1 | |
---|
2 | ! $Header$ |
---|
3 | |
---|
4 | SUBROUTINE convect1(len, nd, ndp1, noff, minorig, t, q, qs, u, v, p, ph, & |
---|
5 | iflag, ft, fq, fu, fv, precip, cbmf, delt, ma) |
---|
6 | ! .............................START PROLOGUE............................ |
---|
7 | |
---|
8 | ! SCCS IDENTIFICATION: @(#)convect1.f 1.1 04/21/00 |
---|
9 | ! 19:40:52 /h/cm/library/nogaps4/src/sub/fcst/convect1.f_v |
---|
10 | |
---|
11 | ! CONFIGURATION IDENTIFICATION: None |
---|
12 | |
---|
13 | ! MODULE NAME: convect1 |
---|
14 | |
---|
15 | ! DESCRIPTION: |
---|
16 | |
---|
17 | ! convect1 The Emanuel Cumulus Convection Scheme |
---|
18 | |
---|
19 | ! CONTRACT NUMBER AND TITLE: None |
---|
20 | |
---|
21 | ! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng |
---|
22 | ! (NRL) |
---|
23 | |
---|
24 | ! CLASSIFICATION: Unclassified |
---|
25 | |
---|
26 | ! RESTRICTIONS: None |
---|
27 | |
---|
28 | ! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
---|
29 | |
---|
30 | ! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
---|
31 | ! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
---|
32 | |
---|
33 | ! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
---|
34 | |
---|
35 | ! USAGE: CALL convect1(len,nd,noff,minorig, |
---|
36 | ! & t,q,qs,u,v, |
---|
37 | ! & p,ph,iflag,ft, |
---|
38 | ! & fq,fu,fv,precip,cbmf,delt) |
---|
39 | |
---|
40 | ! PARAMETERS: |
---|
41 | ! Name Type Usage Description |
---|
42 | ! ---------- ---------- ------- ---------------------------- |
---|
43 | |
---|
44 | ! len Integer Input first (i) dimension |
---|
45 | ! nd Integer Input vertical (k) dimension |
---|
46 | ! ndp1 Integer Input nd + 1 |
---|
47 | ! noff Integer Input integer limit for convection |
---|
48 | ! (nd-noff) |
---|
49 | ! minorig Integer Input First level of convection |
---|
50 | ! t Real Input temperature |
---|
51 | ! q Real Input specific hum |
---|
52 | ! qs Real Input sat specific hum |
---|
53 | ! u Real Input u-wind |
---|
54 | ! v Real Input v-wind |
---|
55 | ! p Real Input full level pressure |
---|
56 | ! ph Real Input half level pressure |
---|
57 | ! iflag Integer Output iflag on latitude strip |
---|
58 | ! ft Real Output temp tend |
---|
59 | ! fq Real Output spec hum tend |
---|
60 | ! fu Real Output u-wind tend |
---|
61 | ! fv Real Output v-wind tend |
---|
62 | ! cbmf Real In/Out cumulus mass flux |
---|
63 | ! delt Real Input time step |
---|
64 | ! iflag Integer Output integer flag for Emanuel |
---|
65 | ! conditions |
---|
66 | |
---|
67 | ! COMMON BLOCKS: |
---|
68 | ! Block Name Type Usage Notes |
---|
69 | ! -------- -------- ---- ------ ------------------------ |
---|
70 | |
---|
71 | ! FILES: None |
---|
72 | |
---|
73 | ! DATA BASES: None |
---|
74 | |
---|
75 | ! NON-FILE INPUT/OUTPUT: None |
---|
76 | |
---|
77 | ! ERROR CONDITIONS: None |
---|
78 | |
---|
79 | ! ADDITIONAL COMMENTS: None |
---|
80 | |
---|
81 | ! .................MAINTENANCE SECTION................................ |
---|
82 | |
---|
83 | ! MODULES CALLED: |
---|
84 | ! Name Description |
---|
85 | ! convect2 Emanuel cumulus convection tendency calculations |
---|
86 | ! ------- ---------------------- |
---|
87 | ! LOCAL VARIABLES AND |
---|
88 | ! STRUCTURES: |
---|
89 | ! Name Type Description |
---|
90 | ! ------- ------ ----------- |
---|
91 | ! See Comments Below |
---|
92 | |
---|
93 | ! i Integer loop index |
---|
94 | ! k Integer loop index |
---|
95 | |
---|
96 | ! METHOD: |
---|
97 | |
---|
98 | ! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation |
---|
99 | ! of a |
---|
100 | ! convective scheme for use in climate models. |
