1 | ! $Revision: 88 $, $Date: 2013-11-13 15:08:38 +0100 (mer. 13 nov. 2013) $ |
---|
2 | ! $URL: http://cfmip-obs-sim.googlecode.com/svn/stable/v1.4.0/quickbeam/optics_lib.f90 $ |
---|
3 | ! OPTICS_LIB: Optical proecures for for F90 |
---|
4 | ! Compiled/Modified: |
---|
5 | ! 07/01/06 John Haynes (haynes@atmos.colostate.edu) |
---|
6 | |
---|
7 | ! m_wat (subroutine) |
---|
8 | ! m_ice (subroutine) |
---|
9 | ! mie_int (subroutine) |
---|
10 | |
---|
11 | module optics_lib |
---|
12 | implicit none |
---|
13 | |
---|
14 | contains |
---|
15 | |
---|
16 | ! ---------------------------------------------------------------------------- |
---|
17 | ! subroutine M_WAT |
---|
18 | ! ---------------------------------------------------------------------------- |
---|
19 | subroutine m_wat(freq, tk, n_r, n_i) |
---|
20 | implicit none |
---|
21 | |
---|
22 | ! Purpose: |
---|
23 | ! compute complex index of refraction of liquid water |
---|
24 | |
---|
25 | ! Inputs: |
---|
26 | ! [freq] frequency (GHz) |
---|
27 | ! [tk] temperature (K) |
---|
28 | |
---|
29 | ! Outputs: |
---|
30 | ! [n_r] real part index of refraction |
---|
31 | ! [n_i] imaginary part index of refraction |
---|
32 | |
---|
33 | ! Reference: |
---|
34 | ! Based on the work of Ray (1972) |
---|
35 | |
---|
36 | ! Coded: |
---|
37 | ! 03/22/05 John Haynes (haynes@atmos.colostate.edu) |
---|
38 | |
---|
39 | ! ----- INPUTS ----- |
---|
40 | real*8, intent(in) :: freq,tk |
---|
41 | |
---|
42 | ! ----- OUTPUTS ----- |
---|
43 | real*8, intent(out) :: n_r, n_i |
---|
44 | |
---|
45 | ! ----- INTERNAL ----- |
---|
46 | real*8 ld,es,ei,a,ls,sg,tm1,cos1,sin1 |
---|
47 | real*8 e_r,e_i |
---|
48 | real*8 pi |
---|
49 | real*8 tc |
---|
50 | complex*16 e_comp, sq |
---|
51 | |
---|
52 | tc = tk - 273.15 |
---|
53 | |
---|
54 | ld = 100.*2.99792458E8/(freq*1E9) |
---|
55 | es = 78.54*(1-(4.579E-3*(tc-25.)+1.19E-5*(tc-25.)**2 & |
---|
56 | -2.8E-8*(tc-25.)**3)) |
---|
57 | ei = 5.27137+0.021647*tc-0.00131198*tc**2 |
---|
58 | a = -(16.8129/(tc+273.))+0.0609265 |
---|
59 | ls = 0.00033836*exp(2513.98/(tc+273.)) |
---|
60 | sg = 12.5664E8 |
---|
61 | |
---|
62 | tm1 = (ls/ld)**(1-a) |
---|
63 | pi = acos(-1.D0) |
---|
64 | cos1 = cos(0.5*a*pi) |
---|
65 | sin1 = sin(0.5*a*pi) |
---|
66 | |
---|
67 | e_r = ei + (((es-ei)*(1.+tm1*sin1))/(1.+2*tm1*sin1+tm1**2)) |
---|
68 | e_i = (((es-ei)*tm1*cos1)/(1.+2*tm1*sin1+tm1**2)) & |
---|
69 | +((sg*ld)/1.885E11) |
---|
70 | |
---|
71 | e_comp = dcmplx(e_r,e_i) |
---|
72 | sq = sqrt(e_comp) |
---|
73 | |
---|
74 | n_r = real(sq) |
---|
75 | n_i = aimag(sq) |
---|
76 | |
---|
77 | return |
---|
78 | end subroutine m_wat |
---|
79 | |
---|
80 | ! ---------------------------------------------------------------------------- |
---|
81 | ! subroutine M_ICE |
---|
82 | ! ---------------------------------------------------------------------------- |
---|
83 | subroutine m_ice(freq,t,n_r,n_i) |
---|
84 | implicit none |
---|
85 | |
---|
86 | ! Purpose: |
---|
87 | ! compute complex index of refraction of ice |
---|
88 | |
---|
89 | ! Inputs: |
---|
90 | ! [freq] frequency (GHz) |
---|
91 | ! [t] temperature (K) |
---|
92 | |
---|
93 | ! Outputs: |
---|
94 | ! [n_r] real part index of refraction |
---|
95 | ! [n_i] imaginary part index of refraction |
---|
96 | |
---|
97 | ! Reference: |
---|
98 | ! Fortran 90 port from IDL of REFICE by Stephen G. Warren |
---|
99 | |
---|
100 | ! Modified: |
---|
101 | ! 05/31/05 John Haynes (haynes@atmos.colostate.edu) |
---|
102 | |
---|
103 | ! ----- INPUTS ----- |
---|
104 | real*8, intent(in) :: freq, t |
---|
105 | |
---|
106 | ! ----- OUTPUTS ----- |
---|
107 | real*8, intent(out) :: n_r,n_i |
---|
108 | |
---|
109 | ! Parameters: |
---|
110 | integer*2 :: i,lt1,lt2,nwl,nwlt |
---|
111 | parameter(nwl=468,nwlt=62) |
---|
112 | |
---|
113 | real*8 :: alam,cutice,pi,t1,t2,wlmax,wlmin, & |
---|
114 | x,x1,x2,y,y1,y2,ylo,yhi,tk |
---|
115 | |
---|
116 | real*8 :: & |
---|
117 | tabim(nwl),tabimt(nwlt,4),tabre(nwl),tabret(nwlt,4),temref(4), & |
---|
118 | wl(nwl),wlt(nwlt) |
---|
119 | |
---|
120 | ! Defines wavelength dependent complex index of refraction for ice. |
---|
121 | ! Allowable wavelength range extends from 0.045 microns to 8.6 meter |
---|
122 | ! temperature dependence only considered beyond 167 microns. |
---|
123 | |
---|
124 | ! interpolation is done n_r vs. log(xlam) |
---|
125 | ! n_r vs. t |
---|
126 | ! log(n_i) vs. log(xlam) |
---|
127 | ! log(n_i) vs. t |
---|
128 | |
---|
129 | ! Stephen G. Warren - 1983 |
---|
130 | ! Dept. of Atmospheric Sciences |
---|
131 | ! University of Washington |
---|
132 | ! Seattle, Wa 98195 |
---|
133 | |
---|
134 | ! Based on |
---|
135 | |
---|
136 | ! Warren,S.G.,1984. |
---|
137 | ! Optical constants of ice from the ultraviolet to the microwave. |
---|
138 | ! Applied Optics,23,1206-1225 |
---|
139 | |
---|
140 | ! Reference temperatures are -1.0,-5.0,-20.0, and -60.0 deg C |
---|
141 | |
---|
