoints) :: & |
---|
| 62 | tautot_S_liq, & ! Liquid water optical thickness, from TOA to SFC |
---|
| 63 | tautot_S_ice ! Ice water optical thickness, from TOA to SFC |
---|
| 64 | ! OUTPUTS |
---|
| 65 | REAL(WP),intent(inout),dimension(npoints,nrefl) :: & |
---|
| 66 | refl ! Parasol reflectances |
---|
| 67 | |
---|
| 68 | ! LOCAL VARIABLES |
---|
| 69 | REAL(WP),dimension(npoints) :: & |
---|
| 70 | tautot_S, & ! Cloud optical thickness, from TOA to surface |
---|
| 71 | frac_taucol_liq, & ! |
---|
| 72 | frac_taucol_ice ! |
---|
| 73 | |
---|
| 74 | ! Look up table variables: |
---|
| 75 | INTEGER :: ny,it |
---|
| 76 | REAL(WP),dimension(PARASOL_NREFL) :: r_norm |
---|
| 77 | REAL(WP),dimension(PARASOL_NREFL,PARASOL_NTAU-1) :: aa,ab,ba,bb |
---|
| 78 | REAL(WP),dimension(npoints,5) :: rlumA_mod,rlumB_mod |
---|
| 79 | |
---|
| 80 | !-------------------------------------------------------------------------------- |
---|
| 81 | ! Lum_norm=f(PARASOL_SZA,tau_cloud) derived from adding-doubling calculations |
---|
| 82 | ! valid ONLY ABOVE OCEAN (albedo_sfce=5%) |
---|
[5095] | 83 | ! valid only in one viewing direction (theta_v=30�, phi_s-phi_v=320�) |
---|
[3358] | 84 | ! based on adding-doubling radiative transfer computation |
---|
| 85 | ! for PARASOL_TAU values (0 to 100) and for PARASOL_SZA values (0 to 80) |
---|
| 86 | ! for 2 scattering phase functions: liquid spherical, ice non spherical |
---|
| 87 | |
---|
| 88 | ! Initialize |
---|
| 89 | rlumA_mod(1:npoints,1:5) = 0._wp |
---|
| 90 | rlumB_mod(1:npoints,1:5) = 0._wp |
---|
| 91 | |
---|
| 92 | r_norm(1:PARASOL_NREFL)=1._wp/ cos(pi/180._wp*PARASOL_SZA(1:PARASOL_NREFL)) |
---|
| 93 | |
---|
| 94 | tautot_S_liq(1:npoints) = max(tautot_S_liq(1:npoints),PARASOL_TAU(1)) |
---|
| 95 | tautot_S_ice(1:npoints) = max(tautot_S_ice(1:npoints),PARASOL_TAU(1)) |
---|
| 96 | tautot_S(1:npoints) = tautot_S_ice(1:npoints) + tautot_S_liq(1:npoints) |
---|
| 97 | |
---|
| 98 | ! Relative fraction of the opt. thick due to liquid or ice clouds |
---|
[5095] | 99 | WHERE (tautot_S(1:npoints) .gt. 0.) |
---|
[3358] | 100 | frac_taucol_liq(1:npoints) = tautot_S_liq(1:npoints) / tautot_S(1:npoints) |
---|
| 101 | frac_taucol_ice(1:npoints) = tautot_S_ice(1:npoints) / tautot_S(1:npoints) |
---|
| 102 | ELSEWHERE |
---|
| 103 | frac_taucol_liq(1:npoints) = 1._wp |
---|
| 104 | frac_taucol_ice(1:npoints) = 0._wp |
---|
| 105 | END WHERE |
---|
| 106 | tautot_S(1:npoints)=MIN(tautot_S(1:npoints),PARASOL_TAU(PARASOL_NTAU)) |
---|
| 107 | |
---|
| 108 | ! Linear interpolation |
---|
| 109 | DO ny=1,PARASOL_NTAU-1 |
---|
| 110 | ! Microphysics A (liquid clouds) |
---|
| 111 | aA(1:PARASOL_NREFL,ny) = (rlumA(1:PARASOL_NREFL,ny+1)-rlumA(1:PARASOL_NREFL,ny))/(PARASOL_TAU(ny+1)-PARASOL_TAU(ny)) |
---|
| 112 | bA(1:PARASOL_NREFL,ny) = rlumA(1:PARASOL_NREFL,ny) - aA(1:PARASOL_NREFL,ny)*PARASOL_TAU(ny) |
---|
| 113 | ! Microphysics B (ice clouds) |
---|
