1 | ! Copyright (c) 2009, Centre National de la Recherche Scientifique |
---|
2 | ! All rights reserved. |
---|
3 | ! $Revision: 88 $, $Date: 2013-11-13 15:08:38 +0100 (mer. 13 nov. 2013) $ |
---|
4 | ! $URL: http://cfmip-obs-sim.googlecode.com/svn/stable/v1.4.0/actsim/lidar_simulator.F90 $ |
---|
5 | |
---|
6 | ! Redistribution and use in source and binary forms, with or without modification, are permitted |
---|
7 | ! provided that the following conditions are met: |
---|
8 | |
---|
9 | ! * Redistributions of source code must retain the above copyright notice, this list |
---|
10 | ! of conditions and the following disclaimer. |
---|
11 | ! * Redistributions in binary form must reproduce the above copyright notice, this list |
---|
12 | ! of conditions and the following disclaimer in the documentation and/or other materials |
---|
13 | ! provided with the distribution. |
---|
14 | ! * Neither the name of the LMD/IPSL/CNRS/UPMC nor the names of its |
---|
15 | ! contributors may be used to endorse or promote products derived from this software without |
---|
16 | ! specific prior written permission. |
---|
17 | |
---|
18 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR |
---|
19 | ! IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
---|
20 | ! FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
---|
21 | ! CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
---|
22 | ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
23 | ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER |
---|
24 | ! IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
---|
25 | ! OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
26 | |
---|
27 | SUBROUTINE lidar_simulator(npoints,nlev,npart,nrefl & |
---|
28 | , undef & |
---|
29 | , pres, presf, temp & |
---|
30 | , q_lsliq, q_lsice, q_cvliq, q_cvice & |
---|
31 | , ls_radliq, ls_radice, cv_radliq, cv_radice & |
---|
32 | , ice_type, pmol, pnorm, pnorm_perp_tot,tautot, refl ) |
---|
33 | |
---|
34 | !--------------------------------------------------------------------------------- |
---|
35 | ! Purpose: To compute lidar signal from model-simulated profiles of cloud water |
---|
36 | ! and cloud fraction in each sub-column of each model gridbox. |
---|
37 | |
---|
38 | ! References: |
---|
39 | ! Chepfer H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, G. Seze (2008), |
---|
40 | ! Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a |
---|
41 | ! climate model, Geophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207. |
---|
42 | |
---|
43 | ! Previous references: |
---|
44 | ! Chiriaco et al, MWR, 2006; Chepfer et al., MWR, 2007 |
---|
45 | |
---|
46 | ! Contacts: Helene Chepfer (chepfer@lmd.polytechnique.fr), Sandrine Bony (bony@lmd.jussieu.fr) |
---|
47 | |
---|
48 | ! May 2007: ActSim code of M. Chiriaco and H. Chepfer rewritten by S. Bony |
---|
49 | |
---|
50 | ! May 2008, H. Chepfer: |
---|
51 | ! - Units of pressure inputs: Pa |
---|
52 | ! - Non Spherical particles : LS Ice NS coefficients, CONV Ice NS coefficients |
---|
53 | ! - New input: ice_type (0=ice-spheres ; 1=ice-non-spherical) |
---|
54 | |
---|
55 | ! June 2008, A. Bodas-Salcedo: |
---|
56 | ! - Ported to Fortran 90 and optimisation changes |
---|
57 | |
---|
58 | ! August 2008, J-L Dufresne: |
---|
59 | ! - Optimisation changes (sum instructions suppressed) |
---|
60 | |
---|
61 | ! October 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
62 | ! - Interface with COSP v2.0: |
---|
63 | ! cloud fraction removed from inputs |
---|
64 | ! in-cloud condensed water now in input (instead of grid-averaged value) |
---|
65 | ! depolarisation diagnostic removed |
---|
66 | ! parasol (polder) reflectances (for 5 different solar zenith angles) added |
---|
67 | |
---|
68 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
69 | ! - Modification of the integration of the lidar equation. |
---|
70 | ! - change the cloud detection threshold |
---|
71 | |
---|
72 | ! April 2008, A. Bodas-Salcedo: |
---|
73 | ! - Bug fix in computation of pmol and pnorm of upper layer |
---|
74 | |
---|
75 | ! April 2008, J-L. Dufresne |
---|
76 | ! - Bug fix in computation of pmol and pnorm, thanks to Masaki Satoh: a factor 2 |
---|
77 | ! was missing. This affects the ATB values but not the cloud fraction. |
---|
78 | |
---|
79 | ! January 2013, G. Cesana and H. Chepfer: |
---|
80 | ! - Add the perpendicular component of the backscattered signal (pnorm_perp_tot) in the arguments |