142 | data temref/272.16,268.16,253.16,213.16/ |
---|
143 | |
---|
144 | data wlmin,wlmax/0.045,8.6e6/ |
---|
145 | data cutice/167.0/ |
---|
146 | |
---|
147 | data (wl(i),i=1,114)/ & |
---|
148 | 0.4430e-01,0.4510e-01,0.4590e-01,0.4680e-01,0.4770e-01,0.4860e-01, & |
---|
149 | 0.4960e-01,0.5060e-01,0.5170e-01,0.5280e-01,0.5390e-01,0.5510e-01, & |
---|
150 | 0.5640e-01,0.5770e-01,0.5900e-01,0.6050e-01,0.6200e-01,0.6360e-01, & |
---|
151 | 0.6530e-01,0.6700e-01,0.6890e-01,0.7080e-01,0.7290e-01,0.7380e-01, & |
---|
152 | 0.7510e-01,0.7750e-01,0.8000e-01,0.8270e-01,0.8550e-01,0.8860e-01, & |
---|
153 | 0.9180e-01,0.9300e-01,0.9540e-01,0.9920e-01,0.1033e+00,0.1078e+00, & |
---|
154 | 0.1100e+00,0.1127e+00,0.1140e+00,0.1181e+00,0.1210e+00,0.1240e+00, & |
---|
155 | 0.1272e+00,0.1295e+00,0.1305e+00,0.1319e+00,0.1333e+00,0.1348e+00, & |
---|
156 | 0.1362e+00,0.1370e+00,0.1378e+00,0.1387e+00,0.1393e+00,0.1409e+00, & |
---|
157 | 0.1425e+00,0.1435e+00,0.1442e+00,0.1450e+00,0.1459e+00,0.1468e+00, & |
---|
158 | 0.1476e+00,0.1480e+00,0.1485e+00,0.1494e+00,0.1512e+00,0.1531e+00, & |
---|
159 | 0.1540e+00,0.1550e+00,0.1569e+00,0.1580e+00,0.1589e+00,0.1610e+00, & |
---|
160 | 0.1625e+00,0.1648e+00,0.1669e+00,0.1692e+00,0.1713e+00,0.1737e+00, & |
---|
161 | 0.1757e+00,0.1779e+00,0.1802e+00,0.1809e+00,0.1821e+00,0.1833e+00, & |
---|
162 | 0.1843e+00,0.1850e+00,0.1860e+00,0.1870e+00,0.1880e+00,0.1890e+00, & |
---|
163 | 0.1900e+00,0.1910e+00,0.1930e+00,0.1950e+00,0.2100e+00,0.2500e+00, & |
---|
164 | 0.3000e+00,0.3500e+00,0.4000e+00,0.4100e+00,0.4200e+00,0.4300e+00, & |
---|
165 | 0.4400e+00,0.4500e+00,0.4600e+00,0.4700e+00,0.4800e+00,0.4900e+00, & |
---|
166 | 0.5000e+00,0.5100e+00,0.5200e+00,0.5300e+00,0.5400e+00,0.5500e+00/ |
---|
167 | data (wl(i),i=115,228)/ & |
---|
168 | 0.5600e+00,0.5700e+00,0.5800e+00,0.5900e+00,0.6000e+00,0.6100e+00, & |
---|
169 | 0.6200e+00,0.6300e+00,0.6400e+00,0.6500e+00,0.6600e+00,0.6700e+00, & |
---|
170 | 0.6800e+00,0.6900e+00,0.7000e+00,0.7100e+00,0.7200e+00,0.7300e+00, & |
---|
171 | 0.7400e+00,0.7500e+00,0.7600e+00,0.7700e+00,0.7800e+00,0.7900e+00, & |
---|
172 | 0.8000e+00,0.8100e+00,0.8200e+00,0.8300e+00,0.8400e+00,0.8500e+00, & |
---|
173 | 0.8600e+00,0.8700e+00,0.8800e+00,0.8900e+00,0.9000e+00,0.9100e+00, & |
---|
174 | 0.9200e+00,0.9300e+00,0.9400e+00,0.9500e+00,0.9600e+00,0.9700e+00, & |
---|
175 | 0.9800e+00,0.9900e+00,0.1000e+01,0.1010e+01,0.1020e+01,0.1030e+01, & |
---|
176 | 0.1040e+01,0.1050e+01,0.1060e+01,0.1070e+01,0.1080e+01,0.1090e+01, & |
---|
177 | 0.1100e+01,0.1110e+01,0.1120e+01,0.1130e+01,0.1140e+01,0.1150e+01, & |
---|
178 | 0.1160e+01,0.1170e+01,0.1180e+01,0.1190e+01,0.1200e+01,0.1210e+01, & |
---|
179 | 0.1220e+01,0.1230e+01,0.1240e+01,0.1250e+01,0.1260e+01,0.1270e+01, & |
---|
180 | 0.1280e+01,0.1290e+01,0.1300e+01,0.1310e+01,0.1320e+01,0.1330e+01, & |
---|
181 | 0.1340e+01,0.1350e+01,0.1360e+01,0.1370e+01,0.1380e+01,0.1390e+01, & |
---|
182 | 0.1400e+01,0.1410e+01,0.1420e+01,0.1430e+01,0.1440e+01,0.1449e+01, & |
---|
183 | 0.1460e+01,0.1471e+01,0.1481e+01,0.1493e+01,0.1504e+01,0.1515e+01, & |
---|
184 | 0.1527e+01,0.1538e+01,0.1563e+01,0.1587e+01,0.1613e+01,0.1650e+01, & |
---|
185 | 0.1680e+01,0.1700e+01,0.1730e+01,0.1760e+01,0.1800e+01,0.1830e+01, & |
---|
186 | 0.1840e+01,0.1850e+01,0.1855e+01,0.1860e+01,0.1870e+01,0.1890e+01/ |
---|
187 | data (wl(i),i=229,342)/ & |
---|
188 | 0.1905e+01,0.1923e+01,0.1942e+01,0.1961e+01,0.1980e+01,0.2000e+01, & |
---|
189 | 0.2020e+01,0.2041e+01,0.2062e+01,0.2083e+01,0.2105e+01,0.2130e+01, & |
---|
190 | 0.2150e+01,0.2170e+01,0.2190e+01,0.2220e+01,0.2240e+01,0.2245e+01, & |
---|
191 | 0.2250e+01,0.2260e+01,0.2270e+01,0.2290e+01,0.2310e+01,0.2330e+01, & |
---|
192 | 0.2350e+01,0.2370e+01,0.2390e+01,0.2410e+01,0.2430e+01,0.2460e+01, & |
---|
193 | 0.2500e+01,0.2520e+01,0.2550e+01,0.2565e+01,0.2580e+01,0.2590e+01, & |
---|
194 | 0.2600e+01,0.2620e+01,0.2675e+01,0.2725e+01,0.2778e+01,0.2817e+01, & |
---|
195 | 0.2833e+01,0.2849e+01,0.2865e+01,0.2882e+01,0.2899e+01,0.2915e+01, & |
---|
196 | 0.2933e+01,0.2950e+01,0.2967e+01,0.2985e+01,0.3003e+01,0.3021e+01, & |
---|
197 | 0.3040e+01,0.3058e+01,0.3077e+01,0.3096e+01,0.3115e+01,0.3135e+01, & |
---|
198 | 0.3155e+01,0.3175e+01,0.3195e+01,0.3215e+01,0.3236e+01,0.3257e+01, & |
---|
199 | 0.3279e+01,0.3300e+01,0.3322e+01,0.3345e+01,0.3367e+01,0.3390e+01, & |
---|
200 | 0.3413e+01,0.3436e+01,0.3460e+01,0.3484e+01,0.3509e+01,0.3534e+01, & |
---|
201 | 0.3559e+01,0.3624e+01,0.3732e+01,0.3775e+01,0.3847e+01,0.3969e+01, & |
---|
202 | 0.4099e+01,0.4239e+01,0.4348e+01,0.4387e+01,0.4444e+01,0.4505e+01, & |
---|
203 | 0.4547e+01,0.4560e+01,0.4580e+01,0.4719e+01,0.4904e+01,0.5000e+01, & |
---|
204 | 0.5100e+01,0.5200e+01,0.5263e+01,0.5400e+01,0.5556e+01,0.5714e+01, & |
---|
205 | 0.5747e+01,0.5780e+01,0.5814e+01,0.5848e+01,0.5882e+01,0.6061e+01, & |
---|
206 | 0.6135e+01,0.6250e+01,0.6289e+01,0.6329e+01,0.6369e+01,0.6410e+01/ |
---|
207 | data (wl(i),i=343,456)/ & |
---|