| 114 | aB(1:PARASOL_NREFL,ny) = (rlumB(1:PARASOL_NREFL,ny+1)-rlumB(1:PARASOL_NREFL,ny))/(PARASOL_TAU(ny+1)-PARASOL_TAU(ny)) |
---|
| 115 | bB(1:PARASOL_NREFL,ny) = rlumB(1:PARASOL_NREFL,ny) - aB(1:PARASOL_NREFL,ny)*PARASOL_TAU(ny) |
---|
| 116 | ENDDO |
---|
| 117 | |
---|
| 118 | DO it=1,PARASOL_NREFL |
---|
| 119 | DO ny=1,PARASOL_NTAU-1 |
---|
[5095] | 120 | WHERE (tautot_S(1:npoints) .ge. PARASOL_TAU(ny).and. & |
---|
| 121 | tautot_S(1:npoints) .le. PARASOL_TAU(ny+1)) |
---|
[3358] | 122 | rlumA_mod(1:npoints,it) = aA(it,ny)*tautot_S(1:npoints) + bA(it,ny) |
---|
| 123 | rlumB_mod(1:npoints,it) = aB(it,ny)*tautot_S(1:npoints) + bB(it,ny) |
---|
| 124 | END WHERE |
---|
| 125 | END DO |
---|
| 126 | END DO |
---|
| 127 | |
---|
| 128 | DO it=1,PARASOL_NREFL |
---|
| 129 | refl(1:npoints,it) = frac_taucol_liq(1:npoints) * rlumA_mod(1:npoints,it) & |
---|
| 130 | + frac_taucol_ice(1:npoints) * rlumB_mod(1:npoints,it) |
---|
| 131 | ! Normalized radiance -> reflectance: |
---|
| 132 | refl(1:npoints,it) = refl(1:npoints,it) * r_norm(it) |
---|
| 133 | ENDDO |
---|
| 134 | |
---|
| 135 | RETURN |
---|
| 136 | END SUBROUTINE parasol_subcolumn |
---|
| 137 | ! ###################################################################################### |
---|
| 138 | ! SUBROUTINE parasol_gridbox |
---|
| 139 | ! ###################################################################################### |
---|
| 140 | subroutine parasol_column(npoints,nrefl,ncol,land,refl,parasolrefl) |
---|
| 141 | |
---|
| 142 | ! Inputs |
---|
| 143 | integer,intent(in) :: & |
---|
| 144 | npoints, & ! Number of horizontal grid points |
---|
| 145 | ncol, & ! Number of subcolumns |
---|
| 146 | nrefl ! Number of solar zenith angles for parasol reflectances |
---|
| 147 | real(wp),intent(in),dimension(npoints) :: & |
---|
| 148 | land ! Landmask [0 - Ocean, 1 - Land] |
---|
| 149 | real(wp),intent(in),dimension(npoints,ncol,nrefl) :: & |
---|
| 150 | refl ! Subgrid parasol reflectance ! parasol |
---|
| 151 | |
---|
| 152 | ! Outputs |
---|
| 153 | real(wp),intent(out),dimension(npoints,nrefl) :: & |
---|
| 154 | parasolrefl ! Grid-averaged parasol reflectance |
---|
| 155 | |
---|
| 156 | ! Local variables |
---|
| 157 | integer :: k,ic |
---|
| 158 | |
---|
| 159 | ! Compute grid-box averaged Parasol reflectances |
---|
| 160 | parasolrefl(:,:) = 0._wp |
---|
| 161 | do k = 1, nrefl |
---|
| 162 | do ic = 1, ncol |
---|
| 163 | parasolrefl(:,k) = parasolrefl(:,k) + refl(:,ic,k) |
---|
| 164 | enddo |
---|
| 165 | enddo |
---|
| 166 | |
---|
| 167 | do k = 1, nrefl |
---|
| 168 | parasolrefl(:,k) = parasolrefl(:,k) / float(ncol) |
---|
| 169 | ! if land=1 -> parasolrefl=R_UNDEF |
---|
| 170 | ! if land=0 -> parasolrefl=parasolrefl |
---|
| 171 | parasolrefl(:,k) = parasolrefl(:,k) * MAX(1._wp-land(:),0.0) & |
---|
| 172 | + (1._wp - MAX(1._wp-land(:),0.0))*R_UNDEF |
---|
| 173 | enddo |
---|
| 174 | end subroutine parasol_column |
---|
| 175 | |
---|
| 176 | end module mod_parasol |
---|