---|
81 | ! - Add the temperature for each levels (temp) in the arguments |
---|
82 | ! - Add the computation of the perpendicular component of the backscattered lidar signal |
---|
83 | ! Reference: Cesana G. and H. Chepfer (2013): Evaluation of the cloud water phase |
---|
84 | ! in a climate model using CALIPSO-GOCCP, J. Geophys. Res., doi: 10.1002/jgrd.50376 |
---|
85 | |
---|
86 | !--------------------------------------------------------------------------------- |
---|
87 | |
---|
88 | ! Inputs: |
---|
89 | ! npoints : number of horizontal points |
---|
90 | ! nlev : number of vertical levels |
---|
91 | ! npart: numberb of cloud meteors (stratiform_liq, stratiform_ice, conv_liq, conv_ice). |
---|
92 | ! Currently npart must be 4 |
---|
93 | ! nrefl: number of solar zenith angles for parasol reflectances |
---|
94 | ! pres : pressure in the middle of atmospheric layers (full levels): Pa |
---|
95 | ! presf: pressure in the interface of atmospheric layers (half levels): Pa |
---|
96 | ! presf(..,1) : surface pressure ; presf(..,nlev+1)= TOA pressure |
---|
97 | ! temp : temperature of atmospheric layers: K |
---|
98 | ! q_lsliq: LS sub-column liquid water mixing ratio (kg/kg) |
---|
99 | ! q_lsice: LS sub-column ice water mixing ratio (kg/kg) |
---|
100 | ! q_cvliq: CONV sub-column liquid water mixing ratio (kg/kg) |
---|
101 | ! q_cvice: CONV sub-column ice water mixing ratio (kg/kg) |
---|
102 | ! ls_radliq: effective radius of LS liquid particles (meters) |
---|
103 | ! ls_radice: effective radius of LS ice particles (meters) |
---|
104 | ! cv_radliq: effective radius of CONV liquid particles (meters) |
---|
105 | ! cv_radice: effective radius of CONV ice particles (meters) |
---|
106 | ! ice_type : ice particle shape hypothesis (ice_type=0 for spheres, ice_type=1 |
---|
107 | ! for non spherical particles) |
---|
108 | |
---|
109 | ! Outputs: |
---|
110 | ! pmol : molecular attenuated backscatter lidar signal power (m^-1.sr^-1) |
---|
111 | ! pnorm: total attenuated backscatter lidar signal power (m^-1.sr^-1) |
---|
112 | ! pnorm_perp_tot: perpendicular attenuated backscatter lidar signal power (m^-1.sr^-1) |
---|
113 | ! tautot: optical thickess integrated from top to level z |
---|
114 | ! refl : parasol(polder) reflectance |
---|
115 | |
---|
116 | ! Version 1.0 (June 2007) |
---|
117 | ! Version 1.1 (May 2008) |
---|
118 | ! Version 1.2 (June 2008) |
---|
119 | ! Version 2.0 (October 2008) |
---|
120 | ! Version 2.1 (December 2008) |
---|
121 | !--------------------------------------------------------------------------------- |
---|
122 | |
---|
123 | USE MOD_COSP_CONSTANTS, only : ok_debug_cosp |
---|
124 | IMPLICIT NONE |
---|
125 | REAL :: SRsat |
---|
126 | PARAMETER (SRsat = 0.01) ! threshold full attenuation |
---|
127 | |
---|
128 | LOGICAL ok_parasol |
---|
129 | PARAMETER (ok_parasol=.true.) ! set to .true. if you want to activate parasol reflectances |
---|
130 | |
---|
131 | INTEGER i, k |
---|
132 | |
---|
133 | INTEGER INDX_LSLIQ,INDX_LSICE,INDX_CVLIQ,INDX_CVICE |
---|
134 | PARAMETER (INDX_LSLIQ=1,INDX_LSICE=2,INDX_CVLIQ=3,INDX_CVICE=4) |
---|
135 | ! inputs: |
---|
136 | INTEGER npoints,nlev,npart,ice_type |
---|
137 | INTEGER nrefl |
---|
138 | real undef ! undefined value |
---|
139 | REAL pres(npoints,nlev) ! pressure full levels |
---|
140 | REAL presf(npoints,nlev+1) ! pressure half levels |
---|
141 | REAL q_lsliq(npoints,nlev), q_lsice(npoints,nlev) |
---|
142 | REAL q_cvliq(npoints,nlev), q_cvice(npoints,nlev) |
---|
143 | REAL ls_radliq(npoints,nlev), ls_radice(npoints,nlev) |
---|
144 | REAL cv_radliq(npoints,nlev), cv_radice(npoints,nlev) |
---|
145 | |
---|
146 | ! outputs (for each subcolumn): |
---|
147 | |
---|
148 | REAL pmol(npoints,nlev) ! molecular backscatter signal power (m^-1.sr^-1) |
---|
149 | REAL pnorm(npoints,nlev) ! total lidar backscatter signal power (m^-1.sr^-1) |
---|
150 | REAL tautot(npoints,nlev)! optical thickess integrated from top |
---|
151 | REAL refl(npoints,nrefl)! parasol reflectance ! parasol |
---|
152 | |
---|
153 | ! actsim variables: |
---|
154 | |
---|
155 | REAL km, rdiffm, Qscat, Cmol |
---|
156 | PARAMETER (Cmol = 6.2446e-32) ! depends on wavelength |
---|
157 | PARAMETER (km = 1.38e-23) ! Boltzmann constant (J/K) |
---|
158 | |
---|
159 | PARAMETER (rdiffm = 0.7) ! multiple scattering correction parameter |
---|