208 | 0.6452e+01,0.6494e+01,0.6579e+01,0.6667e+01,0.6757e+01,0.6897e+01, & |
---|
209 | 0.7042e+01,0.7143e+01,0.7246e+01,0.7353e+01,0.7463e+01,0.7576e+01, & |
---|
210 | 0.7692e+01,0.7812e+01,0.7937e+01,0.8065e+01,0.8197e+01,0.8333e+01, & |
---|
211 | 0.8475e+01,0.8696e+01,0.8929e+01,0.9091e+01,0.9259e+01,0.9524e+01, & |
---|
212 | 0.9804e+01,0.1000e+02,0.1020e+02,0.1031e+02,0.1042e+02,0.1053e+02, & |
---|
213 | 0.1064e+02,0.1075e+02,0.1087e+02,0.1100e+02,0.1111e+02,0.1136e+02, & |
---|
214 | 0.1163e+02,0.1190e+02,0.1220e+02,0.1250e+02,0.1282e+02,0.1299e+02, & |
---|
215 | 0.1316e+02,0.1333e+02,0.1351e+02,0.1370e+02,0.1389e+02,0.1408e+02, & |
---|
216 | 0.1429e+02,0.1471e+02,0.1515e+02,0.1538e+02,0.1563e+02,0.1613e+02, & |
---|
217 | 0.1639e+02,0.1667e+02,0.1695e+02,0.1724e+02,0.1818e+02,0.1887e+02, & |
---|
218 | 0.1923e+02,0.1961e+02,0.2000e+02,0.2041e+02,0.2083e+02,0.2222e+02, & |
---|
219 | 0.2260e+02,0.2305e+02,0.2360e+02,0.2460e+02,0.2500e+02,0.2600e+02, & |
---|
220 | 0.2857e+02,0.3100e+02,0.3333e+02,0.3448e+02,0.3564e+02,0.3700e+02, & |
---|
221 | 0.3824e+02,0.3960e+02,0.4114e+02,0.4276e+02,0.4358e+02,0.4458e+02, & |
---|
222 | 0.4550e+02,0.4615e+02,0.4671e+02,0.4736e+02,0.4800e+02,0.4878e+02, & |
---|
223 | 0.5003e+02,0.5128e+02,0.5275e+02,0.5350e+02,0.5424e+02,0.5500e+02, & |
---|
224 | 0.5574e+02,0.5640e+02,0.5700e+02,0.5746e+02,0.5840e+02,0.5929e+02, & |
---|
225 | 0.6000e+02,0.6100e+02,0.6125e+02,0.6250e+02,0.6378e+02,0.6467e+02, & |
---|
226 | 0.6558e+02,0.6655e+02,0.6760e+02,0.6900e+02,0.7053e+02,0.7300e+02/ |
---|
227 | data (wl(i),i=457,468)/ & |
---|
228 | 0.7500e+02,0.7629e+02,0.8000e+02,0.8297e+02,0.8500e+02,0.8680e+02, & |
---|
229 | 0.9080e+02,0.9517e+02,0.1000e+03,0.1200e+03,0.1500e+03,0.1670e+03/ |
---|
230 | data wlt/ & |
---|
231 | 0.1670e+03,0.1778e+03,0.1884e+03, & |
---|
232 | 0.1995e+03,0.2113e+03,0.2239e+03,0.2371e+03,0.2512e+03,0.2661e+03, & |
---|
233 | 0.2818e+03,0.2985e+03,0.3162e+03,0.3548e+03,0.3981e+03,0.4467e+03, & |
---|
234 | 0.5012e+03,0.5623e+03,0.6310e+03,0.7943e+03,0.1000e+04,0.1259e+04, & |
---|
235 | 0.2500e+04,0.5000e+04,0.1000e+05,0.2000e+05,0.3200e+05,0.3500e+05, & |
---|
236 | 0.4000e+05,0.4500e+05,0.5000e+05,0.6000e+05,0.7000e+05,0.9000e+05, & |
---|
237 | 0.1110e+06,0.1200e+06,0.1300e+06,0.1400e+06,0.1500e+06,0.1600e+06, & |
---|
238 | 0.1700e+06,0.1800e+06,0.2000e+06,0.2500e+06,0.2900e+06,0.3200e+06, & |
---|
239 | 0.3500e+06,0.3800e+06,0.4000e+06,0.4500e+06,0.5000e+06,0.6000e+06, & |
---|
240 | 0.6400e+06,0.6800e+06,0.7200e+06,0.7600e+06,0.8000e+06,0.8400e+06, & |
---|
241 | 0.9000e+06,0.1000e+07,0.2000e+07,0.5000e+07,0.8600e+07/ |
---|
242 | data (tabre(i),i=1,114)/ & |
---|
243 | 0.83441, 0.83676, 0.83729, 0.83771, 0.83827, 0.84038, & |
---|
244 | 0.84719, 0.85522, 0.86047, 0.86248, 0.86157, 0.86093, & |
---|
245 | 0.86419, 0.86916, 0.87764, 0.89296, 0.91041, 0.93089, & |
---|
246 | 0.95373, 0.98188, 1.02334, 1.06735, 1.11197, 1.13134, & |
---|
247 | 1.15747, 1.20045, 1.23840, 1.27325, 1.32157, 1.38958, & |
---|
248 | 1.41644, 1.40906, 1.40063, 1.40169, 1.40934, 1.40221, & |
---|
249 | 1.39240, 1.38424, 1.38075, 1.38186, 1.39634, 1.40918, & |
---|
250 | 1.40256, 1.38013, 1.36303, 1.34144, 1.32377, 1.30605, & |
---|
251 | 1.29054, 1.28890, 1.28931, 1.30190, 1.32025, 1.36302, & |
---|
252 | 1.41872, 1.45834, 1.49028, 1.52128, 1.55376, 1.57782, & |
---|
253 | 1.59636, 1.60652, 1.61172, 1.61919, 1.62522, 1.63404, & |
---|
254 | 1.63689, 1.63833, 1.63720, 1.63233, 1.62222, 1.58269, & |
---|
255 | 1.55635, 1.52453, 1.50320, 1.48498, 1.47226, 1.45991, & |
---|
256 | 1.45115, 1.44272, 1.43498, 1.43280, 1.42924, 1.42602, & |
---|
257 | 1.42323, 1.42143, 1.41897, 1.41660, 1.41434, 1.41216, & |
---|
258 | 1.41006, 1.40805, 1.40423, 1.40067, 1.38004, 1.35085, & |
---|
259 | 1.33394, 1.32492, 1.31940, 1.31854, 1.31775, 1.31702, & |
---|
260 | 1.31633, 1.31569, 1.31509, 1.31452, 1.31399, 1.31349, & |
---|
261 | 1.31302, 1.31257, 1.31215, 1.31175, 1.31136, 1.31099/ |
---|
262 | data (tabre(i),i=115,228)/ & |
---|
263 | 1.31064, 1.31031, 1.30999, 1.30968, 1.30938, 1.30909, & |
---|
264 | 1.30882, 1.30855, 1.30829, 1.30804, 1.30780, 1.30756, & |
---|
265 | 1.30733, 1.30710, 1.30688, 1.30667, 1.30646, 1.30625, & |
---|
266 | 1.30605, 1.30585, 1.30566, 1.30547, 1.30528, 1.30509, & |
---|
267 | 1.30491, 1.30473, 1.30455, 1.30437, 1.30419, 1.30402, & |
---|
268 | 1.30385, 1.30367, 1.30350, 1.30333, 1.30316, 1.30299, & |
---|
269 | 1.30283, 1.30266, 1.30249, 1.30232, 1.30216, 1.30199, & |
---|
270 | 1.30182, 1.30166, 1.30149, 1.30132, 1.30116, 1.30099, & |
---|
271 | 1.30082, 1.30065, 1.30048, 1.30031, 1.30014, 1.29997, & |
---|
272 | 1.29979, 1.29962, 1.29945, 1.29927, 1.29909, 1.29891, & |
---|
273 | 1.29873, 1.29855, 1.29837, 1.29818, 1.29800, 1.29781, & |
---|
274 | 1.29762, 1.29743, 1.29724, 1.29705, 1.29686, 1.29666, & |
---|
275 | 1.29646, 1.29626, 1.29605, 1.29584, 1.29563, 1.29542, & |
---|
276 | 1.29521, 1.29499, 1.29476, 1.29453, 1.29430, 1.29406, & |
---|