---|
101 | |
---|
102 | ! FILES: None |
---|
103 | |
---|
104 | ! INCLUDE FILES: None |
---|
105 | |
---|
106 | ! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
---|
107 | |
---|
108 | ! ..............................END PROLOGUE............................. |
---|
109 | |
---|
110 | |
---|
111 | USE dimphy |
---|
112 | IMPLICIT NONE |
---|
113 | |
---|
114 | INTEGER len |
---|
115 | INTEGER nd |
---|
116 | INTEGER ndp1 |
---|
117 | INTEGER noff |
---|
118 | REAL t(len, nd) |
---|
119 | REAL q(len, nd) |
---|
120 | REAL qs(len, nd) |
---|
121 | REAL u(len, nd) |
---|
122 | REAL v(len, nd) |
---|
123 | REAL p(len, nd) |
---|
124 | REAL ph(len, ndp1) |
---|
125 | INTEGER iflag(len) |
---|
126 | REAL ft(len, nd) |
---|
127 | REAL fq(len, nd) |
---|
128 | REAL fu(len, nd) |
---|
129 | REAL fv(len, nd) |
---|
130 | REAL precip(len) |
---|
131 | REAL cbmf(len) |
---|
132 | REAL ma(len, nd) |
---|
133 | INTEGER minorig |
---|
134 | REAL delt, cpd, cpv, cl, rv, rd, lv0, g |
---|
135 | REAL sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, damp |
---|
136 | REAL alpha, entp, coeffs, coeffr, omtrain, cu |
---|
137 | |
---|
138 | ! ------------------------------------------------------------------- |
---|
139 | ! --- ARGUMENTS |
---|
140 | ! ------------------------------------------------------------------- |
---|
141 | ! --- On input: |
---|
142 | |
---|
143 | ! t: Array of absolute temperature (K) of dimension ND, with first |
---|
144 | ! index corresponding to lowest model level. Note that this array |
---|
145 | ! will be altered by the subroutine if dry convective adjustment |
---|
146 | ! occurs and if IPBL is not equal to 0. |
---|
147 | |
---|
148 | ! q: Array of specific humidity (gm/gm) of dimension ND, with first |
---|
149 | ! index corresponding to lowest model level. Must be defined |
---|
150 | ! at same grid levels as T. Note that this array will be altered |
---|
151 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
152 | |
---|
153 | ! qs: Array of saturation specific humidity of dimension ND, with first |
---|
154 | ! index corresponding to lowest model level. Must be defined |
---|
155 | ! at same grid levels as T. Note that this array will be altered |
---|
156 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
157 | |
---|
158 | ! u: Array of zonal wind velocity (m/s) of dimension ND, witth first |
---|
159 | ! index corresponding with the lowest model level. Defined at |
---|
160 | ! same levels as T. Note that this array will be altered if |
---|
161 | ! dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
162 | |
---|
163 | ! v: Same as u but for meridional velocity. |
---|
164 | |
---|
165 | ! tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA), |
---|
166 | ! where NTRA is the number of different tracers. If no |
---|
167 | ! convective tracer transport is needed, define a dummy |
---|
168 | ! input array of dimension (ND,1). Tracers are defined at |
---|
169 | ! same vertical levels as T. Note that this array will be altered |
---|
170 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
171 | |
---|
172 | ! p: Array of pressure (mb) of dimension ND, with first |
---|
173 | ! index corresponding to lowest model level. Must be defined |
---|
174 | ! at same grid levels as T. |
---|
175 | |
---|
176 | ! ph: Array of pressure (mb) of dimension ND+1, with first index |
---|
177 | ! corresponding to lowest level. These pressures are defined at |
---|
178 | ! levels intermediate between those of P, T, Q and QS. The first |
---|
179 | ! value of PH should be greater than (i.e. at a lower level than) |
---|