160 | PARAMETER (Qscat = 2.0) ! particle scattering efficiency at 532 nm |
---|
161 | |
---|
162 | REAL rholiq, rhoice |
---|
163 | PARAMETER (rholiq=1.0e+03) ! liquid water (kg/m3) |
---|
164 | PARAMETER (rhoice=0.5e+03) ! ice (kg/m3) |
---|
165 | |
---|
166 | REAL pi, rhopart(npart) |
---|
167 | REAL polpart(npart,5) ! polynomial coefficients derived for spherical and non spherical |
---|
168 | ! particules |
---|
169 | |
---|
170 | ! grid-box variables: |
---|
171 | REAL rad_part(npoints,nlev,npart) |
---|
172 | REAL rhoair(npoints,nlev), zheight(npoints,nlev+1) |
---|
173 | REAL beta_mol(npoints,nlev), alpha_mol(npoints,nlev) |
---|
174 | REAL kp_part(npoints,nlev,npart) |
---|
175 | |
---|
176 | ! sub-column variables: |
---|
177 | REAL qpart(npoints,nlev,npart) ! mixing ratio particles in each subcolumn |
---|
178 | REAL alpha_part(npoints,nlev,npart) |
---|
179 | REAL tau_mol_lay(npoints) ! temporary variable, moL. opt. thickness of layer k |
---|
180 | REAL tau_mol(npoints,nlev) ! optical thickness between TOA and bottom of layer k |
---|
181 | REAL tau_part(npoints,nlev,npart) |
---|
182 | REAL betatot(npoints,nlev) |
---|
183 | REAL tautot_lay(npoints) ! temporary variable, total opt. thickness of layer k |
---|
184 | ! Optical thickness from TOA to surface for Parasol |
---|
185 | REAL tautot_S_liq(npoints),tautot_S_ice(npoints) ! for liq and ice clouds |
---|
186 | |
---|
187 | |
---|
188 | ! Local variables |
---|
189 | REAL Alpha, Beta, Gamma ! Polynomial coefficient for ATBperp computation |
---|
190 | REAL temp(npoints,nlev) ! temperature of layer k |
---|
191 | REAL betatot_ice(npoints,nlev) ! backscatter coefficient for ice particles |
---|
192 | REAL beta_perp_ice(npoints,nlev) ! perpendicular backscatter coefficient for ice |
---|
193 | REAL betatot_liq(npoints,nlev) ! backscatter coefficient for liquid particles |
---|
194 | REAL beta_perp_liq(npoints,nlev) ! perpendicular backscatter coefficient for liq |
---|
195 | REAL tautot_ice(npoints,nlev) ! total optical thickness of ice |
---|
196 | REAL tautot_liq(npoints,nlev) ! total optical thickness of liq |
---|
197 | REAL tautot_lay_ice(npoints) ! total optical thickness of ice in the layer k |
---|
198 | REAL tautot_lay_liq(npoints) ! total optical thickness of liq in the layer k |
---|
199 | REAL pnorm_liq(npoints,nlev) ! lidar backscattered signal power for liquid |
---|
200 | REAL pnorm_ice(npoints,nlev) ! lidar backscattered signal power for ice |
---|
201 | REAL pnorm_perp_ice(npoints,nlev) ! perpendicular lidar backscattered signal power for ice |
---|
202 | REAL pnorm_perp_liq(npoints,nlev) ! perpendicular lidar backscattered signal power for liq |
---|
203 | |
---|
204 | REAL :: seuil |
---|
205 | |
---|
206 | ! Output variable |
---|
207 | REAL pnorm_perp_tot (npoints,nlev) ! perpendicular lidar backscattered signal power |
---|
208 | |
---|
209 | !------------------------------------------------------------ |
---|
210 | !---- 0. Initialisation : |
---|
211 | !------------------------------------------------------------ |
---|
212 | betatot_ice(:,:)=0 |
---|
213 | betatot_liq(:,:)=0 |
---|
214 | beta_perp_ice(:,:)=0 |
---|
215 | beta_perp_liq(:,:)=0 |
---|
216 | tautot_ice(:,:)=0 |
---|
217 | tautot_liq(:,:)=0 |
---|
218 | tautot_lay_ice(:)=0; |
---|
219 | tautot_lay_liq(:)=0; |
---|
220 | pnorm_liq(:,:)=0 |
---|
221 | pnorm_ice(:,:)=0 |
---|
222 | pnorm_perp_ice(:,:)=0 |
---|
223 | pnorm_perp_liq(:,:)=0 |
---|
224 | pnorm_perp_tot(:,:)=0 |
---|
225 | |
---|
226 | |
---|
227 | ! Polynomial coefficients (Alpha, Beta, Gamma) which allow to compute the ATBperpendicular |
---|
228 | ! as a function of the ATB for ice or liquid cloud particles derived from CALIPSO-GOCCP |
---|
229 | ! observations at 120m vertical grid (Cesana and Chepfer, JGR, 2013). |
---|
230 | |
---|
231 | ! Relationship between ATBice and ATBperp,ice for ice particles |
---|
232 | ! ATBperp,ice = Alpha*ATBice |
---|
233 | Alpha = 0.2904 |
---|
234 | |
---|
235 | ! Relationship between ATBice and ATBperp,ice for liquid particles |
---|
236 | ! ATBperp,ice = Beta*ATBice^2 + Gamma*ATBice |
---|
237 | Beta = 0.4099 |
---|
238 | Gamma = 0.009 |
---|
239 | |
---|
240 | if (ok_debug_cosp) then |
---|
241 | seuil=1.e-18 |
---|
242 | else |
---|
243 | seuil=0.0 |
---|
244 | endif |
---|
245 | !------------------------------------------------------------ |
---|
246 | !---- 1. Preliminary definitions and calculations : |
---|