277 | 1.29381, 1.29355, 1.29327, 1.29299, 1.29272, 1.29252, & |
---|
278 | 1.29228, 1.29205, 1.29186, 1.29167, 1.29150, 1.29130, & |
---|
279 | 1.29106, 1.29083, 1.29025, 1.28962, 1.28891, 1.28784, & |
---|
280 | 1.28689, 1.28623, 1.28521, 1.28413, 1.28261, 1.28137, & |
---|
281 | 1.28093, 1.28047, 1.28022, 1.27998, 1.27948, 1.27849/ |
---|
282 | data (tabre(i),i=229,342)/ & |
---|
283 | 1.27774, 1.27691, 1.27610, 1.27535, 1.27471, 1.27404, & |
---|
284 | 1.27329, 1.27240, 1.27139, 1.27029, 1.26901, 1.26736, & |
---|
285 | 1.26591, 1.26441, 1.26284, 1.26036, 1.25860, 1.25815, & |
---|
286 | 1.25768, 1.25675, 1.25579, 1.25383, 1.25179, 1.24967, & |
---|
287 | 1.24745, 1.24512, 1.24266, 1.24004, 1.23725, 1.23270, & |
---|
288 | 1.22583, 1.22198, 1.21548, 1.21184, 1.20790, 1.20507, & |
---|
289 | 1.20209, 1.19566, 1.17411, 1.14734, 1.10766, 1.06739, & |
---|
290 | 1.04762, 1.02650, 1.00357, 0.98197, 0.96503, 0.95962, & |
---|
291 | 0.97269, 0.99172, 1.00668, 1.02186, 1.04270, 1.07597, & |
---|
292 | 1.12954, 1.21267, 1.32509, 1.42599, 1.49656, 1.55095, & |
---|
293 | 1.59988, 1.63631, 1.65024, 1.64278, 1.62691, 1.61284, & |
---|
294 | 1.59245, 1.57329, 1.55770, 1.54129, 1.52654, 1.51139, & |
---|
295 | 1.49725, 1.48453, 1.47209, 1.46125, 1.45132, 1.44215, & |
---|
296 | 1.43366, 1.41553, 1.39417, 1.38732, 1.37735, 1.36448, & |
---|
297 | 1.35414, 1.34456, 1.33882, 1.33807, 1.33847, 1.34053, & |
---|
298 | 1.34287, 1.34418, 1.34634, 1.34422, 1.33453, 1.32897, & |
---|
299 | 1.32333, 1.31800, 1.31432, 1.30623, 1.29722, 1.28898, & |
---|
300 | 1.28730, 1.28603, 1.28509, 1.28535, 1.28813, 1.30156, & |
---|
301 | 1.30901, 1.31720, 1.31893, 1.32039, 1.32201, 1.32239/ |
---|
302 | data (tabre(i),i=343,456)/ & |
---|
303 | 1.32149, 1.32036, 1.31814, 1.31705, 1.31807, 1.31953, & |
---|
304 | 1.31933, 1.31896, 1.31909, 1.31796, 1.31631, 1.31542, & |
---|
305 | 1.31540, 1.31552, 1.31455, 1.31193, 1.30677, 1.29934, & |
---|
306 | 1.29253, 1.28389, 1.27401, 1.26724, 1.25990, 1.24510, & |
---|
307 | 1.22241, 1.19913, 1.17150, 1.15528, 1.13700, 1.11808, & |
---|
308 | 1.10134, 1.09083, 1.08734, 1.09254, 1.10654, 1.14779, & |
---|
309 | 1.20202, 1.25825, 1.32305, 1.38574, 1.44478, 1.47170, & |
---|
310 | 1.49619, 1.51652, 1.53328, 1.54900, 1.56276, 1.57317, & |
---|
311 | 1.58028, 1.57918, 1.56672, 1.55869, 1.55081, 1.53807, & |
---|
312 | 1.53296, 1.53220, 1.53340, 1.53289, 1.51705, 1.50097, & |
---|
313 | 1.49681, 1.49928, 1.50153, 1.49856, 1.49053, 1.46070, & |
---|
314 | 1.45182, 1.44223, 1.43158, 1.41385, 1.40676, 1.38955, & |
---|
315 | 1.34894, 1.31039, 1.26420, 1.23656, 1.21663, 1.20233, & |
---|
316 | 1.19640, 1.19969, 1.20860, 1.22173, 1.24166, 1.28175, & |
---|
317 | 1.32784, 1.38657, 1.46486, 1.55323, 1.60379, 1.61877, & |
---|
318 | 1.62963, 1.65712, 1.69810, 1.72065, 1.74865, 1.76736, & |
---|
319 | 1.76476, 1.75011, 1.72327, 1.68490, 1.62398, 1.59596, & |
---|
320 | 1.58514, 1.59917, 1.61405, 1.66625, 1.70663, 1.73713, & |
---|
321 | 1.76860, 1.80343, 1.83296, 1.85682, 1.87411, 1.89110/ |
---|
322 | data (tabre(i),i=457,468)/ & |
---|
323 | 1.89918, 1.90432, 1.90329, 1.88744, 1.87499, 1.86702, & |
---|
324 | 1.85361, 1.84250, 1.83225, 1.81914, 1.82268, 1.82961/ |
---|
325 | data (tabret(i,1),i=1,nwlt)/ & |
---|
326 | 1.82961, 1.83258, 1.83149, & |
---|
327 | 1.82748, 1.82224, 1.81718, 1.81204, 1.80704, 1.80250, & |
---|
328 | 1.79834, 1.79482, 1.79214, 1.78843, 1.78601, 1.78434, & |
---|
329 | 1.78322, 1.78248, 1.78201, 1.78170, 1.78160, 1.78190, & |
---|
330 | 1.78300, 1.78430, 1.78520, 1.78620, 1.78660, 1.78680, & |
---|
331 | 1.78690, 1.78700, 1.78700, 1.78710, 1.78710, 1.78720, & |
---|
332 | 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, & |
---|
333 | 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, & |
---|
334 | 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, & |
---|
335 | 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, 1.78720, & |
---|
336 | 1.78720, 1.78720, 1.78720, 1.78720, 1.78800/ |
---|
337 | data (tabret(i,2),i=1,nwlt)/ & |
---|
338 | 1.82961, 1.83258, 1.83149, 1.82748, & |
---|
339 | 1.82224, 1.81718, 1.81204, 1.80704, 1.80250, 1.79834, & |
---|
340 | 1.79482, 1.79214, 1.78843, 1.78601, 1.78434, 1.78322, & |
---|
341 | 1.78248, 1.78201, 1.78170, 1.78160, 1.78190, 1.78300, & |
---|
342 | 1.78430, 1.78520, 1.78610, 1.78630, 1.78640, 1.78650, & |
---|
343 | 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, & |
---|
344 | 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, & |
---|
345 | 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, & |
---|
346 | 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, & |
---|
347 | 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, 1.78650, & |
---|
348 | 1.78650, 1.78650, 1.78650, 1.78720/ |
---|
349 | data(tabret(i,3),i=1,nwlt)/ & |
---|
350 | 1.82961, 1.83258, 1.83149, 1.82748, 1.82224, & |
---|
351 | 1.81718, 1.81204, 1.80704, 1.80250, 1.79834, 1.79482, & |
---|