180 | ! the first value of the array P. |
---|
181 | |
---|
182 | ! nl: The maximum number of levels to which convection can penetrate, plus |
---|
183 | ! 1. |
---|
184 | ! NL MUST be less than or equal to ND-1. |
---|
185 | |
---|
186 | ! delt: The model time step (sec) between calls to CONVECT |
---|
187 | |
---|
188 | ! ---------------------------------------------------------------------------- |
---|
189 | ! --- On Output: |
---|
190 | |
---|
191 | ! iflag: An output integer whose value denotes the following: |
---|
192 | ! VALUE INTERPRETATION |
---|
193 | ! ----- -------------- |
---|
194 | ! 0 Moist convection occurs. |
---|
195 | ! 1 Moist convection occurs, but a CFL condition |
---|
196 | ! on the subsidence warming is violated. This |
---|
197 | ! does not cause the scheme to terminate. |
---|
198 | ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 |
---|
199 | ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. |
---|
200 | ! 4 No moist convection; atmosphere is not |
---|
201 | ! unstable |
---|
202 | ! 6 No moist convection because ihmin le minorig. |
---|
203 | ! 7 No moist convection because unreasonable |
---|
204 | ! parcel level temperature or specific humidity. |
---|
205 | ! 8 No moist convection: lifted condensation |
---|
206 | ! level is above the 200 mb level. |
---|
207 | ! 9 No moist convection: cloud base is higher |
---|
208 | ! then the level NL-1. |
---|
209 | |
---|
210 | ! ft: Array of temperature tendency (K/s) of dimension ND, defined at |
---|
211 | ! same |
---|
212 | ! grid levels as T, Q, QS and P. |
---|
213 | |
---|
214 | ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension ND, |
---|
215 | ! defined at same grid levels as T, Q, QS and P. |
---|
216 | |
---|
217 | ! fu: Array of forcing of zonal velocity (m/s^2) of dimension ND, |
---|
218 | ! defined at same grid levels as T. |
---|
219 | |
---|
220 | ! fv: Same as FU, but for forcing of meridional velocity. |
---|
221 | |
---|
222 | ! ftra: Array of forcing of tracer content, in tracer mixing ratio per |
---|
223 | ! second, defined at same levels as T. Dimensioned (ND,NTRA). |
---|
224 | |
---|
225 | ! precip: Scalar convective precipitation rate (mm/day). |
---|
226 | |
---|
227 | ! wd: A convective downdraft velocity scale. For use in surface |
---|
228 | ! flux parameterizations. See convect.ps file for details. |
---|
229 | |
---|
230 | ! tprime: A convective downdraft temperature perturbation scale (K). |
---|
231 | ! For use in surface flux parameterizations. See convect.ps |
---|
232 | ! file for details. |
---|
233 | |
---|
234 | ! qprime: A convective downdraft specific humidity |
---|
235 | ! perturbation scale (gm/gm). |
---|
236 | ! For use in surface flux parameterizations. See convect.ps |
---|
237 | ! file for details. |
---|
238 | |
---|
239 | ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST |
---|
240 | ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT |
---|
241 | ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" |
---|
242 | ! by the calling program between calls to CONVECT. |
---|
243 | |
---|
244 | ! det: Array of detrainment mass flux of dimension ND. |
---|
245 | |
---|
246 | ! ------------------------------------------------------------------- |
---|
247 | |
---|
248 | ! Local arrays |
---|
249 | |
---|
250 | INTEGER nl |
---|
251 | INTEGER nlp |
---|
252 | INTEGER nlm |
---|
253 | INTEGER i, k, n |
---|
254 | REAL delti |
---|
255 | REAL rowl |
---|
256 | REAL clmcpv |
---|
257 | REAL clmcpd |
---|
258 | REAL cpdmcp |
---|
259 | REAL cpvmcpd |
---|
260 | REAL eps |
---|
261 | REAL epsi |
---|
262 | REAL epsim1 |