247 | !------------------------------------------------------------ |
---|
248 | |
---|
249 | if ( npart .ne. 4 ) then |
---|
250 | print *,'Error in lidar_simulator, npart should be 4, not',npart |
---|
251 | stop |
---|
252 | endif |
---|
253 | |
---|
254 | pi = dacos(-1.D0) |
---|
255 | |
---|
256 | ! Polynomial coefficients for spherical liq/ice particles derived from Mie theory. |
---|
257 | ! Polynomial coefficients for non spherical particles derived from a composite of |
---|
258 | ! Ray-tracing theory for large particles (e.g. Noel et al., Appl. Opt., 2001) |
---|
259 | ! and FDTD theory for very small particles (Yang et al., JQSRT, 2003). |
---|
260 | |
---|
261 | ! We repeat the same coefficients for LS and CONV cloud to make code more readable |
---|
262 | !* LS Liquid water coefficients: |
---|
263 | polpart(INDX_LSLIQ,1) = 2.6980e-8 |
---|
264 | polpart(INDX_LSLIQ,2) = -3.7701e-6 |
---|
265 | polpart(INDX_LSLIQ,3) = 1.6594e-4 |
---|
266 | polpart(INDX_LSLIQ,4) = -0.0024 |
---|
267 | polpart(INDX_LSLIQ,5) = 0.0626 |
---|
268 | !* LS Ice coefficients: |
---|
269 | if (ice_type.eq.0) then |
---|
270 | polpart(INDX_LSICE,1) = -1.0176e-8 |
---|
271 | polpart(INDX_LSICE,2) = 1.7615e-6 |
---|
272 | polpart(INDX_LSICE,3) = -1.0480e-4 |
---|
273 | polpart(INDX_LSICE,4) = 0.0019 |
---|
274 | polpart(INDX_LSICE,5) = 0.0460 |
---|
275 | endif |
---|
276 | !* LS Ice NS coefficients: |
---|
277 | if (ice_type.eq.1) then |
---|
278 | polpart(INDX_LSICE,1) = 1.3615e-8 |
---|
279 | polpart(INDX_LSICE,2) = -2.04206e-6 |
---|
280 | polpart(INDX_LSICE,3) = 7.51799e-5 |
---|
281 | polpart(INDX_LSICE,4) = 0.00078213 |
---|
282 | polpart(INDX_LSICE,5) = 0.0182131 |
---|
283 | endif |
---|
284 | !* CONV Liquid water coefficients: |
---|
285 | polpart(INDX_CVLIQ,1) = 2.6980e-8 |
---|
286 | polpart(INDX_CVLIQ,2) = -3.7701e-6 |
---|
287 | polpart(INDX_CVLIQ,3) = 1.6594e-4 |
---|
288 | polpart(INDX_CVLIQ,4) = -0.0024 |
---|
289 | polpart(INDX_CVLIQ,5) = 0.0626 |
---|
290 | !* CONV Ice coefficients: |
---|
291 | if (ice_type.eq.0) then |
---|
292 | polpart(INDX_CVICE,1) = -1.0176e-8 |
---|
293 | polpart(INDX_CVICE,2) = 1.7615e-6 |
---|
294 | polpart(INDX_CVICE,3) = -1.0480e-4 |
---|
295 | polpart(INDX_CVICE,4) = 0.0019 |
---|
296 | polpart(INDX_CVICE,5) = 0.0460 |
---|
297 | endif |
---|
298 | if (ice_type.eq.1) then |
---|
299 | polpart(INDX_CVICE,1) = 1.3615e-8 |
---|
300 | polpart(INDX_CVICE,2) = -2.04206e-6 |
---|
301 | polpart(INDX_CVICE,3) = 7.51799e-5 |
---|
302 | polpart(INDX_CVICE,4) = 0.00078213 |
---|
303 | polpart(INDX_CVICE,5) = 0.0182131 |
---|
304 | endif |
---|
305 | |
---|
306 | ! density: |
---|
307 | !* clear-sky air: |
---|
308 | rhoair = pres/(287.04*temp) |
---|
309 | |
---|
310 | !* liquid/ice particules: |
---|
311 | rhopart(INDX_LSLIQ) = rholiq |
---|
312 | rhopart(INDX_LSICE) = rhoice |
---|
313 | rhopart(INDX_CVLIQ) = rholiq |
---|
314 | rhopart(INDX_CVICE) = rhoice |
---|
315 | |
---|
316 | ! effective radius particles: |
---|
317 | rad_part(:,:,INDX_LSLIQ) = ls_radliq(:,:) |
---|
318 | rad_part(:,:,INDX_LSICE) = ls_radice(:,:) |
---|
319 | rad_part(:,:,INDX_CVLIQ) = cv_radliq(:,:) |
---|
320 | rad_part(:,:,INDX_CVICE) = cv_radice(:,:) |
---|
321 | rad_part(:,:,:)=MAX(rad_part(:,:,:),0.) |
---|
322 | rad_part(:,:,:)=MIN(rad_part(:,:,:),70.0e-6) |
---|
323 | |
---|
324 | ! altitude at half pressure levels: |
---|
325 | zheight(:,1) = 0.0 |
---|
326 | do k = 2, nlev+1 |
---|
327 | zheight(:,k) = zheight(:,k-1) & |
---|
328 | -(presf(:,k)-presf(:,k-1))/(rhoair(:,k-1)*9.81) |
---|
329 | enddo |
---|
330 | |
---|
331 | !------------------------------------------------------------ |
---|
332 | !---- 2. Molecular alpha and beta: |
---|
333 | !------------------------------------------------------------ |
---|
334 | |
---|
335 | beta_mol = pres/km/temp * Cmol |
---|
336 | alpha_mol = 8.0*pi/3.0 * beta_mol |
---|
337 | |
---|
338 | !------------------------------------------------------------ |
---|
339 | !---- 3. Particles alpha and beta: |
---|
340 | !------------------------------------------------------------ |
---|
341 | |
---|
342 | ! polynomes kp_lidar derived from Mie theory: |
---|
343 | do i = 1, npart |
---|
344 | where ( rad_part(:,:,i).gt.0.0) |
---|
345 | kp_part(:,:,i) = & |
---|
346 | polpart(i,1)*(rad_part(:,:,i)*1e6)**4 & |
---|
347 | + polpart(i,2)*(rad_part(:,:,i)*1e6)**3 & |
---|
348 | + polpart(i,3)*(rad_part(:,:,i)*1e6)**2 & |