352 | 1.79214, 1.78843, 1.78601, 1.78434, 1.78322, 1.78248, & |
---|
353 | 1.78201, 1.78160, 1.78140, 1.78160, 1.78220, 1.78310, & |
---|
354 | 1.78380, 1.78390, 1.78400, 1.78400, 1.78400, 1.78400, & |
---|
355 | 1.78400, 1.78390, 1.78380, 1.78370, 1.78370, 1.78370, & |
---|
356 | 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, & |
---|
357 | 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, & |
---|
358 | 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, & |
---|
359 | 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, 1.78370, & |
---|
360 | 1.78370, 1.78400, 1.78450/ |
---|
361 | data (tabret(i,4),i=1,nwlt)/ & |
---|
362 | 1.82961, 1.83258, 1.83149, 1.82748, 1.82224, 1.81718, & |
---|
363 | 1.81204, 1.80704, 1.80250, 1.79834, 1.79482, 1.79214, & |
---|
364 | 1.78843, 1.78601, 1.78434, 1.78322, 1.78248, 1.78201, & |
---|
365 | 1.78150, 1.78070, 1.78010, 1.77890, 1.77790, 1.77730, & |
---|
366 | 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, & |
---|
367 | 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, & |
---|
368 | 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, & |
---|
369 | 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, & |
---|
370 | 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, & |
---|
371 | 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, 1.77720, & |
---|
372 | 1.77720, 1.77800/ |
---|
373 | data(tabim(i),i=1,114)/ & |
---|
374 | 0.1640e+00,0.1730e+00,0.1830e+00,0.1950e+00,0.2080e+00,0.2230e+00, & |
---|
375 | 0.2400e+00,0.2500e+00,0.2590e+00,0.2680e+00,0.2790e+00,0.2970e+00, & |
---|
376 | 0.3190e+00,0.3400e+00,0.3660e+00,0.3920e+00,0.4160e+00,0.4400e+00, & |
---|
377 | 0.4640e+00,0.4920e+00,0.5170e+00,0.5280e+00,0.5330e+00,0.5340e+00, & |
---|
378 | 0.5310e+00,0.5240e+00,0.5100e+00,0.5000e+00,0.4990e+00,0.4680e+00, & |
---|
379 | 0.3800e+00,0.3600e+00,0.3390e+00,0.3180e+00,0.2910e+00,0.2510e+00, & |
---|
380 | 0.2440e+00,0.2390e+00,0.2390e+00,0.2440e+00,0.2470e+00,0.2240e+00, & |
---|
381 | 0.1950e+00,0.1740e+00,0.1720e+00,0.1800e+00,0.1940e+00,0.2130e+00, & |
---|
382 | 0.2430e+00,0.2710e+00,0.2890e+00,0.3340e+00,0.3440e+00,0.3820e+00, & |
---|
383 | 0.4010e+00,0.4065e+00,0.4050e+00,0.3890e+00,0.3770e+00,0.3450e+00, & |
---|
384 | 0.3320e+00,0.3150e+00,0.2980e+00,0.2740e+00,0.2280e+00,0.1980e+00, & |
---|
385 | 0.1720e+00,0.1560e+00,0.1100e+00,0.8300e-01,0.5800e-01,0.2200e-01, & |
---|
386 | 0.1000e-01,0.3000e-02,0.1000e-02,0.3000e-03,0.1000e-03,0.3000e-04, & |
---|
387 | 0.1000e-04,0.3000e-05,0.1000e-05,0.7000e-06,0.4000e-06,0.2000e-06, & |
---|
388 | 0.1000e-06,0.6377e-07,0.3750e-07,0.2800e-07,0.2400e-07,0.2200e-07, & |
---|
389 | 0.1900e-07,0.1750e-07,0.1640e-07,0.1590e-07,0.1325e-07,0.8623e-08, & |
---|
390 | 0.5504e-08,0.3765e-08,0.2710e-08,0.2510e-08,0.2260e-08,0.2080e-08, & |
---|
391 | 0.1910e-08,0.1540e-08,0.1530e-08,0.1550e-08,0.1640e-08,0.1780e-08, & |
---|
392 | 0.1910e-08,0.2140e-08,0.2260e-08,0.2540e-08,0.2930e-08,0.3110e-08/ |
---|
393 | data(tabim(i),i=115,228)/ & |
---|
394 | 0.3290e-08,0.3520e-08,0.4040e-08,0.4880e-08,0.5730e-08,0.6890e-08, & |
---|
395 | 0.8580e-08,0.1040e-07,0.1220e-07,0.1430e-07,0.1660e-07,0.1890e-07, & |
---|
396 | 0.2090e-07,0.2400e-07,0.2900e-07,0.3440e-07,0.4030e-07,0.4300e-07, & |
---|
397 | 0.4920e-07,0.5870e-07,0.7080e-07,0.8580e-07,0.1020e-06,0.1180e-06, & |
---|
398 | 0.1340e-06,0.1400e-06,0.1430e-06,0.1450e-06,0.1510e-06,0.1830e-06, & |
---|
399 | 0.2150e-06,0.2650e-06,0.3350e-06,0.3920e-06,0.4200e-06,0.4440e-06, & |
---|
400 | 0.4740e-06,0.5110e-06,0.5530e-06,0.6020e-06,0.7550e-06,0.9260e-06, & |
---|
401 | 0.1120e-05,0.1330e-05,0.1620e-05,0.2000e-05,0.2250e-05,0.2330e-05, & |
---|
402 | 0.2330e-05,0.2170e-05,0.1960e-05,0.1810e-05,0.1740e-05,0.1730e-05, & |
---|
403 | 0.1700e-05,0.1760e-05,0.1820e-05,0.2040e-05,0.2250e-05,0.2290e-05, & |
---|
404 | 0.3040e-05,0.3840e-05,0.4770e-05,0.5760e-05,0.6710e-05,0.8660e-05, & |
---|
405 | 0.1020e-04,0.1130e-04,0.1220e-04,0.1290e-04,0.1320e-04,0.1350e-04, & |
---|
406 | 0.1330e-04,0.1320e-04,0.1320e-04,0.1310e-04,0.1320e-04,0.1320e-04, & |
---|
407 | 0.1340e-04,0.1390e-04,0.1420e-04,0.1480e-04,0.1580e-04,0.1740e-04, & |
---|
408 | 0.1980e-04,0.2500e-04,0.5400e-04,0.1040e-03,0.2030e-03,0.2708e-03, & |
---|
409 | 0.3511e-03,0.4299e-03,0.5181e-03,0.5855e-03,0.5899e-03,0.5635e-03, & |
---|
410 | 0.5480e-03,0.5266e-03,0.4394e-03,0.3701e-03,0.3372e-03,0.2410e-03, & |
---|
411 | 0.1890e-03,0.1660e-03,0.1450e-03,0.1280e-03,0.1030e-03,0.8600e-04, & |
---|
412 | 0.8220e-04,0.8030e-04,0.8500e-04,0.9900e-04,0.1500e-03,0.2950e-03/ |
---|
413 | data(tabim(i),i=229,342)/ & |
---|
414 | 0.4687e-03,0.7615e-03,0.1010e-02,0.1313e-02,0.1539e-02,0.1588e-02, & |
---|
415 | 0.1540e-02,0.1412e-02,0.1244e-02,0.1068e-02,0.8414e-03,0.5650e-03, & |
---|
416 | 0.4320e-03,0.3500e-03,0.2870e-03,0.2210e-03,0.2030e-03,0.2010e-03, & |
---|
417 | 0.2030e-03,0.2140e-03,0.2320e-03,0.2890e-03,0.3810e-03,0.4620e-03, & |
---|
418 | 0.5480e-03,0.6180e-03,0.6800e-03,0.7300e-03,0.7820e-03,0.8480e-03, & |