---|
263 | REAL ginv |
---|
264 | REAL hrd |
---|
265 | REAL prccon1 |
---|
266 | INTEGER icbmax |
---|
267 | REAL lv(klon, klev) |
---|
268 | REAL cpn(klon, klev) |
---|
269 | REAL cpx(klon, klev) |
---|
270 | REAL tv(klon, klev) |
---|
271 | REAL gz(klon, klev) |
---|
272 | REAL hm(klon, klev) |
---|
273 | REAL h(klon, klev) |
---|
274 | REAL work(klon) |
---|
275 | INTEGER ihmin(klon) |
---|
276 | INTEGER nk(klon) |
---|
277 | REAL rh(klon) |
---|
278 | REAL chi(klon) |
---|
279 | REAL plcl(klon) |
---|
280 | INTEGER icb(klon) |
---|
281 | REAL tnk(klon) |
---|
282 | REAL qnk(klon) |
---|
283 | REAL gznk(klon) |
---|
284 | REAL pnk(klon) |
---|
285 | REAL qsnk(klon) |
---|
286 | REAL ticb(klon) |
---|
287 | REAL gzicb(klon) |
---|
288 | REAL tp(klon, klev) |
---|
289 | REAL tvp(klon, klev) |
---|
290 | REAL clw(klon, klev) |
---|
291 | |
---|
292 | REAL ah0(klon), cpp(klon) |
---|
293 | REAL tg, qg, s, alv, tc, ahg, denom, es, rg |
---|
294 | |
---|
295 | INTEGER ncum |
---|
296 | INTEGER idcum(klon) |
---|
297 | |
---|
298 | cpd = 1005.7 |
---|
299 | cpv = 1870.0 |
---|
300 | cl = 4190.0 |
---|
301 | rv = 461.5 |
---|
302 | rd = 287.04 |
---|
303 | lv0 = 2.501E6 |
---|
304 | g = 9.8 |
---|
305 | |
---|
306 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
307 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
308 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
309 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
310 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
311 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
312 | ! *** FORMULATION *** |
---|
313 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
314 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
315 | ! *** OF CLOUD *** |
---|
316 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
317 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
318 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
319 | ! *** OF RAIN *** |
---|
320 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
321 | ! *** OF SNOW *** |
---|
322 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
323 | ! *** TRANSPORT *** |
---|
324 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
325 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
326 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
327 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
328 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
329 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
330 | |
---|
331 | sigs = 0.12 |
---|
332 | sigd = 0.05 |
---|
333 | elcrit = 0.0011 |
---|
334 | tlcrit = -55.0 |
---|
335 | omtsnow = 5.5 |
---|
336 | dtmax = 0.9 |
---|
337 | damp = 0.1 |
---|
338 | alpha = 0.2 |
---|
339 | entp = 1.5 |
---|
340 | coeffs = 0.8 |
---|
341 | coeffr = 1.0 |
---|
342 | omtrain = 50.0 |
---|
343 | |
---|
344 | cu = 0.70 |
---|
345 | damp = 0.1 |
---|
346 | |
---|
347 | |
---|
348 | ! Define nl, nlp, nlm, and delti |
---|
349 | |
---|
350 | nl = nd - noff |
---|
351 | nlp = nl + 1 |
---|
352 | nlm = nl - 1 |
---|
353 | delti = 1.0/delt |
---|
354 | |
---|
355 | ! ------------------------------------------------------------------- |
---|
356 | ! --- SET CONSTANTS |
---|
357 | ! ------------------------------------------------------------------- |
---|
358 | |
---|
359 | rowl = 1000.0 |
---|
360 | clmcpv = cl - cpv |
---|
361 | clmcpd = cl - cpd |
---|
362 | cpdmcp = cpd - cpv |
---|
363 | cpvmcpd = cpv - cpd |
---|
364 | eps = rd/rv |
---|
365 | epsi = 1.0/eps |
---|
366 | epsim1 = epsi - 1.0 |
---|
367 | ginv = 1.0/g |
---|
368 | hrd = 0.5*rd |
---|