---|
349 | + polpart(i,4)*(rad_part(:,:,i)*1e6) & |
---|
350 | + polpart(i,5) |
---|
351 | elsewhere |
---|
352 | kp_part(:,:,i) = 0. |
---|
353 | endwhere |
---|
354 | enddo |
---|
355 | |
---|
356 | ! mixing ratio particules in each subcolumn: |
---|
357 | qpart(:,:,INDX_LSLIQ) = q_lsliq(:,:) ! oct08 |
---|
358 | qpart(:,:,INDX_LSICE) = q_lsice(:,:) ! oct08 |
---|
359 | qpart(:,:,INDX_CVLIQ) = q_cvliq(:,:) ! oct08 |
---|
360 | qpart(:,:,INDX_CVICE) = q_cvice(:,:) ! oct08 |
---|
361 | |
---|
362 | ! alpha of particles in each subcolumn: |
---|
363 | do i = 1, npart |
---|
364 | where ( rad_part(:,:,i).gt.0.0) |
---|
365 | alpha_part(:,:,i) = 3.0/4.0 * Qscat & |
---|
366 | * rhoair(:,:) * qpart(:,:,i) & |
---|
367 | / (rhopart(i) * rad_part(:,:,i) ) |
---|
368 | elsewhere |
---|
369 | alpha_part(:,:,i) = 0. |
---|
370 | endwhere |
---|
371 | enddo |
---|
372 | |
---|
373 | !------------------------------------------------------------ |
---|
374 | !---- 4.1 Total Backscatter signal: |
---|
375 | !------------------------------------------------------------ |
---|
376 | |
---|
377 | ! optical thickness (molecular): |
---|
378 | ! opt. thick of each layer |
---|
379 | tau_mol(:,1:nlev) = alpha_mol(:,1:nlev) & |
---|
380 | & *(zheight(:,2:nlev+1)-zheight(:,1:nlev)) |
---|
381 | ! opt. thick from TOA |
---|
382 | DO k = nlev-1, 1, -1 |
---|
383 | tau_mol(:,k) = tau_mol(:,k) + tau_mol(:,k+1) |
---|
384 | ENDDO |
---|
385 | |
---|
386 | ! optical thickness (particles): |
---|
387 | |
---|
388 | tau_part = rdiffm * alpha_part |
---|
389 | DO i = 1, npart |
---|
390 | ! opt. thick of each layer |
---|
391 | tau_part(:,:,i) = tau_part(:,:,i) & |
---|
392 | & * (zheight(:,2:nlev+1)-zheight(:,1:nlev) ) |
---|
393 | ! opt. thick from TOA |
---|
394 | DO k = nlev-1, 1, -1 |
---|
395 | tau_part(:,k,i) = tau_part(:,k,i) + tau_part(:,k+1,i) |
---|
396 | ENDDO |
---|
397 | ENDDO |
---|
398 | |
---|
399 | ! molecular signal: |
---|
400 | ! Upper layer |
---|
401 | pmol(:,nlev) = beta_mol(:,nlev) / (2.*tau_mol(:,nlev)) & |
---|
402 | & * (1.-exp(-2.0*tau_mol(:,nlev))) |
---|
403 | ! Other layers |
---|
404 | DO k= nlev-1, 1, -1 |
---|
405 | tau_mol_lay(:) = tau_mol(:,k)-tau_mol(:,k+1) ! opt. thick. of layer k |
---|
406 | WHERE (tau_mol_lay(:).GT.0.) |
---|
407 | pmol(:,k) = beta_mol(:,k) * EXP(-2.0*tau_mol(:,k+1)) / (2.*tau_mol_lay(:)) & |
---|
408 | & * (1.-exp(-2.0*tau_mol_lay(:))) |
---|
409 | ELSEWHERE |
---|
410 | ! This must never happend, but just in case, to avoid div. by 0 |
---|
411 | pmol(:,k) = beta_mol(:,k) * EXP(-2.0*tau_mol(:,k+1)) |
---|
412 | END WHERE |
---|
413 | END DO |
---|
414 | |
---|
415 | ! Total signal (molecular + particules): |
---|
416 | |
---|
417 | |
---|
418 | ! For performance reason on vector computers, the 2 following lines should not be used |
---|
419 | ! and should be replace by the later one. |
---|
420 | ! betatot(:,:) = beta_mol(:,:) + sum(kp_part*alpha_part,dim=3) |
---|
421 | ! tautot(:,:) = tau_mol(:,:) + sum(tau_part,dim=3) |
---|
422 | betatot(:,:) = beta_mol(:,:) |
---|
423 | tautot(:,:) = tau_mol(:,:) |
---|
424 | DO i = 1, npart |
---|
425 | betatot(:,:) = betatot(:,:) + kp_part(:,:,i)*alpha_part(:,:,i) |
---|
426 | tautot(:,:) = tautot(:,:) + tau_part(:,:,i) |
---|
427 | ENDDO ! i |
---|
428 | |
---|
429 | ! Upper layer |
---|
430 | pnorm(:,nlev) = betatot(:,nlev) / (2.*tautot(:,nlev)) & |
---|
431 | & * (1.-exp(-2.0*tautot(:,nlev))) |
---|
432 | |
---|
433 | ! Other layers |
---|
434 | DO k= nlev-1, 1, -1 |
---|
435 | tautot_lay(:) = tautot(:,k)-tautot(:,k+1) ! optical thickness of layer k |
---|
436 | WHERE (tautot_lay(:).GT.0.) |
---|
437 | pnorm(:,k) = betatot(:,k) * EXP(-2.0*tautot(:,k+1)) / (2.*tautot_lay(:)) & |
---|
438 | & * (1.-EXP(-2.0*tautot_lay(:))) |
---|
439 | ELSEWHERE |
---|
440 | ! This must never happend, but just in case, to avoid div. by 0 |
---|
441 | pnorm(:,k) = betatot(:,k) * EXP(-2.0*tautot(:,k+1)) |
---|
442 | END WHERE |
---|
443 | END DO |
---|
444 | |
---|
445 | !------------------------------------------------------------ |
---|
446 | !---- 4.2 Ice/Liq Backscatter signal: |
---|
447 | !------------------------------------------------------------ |
---|
448 | |
---|
449 | ! Contribution of the molecular to beta |
---|
450 | betatot_ice(:,:) = beta_mol(:,:) |
---|
451 | betatot_liq(:,:) = beta_mol(:,:) |
---|
452 | |
---|
453 | tautot_ice(:,:) = tau_mol(:,:) |
---|