---|
419 | 0.9250e-03,0.9200e-03,0.8920e-03,0.8700e-03,0.8900e-03,0.9300e-03, & |
---|
420 | 0.1010e-02,0.1350e-02,0.3420e-02,0.7920e-02,0.2000e-01,0.3800e-01, & |
---|
421 | 0.5200e-01,0.6800e-01,0.9230e-01,0.1270e+00,0.1690e+00,0.2210e+00, & |
---|
422 | 0.2760e+00,0.3120e+00,0.3470e+00,0.3880e+00,0.4380e+00,0.4930e+00, & |
---|
423 | 0.5540e+00,0.6120e+00,0.6250e+00,0.5930e+00,0.5390e+00,0.4910e+00, & |
---|
424 | 0.4380e+00,0.3720e+00,0.3000e+00,0.2380e+00,0.1930e+00,0.1580e+00, & |
---|
425 | 0.1210e+00,0.1030e+00,0.8360e-01,0.6680e-01,0.5400e-01,0.4220e-01, & |
---|
426 | 0.3420e-01,0.2740e-01,0.2200e-01,0.1860e-01,0.1520e-01,0.1260e-01, & |
---|
427 | 0.1060e-01,0.8020e-02,0.6850e-02,0.6600e-02,0.6960e-02,0.9160e-02, & |
---|
428 | 0.1110e-01,0.1450e-01,0.2000e-01,0.2300e-01,0.2600e-01,0.2900e-01, & |
---|
429 | 0.2930e-01,0.3000e-01,0.2850e-01,0.1730e-01,0.1290e-01,0.1200e-01, & |
---|
430 | 0.1250e-01,0.1340e-01,0.1400e-01,0.1750e-01,0.2400e-01,0.3500e-01, & |
---|
431 | 0.3800e-01,0.4200e-01,0.4600e-01,0.5200e-01,0.5700e-01,0.6900e-01, & |
---|
432 | 0.7000e-01,0.6700e-01,0.6500e-01,0.6400e-01,0.6200e-01,0.5900e-01/ |
---|
433 | data(tabim(i),i=343,456)/ & |
---|
434 | 0.5700e-01,0.5600e-01,0.5500e-01,0.5700e-01,0.5800e-01,0.5700e-01, & |
---|
435 | 0.5500e-01,0.5500e-01,0.5400e-01,0.5200e-01,0.5200e-01,0.5200e-01, & |
---|
436 | 0.5200e-01,0.5000e-01,0.4700e-01,0.4300e-01,0.3900e-01,0.3700e-01, & |
---|
437 | 0.3900e-01,0.4000e-01,0.4200e-01,0.4400e-01,0.4500e-01,0.4600e-01, & |
---|
438 | 0.4700e-01,0.5100e-01,0.6500e-01,0.7500e-01,0.8800e-01,0.1080e+00, & |
---|
439 | 0.1340e+00,0.1680e+00,0.2040e+00,0.2480e+00,0.2800e+00,0.3410e+00, & |
---|
440 | 0.3790e+00,0.4090e+00,0.4220e+00,0.4220e+00,0.4030e+00,0.3890e+00, & |
---|
441 | 0.3740e+00,0.3540e+00,0.3350e+00,0.3150e+00,0.2940e+00,0.2710e+00, & |
---|
442 | 0.2460e+00,0.1980e+00,0.1640e+00,0.1520e+00,0.1420e+00,0.1280e+00, & |
---|
443 | 0.1250e+00,0.1230e+00,0.1160e+00,0.1070e+00,0.7900e-01,0.7200e-01, & |
---|
444 | 0.7600e-01,0.7500e-01,0.6700e-01,0.5500e-01,0.4500e-01,0.2900e-01, & |
---|
445 | 0.2750e-01,0.2700e-01,0.2730e-01,0.2890e-01,0.3000e-01,0.3400e-01, & |
---|
446 | 0.5300e-01,0.7550e-01,0.1060e+00,0.1350e+00,0.1761e+00,0.2229e+00, & |
---|
447 | 0.2746e+00,0.3280e+00,0.3906e+00,0.4642e+00,0.5247e+00,0.5731e+00, & |
---|
448 | 0.6362e+00,0.6839e+00,0.7091e+00,0.6790e+00,0.6250e+00,0.5654e+00, & |
---|
449 | 0.5433e+00,0.5292e+00,0.5070e+00,0.4883e+00,0.4707e+00,0.4203e+00, & |
---|
450 | 0.3771e+00,0.3376e+00,0.3056e+00,0.2835e+00,0.3170e+00,0.3517e+00, & |
---|
451 | 0.3902e+00,0.4509e+00,0.4671e+00,0.4779e+00,0.4890e+00,0.4899e+00, & |
---|
452 | 0.4873e+00,0.4766e+00,0.4508e+00,0.4193e+00,0.3880e+00,0.3433e+00/ |
---|
453 | data(tabim(i),i=457,468)/ & |
---|
454 | 0.3118e+00,0.2935e+00,0.2350e+00,0.1981e+00,0.1865e+00,0.1771e+00, & |
---|
455 | 0.1620e+00,0.1490e+00,0.1390e+00,0.1200e+00,0.9620e-01,0.8300e-01/ |
---|
456 | data(tabimt(i,1),i=1,nwlt)/ & |
---|
457 | 0.8300e-01,0.6900e-01,0.5700e-01, & |
---|
458 | 0.4560e-01,0.3790e-01,0.3140e-01,0.2620e-01,0.2240e-01,0.1960e-01, & |
---|
459 | 0.1760e-01,0.1665e-01,0.1620e-01,0.1550e-01,0.1470e-01,0.1390e-01, & |
---|
460 | 0.1320e-01,0.1250e-01,0.1180e-01,0.1060e-01,0.9540e-02,0.8560e-02, & |
---|
461 | 0.6210e-02,0.4490e-02,0.3240e-02,0.2340e-02,0.1880e-02,0.1740e-02, & |
---|
462 | 0.1500e-02,0.1320e-02,0.1160e-02,0.8800e-03,0.6950e-03,0.4640e-03, & |
---|
463 | 0.3400e-03,0.3110e-03,0.2940e-03,0.2790e-03,0.2700e-03,0.2640e-03, & |
---|
464 | 0.2580e-03,0.2520e-03,0.2490e-03,0.2540e-03,0.2640e-03,0.2740e-03, & |
---|
465 | 0.2890e-03,0.3050e-03,0.3150e-03,0.3460e-03,0.3820e-03,0.4620e-03, & |
---|
466 | 0.5000e-03,0.5500e-03,0.5950e-03,0.6470e-03,0.6920e-03,0.7420e-03, & |
---|
467 | 0.8200e-03,0.9700e-03,0.1950e-02,0.5780e-02,0.9700e-02/ |
---|
468 | data(tabimt(i,2),i=1,nwlt)/ & |
---|
469 | 0.8300e-01,0.6900e-01,0.5700e-01,0.4560e-01, & |
---|
470 | 0.3790e-01,0.3140e-01,0.2620e-01,0.2240e-01,0.1960e-01,0.1760e-01, & |
---|
471 | 0.1665e-01,0.1600e-01,0.1500e-01,0.1400e-01,0.1310e-01,0.1230e-01, & |
---|
472 | 0.1150e-01,0.1080e-01,0.9460e-02,0.8290e-02,0.7270e-02,0.4910e-02, & |
---|
473 | 0.3300e-02,0.2220e-02,0.1490e-02,0.1140e-02,0.1060e-02,0.9480e-03, & |
---|
474 | 0.8500e-03,0.7660e-03,0.6300e-03,0.5200e-03,0.3840e-03,0.2960e-03, & |
---|
475 | 0.2700e-03,0.2520e-03,0.2440e-03,0.2360e-03,0.2300e-03,0.2280e-03, & |
---|
476 | 0.2250e-03,0.2200e-03,0.2160e-03,0.2170e-03,0.2200e-03,0.2250e-03, & |
---|
477 | 0.2320e-03,0.2390e-03,0.2600e-03,0.2860e-03,0.3560e-03,0.3830e-03, & |
---|
478 | 0.4150e-03,0.4450e-03,0.4760e-03,0.5080e-03,0.5400e-03,0.5860e-03, & |
---|
479 | 0.6780e-03,0.1280e-02,0.3550e-02,0.5600e-02/ |
---|
480 | data(tabimt(i,3),i=1,nwlt)/ & |
---|
481 | 0.8300e-01,0.6900e-01,0.5700e-01,0.4560e-01,0.3790e-01, & |
---|
482 | 0.3140e-01,0.2620e-01,0.2190e-01,0.1880e-01,0.1660e-01,0.1540e-01, & |
---|