369 | prccon1 = 86400.0*1000.0/(rowl*g) |
---|
370 | |
---|
371 | ! dtmax is the maximum negative temperature perturbation. |
---|
372 | |
---|
373 | ! ===================================================================== |
---|
374 | ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS |
---|
375 | ! ===================================================================== |
---|
376 | |
---|
377 | DO k = 1, nd |
---|
378 | DO i = 1, len |
---|
379 | ft(i, k) = 0.0 |
---|
380 | fq(i, k) = 0.0 |
---|
381 | fu(i, k) = 0.0 |
---|
382 | fv(i, k) = 0.0 |
---|
383 | tvp(i, k) = 0.0 |
---|
384 | tp(i, k) = 0.0 |
---|
385 | clw(i, k) = 0.0 |
---|
386 | gz(i, k) = 0. |
---|
387 | END DO |
---|
388 | END DO |
---|
389 | DO i = 1, len |
---|
390 | precip(i) = 0.0 |
---|
391 | iflag(i) = 0 |
---|
392 | END DO |
---|
393 | |
---|
394 | ! ===================================================================== |
---|
395 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
396 | ! ===================================================================== |
---|
397 | DO k = 1, nl + 1 |
---|
398 | DO i = 1, len |
---|
399 | lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
---|
400 | cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
---|
401 | cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
---|
402 | tv(i, k) = t(i, k)*(1.0+q(i,k)*epsim1) |
---|
403 | END DO |
---|
404 | END DO |
---|
405 | |
---|
406 | ! gz = phi at the full levels (same as p). |
---|
407 | |
---|
408 | DO i = 1, len |
---|
409 | gz(i, 1) = 0.0 |
---|
410 | END DO |
---|
411 | DO k = 2, nlp |
---|
412 | DO i = 1, len |
---|
413 | gz(i, k) = gz(i, k-1) + hrd*(tv(i,k-1)+tv(i,k))*(p(i,k-1)-p(i,k))/ph(i, & |
---|
414 | k) |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | |
---|
418 | ! h = phi + cpT (dry static energy). |
---|
419 | ! hm = phi + cp(T-Tbase)+Lq |
---|
420 | |
---|
421 | DO k = 1, nlp |
---|
422 | DO i = 1, len |
---|
423 | h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
---|
424 | hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
---|
425 | END DO |
---|
426 | END DO |
---|
427 | |
---|
428 | ! ------------------------------------------------------------------- |
---|
429 | ! --- Find level of minimum moist static energy |
---|
430 | ! --- If level of minimum moist static energy coincides with |
---|
431 | ! --- or is lower than minimum allowable parcel origin level, |
---|
432 | ! --- set iflag to 6. |
---|
433 | ! ------------------------------------------------------------------- |
---|
434 | DO i = 1, len |
---|
435 | work(i) = 1.0E12 |
---|
436 | ihmin(i) = nl |
---|
437 | END DO |
---|
438 | DO k = 2, nlp |
---|
439 | DO i = 1, len |
---|
440 | IF ((hm(i,k)<work(i)) .AND. (hm(i,k)<hm(i,k-1))) THEN |
---|
441 | work(i) = hm(i, k) |
---|
442 | ihmin(i) = k |
---|
443 | END IF |
---|
444 | END DO |
---|
445 | END DO |
---|
446 | DO i = 1, len |
---|
447 | ihmin(i) = min(ihmin(i), nlm) |
---|
448 | IF (ihmin(i)<=minorig) THEN |
---|
449 | iflag(i) = 6 |
---|
450 | END IF |
---|
451 | END DO |
---|
452 | |
---|
453 | ! ------------------------------------------------------------------- |
---|
454 | ! --- Find that model level below the level of minimum moist static |
---|
455 | ! --- energy that has the maximum value of moist static energy |
---|
456 | ! ------------------------------------------------------------------- |
---|
457 | |
---|
458 | DO i = 1, len |
---|
459 | work(i) = hm(i, minorig) |
---|
460 | nk(i) = minorig |
---|
461 | END DO |
---|
462 | DO k = minorig + 1, nl |
---|
463 | DO i = 1, len |
---|
464 | IF ((hm(i,k)>work(i)) .AND. (k<=ihmin(i))) THEN |
---|