454 | tautot_liq(:,:) = tau_mol(:,:) |
---|
455 | |
---|
456 | DO i = 2, npart,2 |
---|
457 | betatot_ice(:,:) = betatot_ice(:,:)+ kp_part(:,:,i)*alpha_part(:,:,i) |
---|
458 | tautot_ice(:,:) = tautot_ice(:,:) + tau_part(:,:,i) |
---|
459 | ENDDO ! i |
---|
460 | DO i = 1, npart,2 |
---|
461 | betatot_liq(:,:) = betatot_liq(:,:)+ kp_part(:,:,i)*alpha_part(:,:,i) |
---|
462 | tautot_liq(:,:) = tautot_liq(:,:) + tau_part(:,:,i) |
---|
463 | ENDDO ! i |
---|
464 | |
---|
465 | |
---|
466 | ! Computation of the ice and liquid lidar backscattered signal (ATBice and ATBliq) |
---|
467 | ! Ice only |
---|
468 | ! Upper layer |
---|
469 | pnorm_ice(:,nlev) = betatot_ice(:,nlev) / (2.*tautot_ice(:,nlev)) & |
---|
470 | & * (1.-exp(-2.0*tautot_ice(:,nlev))) |
---|
471 | |
---|
472 | DO k= nlev-1, 1, -1 |
---|
473 | tautot_lay_ice(:) = tautot_ice(:,k)-tautot_ice(:,k+1) |
---|
474 | WHERE (tautot_lay_ice(:).GT.0.) |
---|
475 | pnorm_ice(:,k)=betatot_ice(:,k)*EXP(-2.0*tautot_ice(:,k+1))/(2.*tautot_lay_ice(:)) & |
---|
476 | & * (1.-EXP(-2.0*tautot_lay_ice(:))) |
---|
477 | ELSEWHERE |
---|
478 | pnorm_ice(:,k)=betatot_ice(:,k)*EXP(-2.0*tautot_ice(:,k+1)) |
---|
479 | END WHERE |
---|
480 | ENDDO |
---|
481 | |
---|
482 | ! Liquid only |
---|
483 | ! Upper layer |
---|
484 | pnorm_liq(:,nlev) = betatot_liq(:,nlev) / (2.*tautot_liq(:,nlev)) & |
---|
485 | & * (1.-exp(-2.0*tautot_liq(:,nlev))) |
---|
486 | |
---|
487 | DO k= nlev-1, 1, -1 |
---|
488 | tautot_lay_liq(:) = tautot_liq(:,k)-tautot_liq(:,k+1) |
---|
489 | WHERE (tautot_lay_liq(:).GT.0.) |
---|
490 | pnorm_liq(:,k)=betatot_liq(:,k)*EXP(-2.0*tautot_liq(:,k+1))/(2.*tautot_lay_liq(:)) & |
---|
491 | & * (1.-EXP(-2.0*tautot_lay_liq(:))) |
---|
492 | ELSEWHERE |
---|
493 | pnorm_liq(:,k)=betatot_liq(:,k)*EXP(-2.0*tautot_liq(:,k+1)) |
---|
494 | END WHERE |
---|
495 | ENDDO |
---|
496 | |
---|
497 | |
---|
498 | ! Computation of ATBperp,ice/liq from ATBice/liq including the multiple scattering |
---|
499 | ! contribution (Cesana and Chepfer 2013, JGR) |
---|
500 | ! ATBperp,ice = Alpha*ATBice |
---|
501 | ! ATBperp,liq = Beta*ATBliq^2 + Gamma*ATBliq |
---|
502 | |
---|
503 | DO k= nlev, 1, -1 |
---|
504 | pnorm_perp_ice(:,k) = Alpha * pnorm_ice(:,k) ! Ice particles |
---|
505 | pnorm_perp_liq(:,k) = 1000*Beta * pnorm_liq(:,k)**2 + Gamma * pnorm_liq(:,k) ! Liquid particles |
---|
506 | ENDDO |
---|
507 | |
---|
508 | ! Computation of beta_perp_ice/liq using the lidar equation |
---|
509 | ! Ice only |
---|
510 | ! Upper layer |
---|
511 | beta_perp_ice(:,nlev) = pnorm_perp_ice(:,nlev) * (2.*tautot_ice(:,nlev)) & |
---|
512 | & / (1.-exp(-2.0*tautot_ice(:,nlev))) |
---|
513 | |
---|
514 | DO k= nlev-1, 1, -1 |
---|
515 | tautot_lay_ice(:) = tautot_ice(:,k)-tautot_ice(:,k+1) |
---|
516 | WHERE (tautot_lay_ice(:).GT.0.) |
---|
517 | beta_perp_ice(:,k) = pnorm_perp_ice(:,k)/ EXP(-2.0*tautot_ice(:,k+1)) * (2.*tautot_lay_ice(:)) & |
---|
518 | & / (1.-exp(-2.0*tautot_lay_ice(:))) |
---|
519 | |
---|
520 | ELSEWHERE |
---|
521 | beta_perp_ice(:,k)=pnorm_perp_ice(:,k)/EXP(-2.0*tautot_ice(:,k+1)) |
---|
522 | END WHERE |
---|
523 | ENDDO |
---|
524 | |
---|
525 | ! Liquid only |
---|
526 | ! Upper layer |
---|
527 | beta_perp_liq(:,nlev) = pnorm_perp_liq(:,nlev) * (2.*tautot_liq(:,nlev)) & |
---|
528 | & / (1.-exp(-2.0*tautot_liq(:,nlev))) |
---|
529 | |
---|
530 | DO k= nlev-1, 1, -1 |
---|
531 | tautot_lay_liq(:) = tautot_liq(:,k)-tautot_liq(:,k+1) |
---|
532 | WHERE (tautot_lay_liq(:).GT.0.) |
---|
533 | beta_perp_liq(:,k) = pnorm_perp_liq(:,k)/ max(seuil,EXP(-2.0*tautot_liq(:,k+1))) & |
---|
534 | & * (2.*tautot_lay_liq(:)) / (1.-exp(-2.0*tautot_lay_liq(:))) |
---|
535 | |
---|
536 | ELSEWHERE |
---|
537 | beta_perp_liq(:,k)=pnorm_perp_liq(:,k)/EXP(-2.0*tautot_liq(:,k+1)) |
---|
538 | END WHERE |
---|
539 | ENDDO |
---|
540 | |
---|
541 | |
---|
542 | |
---|
543 | !------------------------------------------------------------ |
---|
544 | !---- 4.3 Perpendicular Backscatter signal: |
---|
545 | !------------------------------------------------------------ |
---|
546 | |
---|
547 | ! Computation of the total perpendicular lidar signal (ATBperp for liq+ice) |
---|
548 | ! Upper layer |
---|
549 | WHERE(tautot(:,nlev).GT.0) |
---|
550 | pnorm_perp_tot(:,nlev) = & |
---|
551 | (beta_perp_ice(:,nlev)+beta_perp_liq(:,nlev)-(beta_mol(:,nlev)/(1+1/0.0284))) / (2.*tautot(:,nlev)) & |
---|
552 | & * (1.-exp(-2.0*tautot(:,nlev))) |
---|