483 | 0.1470e-01,0.1350e-01,0.1250e-01,0.1150e-01,0.1060e-01,0.9770e-02, & |
---|
484 | 0.9010e-02,0.7660e-02,0.6520e-02,0.5540e-02,0.3420e-02,0.2100e-02, & |
---|
485 | 0.1290e-02,0.7930e-03,0.5700e-03,0.5350e-03,0.4820e-03,0.4380e-03, & |
---|
486 | 0.4080e-03,0.3500e-03,0.3200e-03,0.2550e-03,0.2120e-03,0.2000e-03, & |
---|
487 | 0.1860e-03,0.1750e-03,0.1660e-03,0.1560e-03,0.1490e-03,0.1440e-03, & |
---|
488 | 0.1350e-03,0.1210e-03,0.1160e-03,0.1160e-03,0.1170e-03,0.1200e-03, & |
---|
489 | 0.1230e-03,0.1320e-03,0.1440e-03,0.1680e-03,0.1800e-03,0.1900e-03, & |
---|
490 | 0.2090e-03,0.2160e-03,0.2290e-03,0.2400e-03,0.2600e-03,0.2920e-03, & |
---|
491 | 0.6100e-03,0.1020e-02,0.1810e-02/ |
---|
492 | data(tabimt(i,4),i=1,nwlt)/ & |
---|
493 | 0.8300e-01,0.6900e-01,0.5700e-01,0.4450e-01,0.3550e-01,0.2910e-01, & |
---|
494 | 0.2440e-01,0.1970e-01,0.1670e-01,0.1400e-01,0.1235e-01,0.1080e-01, & |
---|
495 | 0.8900e-02,0.7340e-02,0.6400e-02,0.5600e-02,0.5000e-02,0.4520e-02, & |
---|
496 | 0.3680e-02,0.2990e-02,0.2490e-02,0.1550e-02,0.9610e-03,0.5950e-03, & |
---|
497 | 0.3690e-03,0.2670e-03,0.2510e-03,0.2290e-03,0.2110e-03,0.1960e-03, & |
---|
498 | 0.1730e-03,0.1550e-03,0.1310e-03,0.1130e-03,0.1060e-03,0.9900e-04, & |
---|
499 | 0.9300e-04,0.8730e-04,0.8300e-04,0.7870e-04,0.7500e-04,0.6830e-04, & |
---|
500 | 0.5600e-04,0.4960e-04,0.4550e-04,0.4210e-04,0.3910e-04,0.3760e-04, & |
---|
501 | 0.3400e-04,0.3100e-04,0.2640e-04,0.2510e-04,0.2430e-04,0.2390e-04, & |
---|
502 | 0.2370e-04,0.2380e-04,0.2400e-04,0.2460e-04,0.2660e-04,0.4450e-04, & |
---|
503 | 0.8700e-04,0.1320e-03/ |
---|
504 | |
---|
505 | pi = acos(-1.0) |
---|
506 | n_r=0.0 |
---|
507 | n_i=0.0 |
---|
508 | |
---|
509 | tk = t |
---|
510 | |
---|
511 | ! // convert frequency to wavelength (um) |
---|
512 | alam=3E5/freq |
---|
513 | if((alam < wlmin) .or. (alam > wlmax)) then |
---|
514 | print *, 'm_ice: wavelength out of bounds' |
---|
515 | stop |
---|
516 | endif |
---|
517 | |
---|
518 | if (alam < cutice) then |
---|
519 | |
---|
520 | ! // region from 0.045 microns to 167.0 microns - no temperature depend |
---|
521 | do i=2,nwl |
---|
522 | if(alam < wl(i)) continue |
---|
523 | enddo |
---|
524 | x1=log(wl(i-1)) |
---|
525 | x2=log(wl(i)) |
---|
526 | y1=tabre(i-1) |
---|
527 | y2=tabre(i) |
---|
528 | x=log(alam) |
---|
529 | y=((x-x1)*(y2-y1)/(x2-x1))+y1 |
---|
530 | n_r=y |
---|
531 | y1=log(abs(tabim(i-1))) |
---|
532 | y2=log(abs(tabim(i))) |
---|
533 | y=((x-x1)*(y2-y1)/(x2-x1))+y1 |
---|
534 | n_i=exp(y) |
---|
535 | |
---|
536 | else |
---|
537 | |
---|
538 | ! // region from 167.0 microns to 8.6 meters - temperature dependence |
---|
539 | if(tk > temref(1)) tk=temref(1) |
---|
540 | if(tk < temref(4)) tk=temref(4) |
---|
541 | do 11 i=2,4 |
---|
542 | if(tk.ge.temref(i)) go to 12 |
---|
543 | 11 continue |
---|
544 | 12 lt1=i |
---|
545 | lt2=i-1 |
---|
546 | do 13 i=2,nwlt |
---|
547 | if(alam.le.wlt(i)) go to 14 |
---|
548 | 13 continue |
---|
549 | 14 x1=log(wlt(i-1)) |
---|
550 | x2=log(wlt(i)) |
---|
551 | y1=tabret(i-1,lt1) |
---|
552 | y2=tabret(i,lt1) |
---|
553 | x=log(alam) |
---|
554 | ylo=((x-x1)*(y2-y1)/(x2-x1))+y1 |
---|
555 | y1=tabret(i-1,lt2) |
---|
556 | y2=tabret(i,lt2) |
---|
557 | yhi=((x-x1)*(y2-y1)/(x2-x1))+y1 |
---|
558 | t1=temref(lt1) |
---|
559 | t2=temref(lt2) |
---|
560 | y=((tk-t1)*(yhi-ylo)/(t2-t1))+ylo |
---|
561 | n_r=y |
---|
562 | y1=log(abs(tabimt(i-1,lt1))) |
---|
563 | y2=log(abs(tabimt(i,lt1))) |
---|
564 | ylo=((x-x1)*(y2-y1)/(x2-x1))+y1 |
---|
565 | y1=log(abs(tabimt(i-1,lt2))) |
---|
566 | y2=log(abs(tabimt(i,lt2))) |
---|
567 | yhi=((x-x1)*(y2-y1)/(x2-x1))+y1 |
---|
568 | y=((tk-t1)*(yhi-ylo)/(t2-t1))+ylo |
---|
569 | n_i=exp(y) |
---|
570 | |
---|
571 | endif |
---|
572 | |
---|
573 | end subroutine m_ice |
---|
574 | |
---|
575 | ! ---------------------------------------------------------------------------- |
---|
576 | ! subroutine MIEINT |
---|
577 | ! ---------------------------------------------------------------------------- |
---|
578 | |
---|
579 | ! General purpose Mie scattering routine for single particles |
---|
580 | ! Author: R Grainger 1990 |
---|
581 | ! History: |
---|
582 | ! G Thomas, March 2005: Added calculation of Phase function and |
---|
583 | ! code to ensure correct calculation of backscatter coeficient |
---|
584 | ! Options/Extend_Source |
---|
585 | |
---|
586 | Subroutine MieInt(Dx, SCm, Inp, Dqv, Dqxt, Dqsc, Dbsc, Dg, Xs1, Xs2, DPh, Error) |
---|
587 | |
---|
588 | Integer * 2 Imaxx |
---|
589 | Parameter (Imaxx = 12000) |
---|
590 | Real * 4 RIMax ! largest real part of refractive index |
---|
591 | Parameter (RIMax = 2.5) |
---|
592 | Real * 4 IRIMax ! largest imaginary part of refractive index |
---|
593 | Parameter (IRIMax = -2) |
---|
594 | Integer * 2 Itermax |
---|
595 | Parameter (Itermax = 12000 * 2.5) |
---|
596 | ! must be large enough to cope with the |
---|
597 | ! largest possible nmx = x * abs(scm) + 15 |
---|