553 | ELSEWHERE |
---|
554 | pnorm_perp_tot(:,nlev) = 0. |
---|
555 | ENDWHERE |
---|
556 | |
---|
557 | ! Other layers |
---|
558 | DO k= nlev-1, 1, -1 |
---|
559 | tautot_lay(:) = tautot(:,k)-tautot(:,k+1) ! optical thickness of layer k |
---|
560 | |
---|
561 | ! The perpendicular component of the molecular backscattered signal (Betaperp) has been |
---|
562 | ! taken into account two times (once for liquid and once for ice). |
---|
563 | ! We remove one contribution using |
---|
564 | ! Betaperp=beta_mol(:,k)/(1+1/0.0284)) [bodhaine et al. 1999] in the following equations: |
---|
565 | WHERE (pnorm(:,k).eq.0) |
---|
566 | pnorm_perp_tot(:,k)=0. |
---|
567 | ELSEWHERE |
---|
568 | WHERE (tautot_lay(:).GT.0.) |
---|
569 | pnorm_perp_tot(:,k) = & |
---|
570 | (beta_perp_ice(:,k)+beta_perp_liq(:,k)-(beta_mol(:,k)/(1+1/0.0284))) * & |
---|
571 | EXP(-2.0*tautot(:,k+1)) / (2.*tautot_lay(:)) & |
---|
572 | & * (1.-EXP(-2.0*tautot_lay(:))) |
---|
573 | ELSEWHERE |
---|
574 | ! This must never happen, but just in case, to avoid div. by 0 |
---|
575 | pnorm_perp_tot(:,k) = & |
---|
576 | (beta_perp_ice(:,k)+beta_perp_liq(:,k)-(beta_mol(:,k)/(1+1/0.0284))) * & |
---|
577 | EXP(-2.0*tautot(:,k+1)) |
---|
578 | END WHERE |
---|
579 | ENDWHERE |
---|
580 | |
---|
581 | END DO |
---|
582 | |
---|
583 | !-------- End computation Lidar -------------------------- |
---|
584 | |
---|
585 | !--------------------------------------------------------- |
---|
586 | ! Parasol/Polder module |
---|
587 | |
---|
588 | ! Purpose : Compute reflectance for one particular viewing direction |
---|
589 | ! and 5 solar zenith angles (calculation valid only over ocean) |
---|
590 | ! --------------------------------------------------------- |
---|
591 | |
---|
592 | ! initialization: |
---|
593 | refl(:,:) = 0.0 |
---|
594 | |
---|
595 | ! activate parasol calculations: |
---|
596 | if (ok_parasol) then |
---|
597 | |
---|
598 | ! Optical thickness from TOA to surface |
---|
599 | tautot_S_liq = 0. |
---|
600 | tautot_S_ice = 0. |
---|
601 | tautot_S_liq(:) = tautot_S_liq(:) & |
---|
602 | + tau_part(:,1,1) + tau_part(:,1,3) |
---|
603 | tautot_S_ice(:) = tautot_S_ice(:) & |
---|
604 | + tau_part(:,1,2) + tau_part(:,1,4) |
---|
605 | |
---|
606 | call parasol(npoints,nrefl,undef & |
---|
607 | ,tautot_S_liq,tautot_S_ice & |
---|
608 | ,refl) |
---|
609 | |
---|
610 | endif ! ok_parasol |
---|
611 | |
---|
612 | END SUBROUTINE lidar_simulator |
---|
613 | |
---|
614 | !--------------------------------------------------------------------------------- |
---|
615 | |
---|
616 | SUBROUTINE parasol(npoints,nrefl,undef & |
---|
617 | ,tautot_S_liq,tautot_S_ice & |
---|
618 | ,refl) |
---|
619 | !--------------------------------------------------------------------------------- |
---|
620 | ! Purpose: To compute Parasol reflectance signal from model-simulated profiles |
---|
621 | ! of cloud water and cloud fraction in each sub-column of each model |
---|
622 | ! gridbox. |
---|
623 | |
---|
624 | |
---|
625 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
626 | ! - optimization for vectorization |
---|
627 | |
---|
628 | ! Version 2.0 (October 2008) |
---|
629 | ! Version 2.1 (December 2008) |
---|
630 | !--------------------------------------------------------------------------------- |
---|
631 | |
---|
632 | IMPLICIT NONE |
---|
633 | |
---|
634 | ! inputs |
---|
635 | INTEGER npoints ! Number of horizontal gridpoints |
---|
636 | INTEGER nrefl ! Number of angles for which the reflectance |
---|
637 | ! is computed. Can not be greater then ntetas |
---|
638 | REAL undef ! Undefined value. Currently not used |
---|
639 | REAL tautot_S_liq(npoints) ! liquid water cloud optical thickness, |
---|
640 | ! integrated from TOA to surface |
---|
641 | REAL tautot_S_ice(npoints) ! same for ice water clouds only |
---|
642 | ! outputs |
---|
643 | REAL refl(npoints,nrefl) ! Parasol reflectances |
---|
644 | |
---|
645 | ! Local variables |
---|
646 | REAL tautot_S(npoints) ! cloud optical thickness, from TOA to surface |
---|
647 | REAL frac_taucol_liq(npoints), frac_taucol_ice(npoints) |
---|
648 | |
---|
649 | REAL pi |
---|
650 | ! look up table variables: |
---|
651 | INTEGER ny, it |
---|
652 | INTEGER ntetas, nbtau ! number of angle and of optical thickness |
---|
653 | ! of the look-up table |
---|
654 | PARAMETER (ntetas=5, nbtau=7) |
---|
655 | REAL aa(ntetas,nbtau-1), ab(ntetas,nbtau-1) |