598 | ! or nmx = Dx + 4.05*Dx**(1./3.) + 2.0 |
---|
599 | Integer * 2 Imaxnp |
---|
600 | Parameter (Imaxnp = 10000) ! Change this as required |
---|
601 | ! INPUT |
---|
602 | Real * 8 Dx |
---|
603 | Complex * 16 SCm |
---|
604 | Integer * 4 Inp |
---|
605 | Real * 8 Dqv(Inp) |
---|
606 | ! OUTPUT |
---|
607 | Complex * 16 Xs1(InP) |
---|
608 | Complex * 16 Xs2(InP) |
---|
609 | Real * 8 Dqxt |
---|
610 | Real * 8 Dqsc |
---|
611 | Real * 8 Dg |
---|
612 | Real * 8 Dbsc |
---|
613 | Real * 8 DPh(InP) |
---|
614 | Integer * 4 Error |
---|
615 | ! LOCAL |
---|
616 | Integer * 2 I |
---|
617 | Integer * 2 NStop |
---|
618 | Integer * 2 NmX |
---|
619 | Integer * 4 N ! N*N > 32767 ie N > 181 |
---|
620 | Integer * 4 Inp2 |
---|
621 | Real * 8 Chi,Chi0,Chi1 |
---|
622 | Real * 8 APsi,APsi0,APsi1 |
---|
623 | Real * 8 Pi0(Imaxnp) |
---|
624 | Real * 8 Pi1(Imaxnp) |
---|
625 | Real * 8 Taun(Imaxnp) |
---|
626 | Real * 8 Psi,Psi0,Psi1 |
---|
627 | Complex * 8 Ir |
---|
628 | Complex * 16 Cm |
---|
629 | Complex * 16 A,ANM1,APB |
---|
630 | Complex * 16 B,BNM1,AMB |
---|
631 | Complex * 16 D(Itermax) |
---|
632 | Complex * 16 Sp(Imaxnp) |
---|
633 | Complex * 16 Sm(Imaxnp) |
---|
634 | Complex * 16 Xi,Xi0,Xi1 |
---|
635 | Complex * 16 Y |
---|
636 | ! ACCELERATOR VARIABLES |
---|
637 | Integer * 2 Tnp1 |
---|
638 | Integer * 2 Tnm1 |
---|
639 | Real * 8 Dn |
---|
640 | Real * 8 Rnx |
---|
641 | Real * 8 S(Imaxnp) |
---|
642 | Real * 8 T(Imaxnp) |
---|
643 | Real * 8 Turbo |
---|
644 | Real * 8 A2 |
---|
645 | Complex * 16 A1 |
---|
646 | |
---|
647 | If ((Dx.Gt.Imaxx) .Or. (InP.Gt.ImaxNP)) Then |
---|
648 | Error = 1 |
---|
649 | Return |
---|
650 | EndIf |
---|
651 | Cm = SCm |
---|
652 | Ir = 1 / Cm |
---|
653 | Y = Dx * Cm |
---|
654 | If (Dx.Lt.0.02) Then |
---|
655 | NStop = 2 |
---|
656 | Else |
---|
657 | If (Dx.Le.8.0) Then |
---|
658 | NStop = Dx + 4.00*Dx**(1./3.) + 2.0 |
---|
659 | Else |
---|
660 | If (Dx.Lt. 4200.0) Then |
---|
661 | NStop = Dx + 4.05*Dx**(1./3.) + 2.0 |
---|
662 | Else |
---|
663 | NStop = Dx + 4.00*Dx**(1./3.) + 2.0 |
---|
664 | End If |
---|
665 | End If |
---|
666 | End If |
---|
667 | NmX = Max(Real(NStop),Real(Abs(Y))) + 15. |
---|
668 | If (Nmx .gt. Itermax) then |
---|
669 | Error = 1 |
---|
670 | Return |
---|
671 | End If |
---|
672 | Inp2 = Inp+1 |
---|
673 | D(NmX) = Dcmplx(0,0) |
---|
674 | Do N = Nmx-1,1,-1 |
---|
675 | A1 = (N+1) / Y |
---|
676 | D(N) = A1 - 1/(A1+D(N+1)) |
---|
677 | End Do |
---|
678 | Do I =1,Inp2 |
---|
679 | Sm(I) = Dcmplx(0,0) |
---|
680 | Sp(I) = Dcmplx(0,0) |
---|
681 | Pi0(I) = 0 |
---|
682 | Pi1(I) = 1 |
---|
683 | End Do |
---|
684 | Psi0 = Cos(Dx) |
---|
685 | Psi1 = Sin(Dx) |
---|
686 | Chi0 =-Sin(Dx) |
---|
687 | Chi1 = Cos(Dx) |
---|
688 | APsi0 = Psi0 |
---|
689 | APsi1 = Psi1 |
---|
690 | Xi0 = Dcmplx(APsi0,Chi0) |
---|
691 | Xi1 = Dcmplx(APsi1,Chi1) |
---|
692 | Dg = 0 |
---|
693 | Dqsc = 0 |
---|
694 | Dqxt = 0 |
---|
695 | Tnp1 = 1 |
---|
696 | Do N = 1,Nstop |
---|
697 | DN = N |
---|
698 | Tnp1 = Tnp1 + 2 |
---|
699 | Tnm1 = Tnp1 - 2 |
---|
700 | A2 = Tnp1 / (DN*(DN+1D0)) |
---|
701 | Turbo = (DN+1D0) / DN |
---|
702 | Rnx = DN/Dx |
---|
703 | Psi = Dble(Tnm1)*Psi1/Dx - Psi0 |
---|
704 | APsi = Psi |
---|
705 | Chi = Tnm1*Chi1/Dx - Chi0 |
---|
706 | Xi = Dcmplx(APsi,Chi) |
---|
707 | A = ((D(N)*Ir+Rnx)*APsi-APsi1) / ((D(N)*Ir+Rnx)* Xi- Xi1) |
---|
708 | B = ((D(N)*Cm+Rnx)*APsi-APsi1) / ((D(N)*Cm+Rnx)* Xi- Xi1) |
---|
709 | Dqxt = Tnp1 * Dble(A + B) + Dqxt |
---|
710 | Dqsc = Tnp1 * (A*Conjg(A) + B*Conjg(B)) + Dqsc |
---|
711 | If (N.Gt.1) then |
---|
712 | Dg = Dg + (dN*dN - 1) * Dble(ANM1*Conjg(A) + BNM1 * Conjg(B)) / dN + TNM1 * Dble(ANM1*Conjg(BNM1)) / (dN*dN - dN) |
---|
713 | End If |
---|
714 | Anm1 = A |
---|
715 | Bnm1 = B |
---|
716 | APB = A2 * (A + B) |
---|
717 | AMB = A2 * (A - B) |
---|
718 | Do I = 1,Inp2 |
---|
719 | If (I.GT.Inp) Then |
---|
720 | S(I) = -Pi1(I) |
---|
721 | Else |
---|
722 | S(I) = Dqv(I) * Pi1(I) |
---|
723 | End If |
---|
724 | T(I) = S(I) - Pi0(I) |
---|
725 | Taun(I) = N*T(I) - Pi0(I) |
---|
726 | Sp(I) = APB * (Pi1(I) + Taun(I)) + Sp(I) |
---|
727 | Sm(I) = AMB * (Pi1(I) - Taun(I)) + Sm(I) |
---|
728 | Pi0(I) = Pi1(I) |
---|
729 | Pi1(I) = S(I) + T(I)*Turbo |
---|
730 | End Do |
---|
731 | Psi0 = Psi1 |
---|
732 | Psi1 = Psi |
---|
733 | Apsi1 = Psi1 |
---|
734 | Chi0 = Chi1 |
---|
735 | Chi1 = Chi |
---|
736 | Xi1 = Dcmplx(APsi1,Chi1) |
---|
737 | End Do |
---|
738 | If (Dg .GT.0) Dg = 2 * Dg / Dqsc |
---|
739 | Dqsc = 2 * Dqsc / Dx**2 |
---|
740 | Dqxt = 2 * Dqxt / Dx**2 |
---|
741 | Do I = 1,Inp |
---|
742 | Xs1(I) = (Sp(I)+Sm(I)) / 2 |
---|
743 | Xs2(I) = (Sp(I)-Sm(I)) / 2 |
---|
744 | Dph(I) = 2 * Dble(Xs1(I)*Conjg(Xs1(I)) + Xs2(I)*Conjg(Xs2(I))) / (Dx**2 * Dqsc) |
---|
745 | End Do |
---|
746 | Dbsc = 4 * Abs(( (Sp(Inp2)+Sm(Inp2))/2 )**2) / Dx**2 |
---|
747 | Error = 0 |
---|
748 | Return |
---|
749 | End subroutine MieInt |
---|
750 | |
---|
751 | end module optics_lib |
---|