---|
656 | REAL ba(ntetas,nbtau-1), bb(ntetas,nbtau-1) |
---|
657 | REAL tetas(ntetas),tau(nbtau) |
---|
658 | REAL r_norm(ntetas) |
---|
659 | REAL rlumA(ntetas,nbtau), rlumB(ntetas,nbtau) |
---|
660 | REAL rlumA_mod(npoints,5), rlumB_mod(npoints,5) |
---|
661 | |
---|
662 | DATA tau /0., 1., 5., 10., 20., 50., 100./ |
---|
663 | DATA tetas /0., 20., 40., 60., 80./ |
---|
664 | |
---|
665 | ! Look-up table for spherical liquid particles: |
---|
666 | DATA (rlumA(1,ny),ny=1,nbtau) /0.03, 0.090886, 0.283965, & |
---|
667 | 0.480587, 0.695235, 0.908229, 1.0 / |
---|
668 | DATA (rlumA(2,ny),ny=1,nbtau) /0.03, 0.072185, 0.252596, & |
---|
669 | 0.436401, 0.631352, 0.823924, 0.909013 / |
---|
670 | DATA (rlumA(3,ny),ny=1,nbtau) /0.03, 0.058410, 0.224707, & |
---|
671 | 0.367451, 0.509180, 0.648152, 0.709554 / |
---|
672 | DATA (rlumA(4,ny),ny=1,nbtau) /0.03, 0.052498, 0.175844, & |
---|
673 | 0.252916, 0.326551, 0.398581, 0.430405 / |
---|
674 | DATA (rlumA(5,ny),ny=1,nbtau) /0.03, 0.034730, 0.064488, & |
---|
675 | 0.081667, 0.098215, 0.114411, 0.121567 / |
---|
676 | |
---|
677 | ! Look-up table for ice particles: |
---|
678 | DATA (rlumB(1,ny),ny=1,nbtau) /0.03, 0.092170, 0.311941, & |
---|
679 | 0.511298, 0.712079 , 0.898243 , 0.976646 / |
---|
680 | DATA (rlumB(2,ny),ny=1,nbtau) /0.03, 0.087082, 0.304293, & |
---|
681 | 0.490879, 0.673565, 0.842026, 0.912966 / |
---|
682 | DATA (rlumB(3,ny),ny=1,nbtau) /0.03, 0.083325, 0.285193, & |
---|
683 | 0.430266, 0.563747, 0.685773, 0.737154 / |
---|
684 | DATA (rlumB(4,ny),ny=1,nbtau) /0.03, 0.084935, 0.233450, & |
---|
685 | 0.312280, 0.382376, 0.446371, 0.473317 / |
---|
686 | DATA (rlumB(5,ny),ny=1,nbtau) /0.03, 0.054157, 0.089911, & |
---|
687 | 0.107854, 0.124127, 0.139004, 0.145269 / |
---|
688 | |
---|
689 | !-------------------------------------------------------------------------------- |
---|
690 | ! Lum_norm=f(tetaS,tau_cloud) derived from adding-doubling calculations |
---|
691 | ! valid ONLY ABOVE OCEAN (albedo_sfce=5%) |
---|
692 | ! valid only in one viewing direction (theta_v=30�, phi_s-phi_v=320�) |
---|
693 | ! based on adding-doubling radiative transfer computation |
---|
694 | ! for tau values (0 to 100) and for tetas values (0 to 80) |
---|
695 | ! for 2 scattering phase functions: liquid spherical, ice non spherical |
---|
696 | |
---|
697 | IF ( nrefl.GT. ntetas ) THEN |
---|
698 | PRINT *,'Error in lidar_simulator, nrefl should be less then ',ntetas,' not',nrefl |
---|
699 | STOP |
---|
700 | ENDIF |
---|
701 | |
---|
702 | rlumA_mod=0 |
---|
703 | rlumB_mod=0 |
---|
704 | |
---|
705 | pi = ACOS(-1.0) |
---|
706 | r_norm(:)=1./ COS(pi/180.*tetas(:)) |
---|
707 | |
---|
708 | tautot_S_liq(:)=MAX(tautot_S_liq(:),tau(1)) |
---|
709 | tautot_S_ice(:)=MAX(tautot_S_ice(:),tau(1)) |
---|
710 | tautot_S(:) = tautot_S_ice(:) + tautot_S_liq(:) |
---|
711 | |
---|
712 | ! relative fraction of the opt. thick due to liquid or ice clouds |
---|
713 | WHERE (tautot_S(:) .GT. 0.) |
---|
714 | frac_taucol_liq(:) = tautot_S_liq(:) / tautot_S(:) |
---|
715 | frac_taucol_ice(:) = tautot_S_ice(:) / tautot_S(:) |
---|
716 | ELSEWHERE |
---|
717 | frac_taucol_liq(:) = 1. |
---|
718 | frac_taucol_ice(:) = 0. |
---|
719 | END WHERE |
---|
720 | tautot_S(:)=MIN(tautot_S(:),tau(nbtau)) |
---|
721 | |
---|
722 | ! Linear interpolation : |
---|
723 | |
---|
724 | DO ny=1,nbtau-1 |
---|
725 | ! microphysics A (liquid clouds) |
---|
726 | aA(:,ny) = (rlumA(:,ny+1)-rlumA(:,ny))/(tau(ny+1)-tau(ny)) |
---|
727 | bA(:,ny) = rlumA(:,ny) - aA(:,ny)*tau(ny) |
---|
728 | ! microphysics B (ice clouds) |
---|
729 | aB(:,ny) = (rlumB(:,ny+1)-rlumB(:,ny))/(tau(ny+1)-tau(ny)) |
---|
730 | bB(:,ny) = rlumB(:,ny) - aB(:,ny)*tau(ny) |
---|
731 | ENDDO |
---|
732 | |
---|
733 | DO it=1,ntetas |
---|
734 | DO ny=1,nbtau-1 |
---|
735 | WHERE (tautot_S(:).GE.tau(ny).AND.tautot_S(:).LE.tau(ny+1)) |
---|
736 | rlumA_mod(:,it) = aA(it,ny)*tautot_S(:) + bA(it,ny) |
---|
737 | rlumB_mod(:,it) = aB(it,ny)*tautot_S(:) + bB(it,ny) |
---|
738 | END WHERE |
---|
739 | END DO |
---|
740 | END DO |
---|
741 | |
---|
742 | DO it=1,ntetas |
---|
743 | refl(:,it) = frac_taucol_liq(:) * rlumA_mod(:,it) & |
---|
744 | + frac_taucol_ice(:) * rlumB_mod(:,it) |
---|
745 | ! normalized radiance -> reflectance: |
---|
746 | refl(:,it) = refl(:,it) * r_norm(it) |
---|
747 | ENDDO |
---|
748 | |
---|
749 | RETURN |
---|
750 | END SUBROUTINE parasol |
---|