465 | work(i) = hm(i, k) |
---|
466 | nk(i) = k |
---|
467 | END IF |
---|
468 | END DO |
---|
469 | END DO |
---|
470 | ! ------------------------------------------------------------------- |
---|
471 | ! --- Check whether parcel level temperature and specific humidity |
---|
472 | ! --- are reasonable |
---|
473 | ! ------------------------------------------------------------------- |
---|
474 | DO i = 1, len |
---|
475 | IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0) .OR. (p(i,ihmin(i))< & |
---|
476 | 400.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
477 | END DO |
---|
478 | ! ------------------------------------------------------------------- |
---|
479 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
480 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
481 | ! ------------------------------------------------------------------- |
---|
482 | DO i = 1, len |
---|
483 | tnk(i) = t(i, nk(i)) |
---|
484 | qnk(i) = q(i, nk(i)) |
---|
485 | gznk(i) = gz(i, nk(i)) |
---|
486 | pnk(i) = p(i, nk(i)) |
---|
487 | qsnk(i) = qs(i, nk(i)) |
---|
488 | |
---|
489 | rh(i) = qnk(i)/qsnk(i) |
---|
490 | rh(i) = min(1.0, rh(i)) |
---|
491 | chi(i) = tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
492 | plcl(i) = pnk(i)*(rh(i)**chi(i)) |
---|
493 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag(i & |
---|
494 | ) = 8 |
---|
495 | END DO |
---|
496 | ! ------------------------------------------------------------------- |
---|
497 | ! --- Calculate first level above lcl (=icb) |
---|
498 | ! ------------------------------------------------------------------- |
---|
499 | DO i = 1, len |
---|
500 | icb(i) = nlm |
---|
501 | END DO |
---|
502 | |
---|
503 | DO k = minorig, nl |
---|
504 | DO i = 1, len |
---|
505 | IF ((k>=(nk(i)+1)) .AND. (p(i,k)<plcl(i))) icb(i) = min(icb(i), k) |
---|
506 | END DO |
---|
507 | END DO |
---|
508 | |
---|
509 | DO i = 1, len |
---|
510 | IF ((icb(i)>=nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
511 | END DO |
---|
512 | |
---|
513 | ! Compute icbmax. |
---|
514 | |
---|
515 | icbmax = 2 |
---|
516 | DO i = 1, len |
---|
517 | icbmax = max(icbmax, icb(i)) |
---|
518 | END DO |
---|
519 | |
---|
520 | ! ------------------------------------------------------------------- |
---|
521 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
522 | ! --- the actual temperature, and the adiabatic |
---|
523 | ! --- liquid water content. The procedure is to solve the equation. |
---|
524 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
525 | ! ------------------------------------------------------------------- |
---|
526 | |
---|
527 | DO i = 1, len |
---|
528 | tnk(i) = t(i, nk(i)) |
---|
529 | qnk(i) = q(i, nk(i)) |
---|
530 | gznk(i) = gz(i, nk(i)) |
---|
531 | ticb(i) = t(i, icb(i)) |
---|
532 | gzicb(i) = gz(i, icb(i)) |
---|
533 | END DO |
---|
534 | |
---|
535 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
536 | |
---|
537 | DO i = 1, len |
---|
538 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
539 | 273.15)) + gznk(i) |
---|
540 | cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
---|
541 | END DO |
---|
542 | |
---|
543 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
544 | |
---|
545 | DO k = minorig, icbmax - 1 |
---|
546 | DO i = 1, len |
---|
547 | tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))/cpp(i) |
---|
548 | tvp(i, k) = tp(i, k)*(1.+qnk(i)*epsi) |
---|
549 | END DO |
---|
550 | END DO |
---|
551 | |
---|
552 | ! *** Find lifted parcel quantities above cloud base *** |
---|
553 | |
---|
554 | DO i = 1, len |
---|
555 | tg = ticb(i) |
---|
556 | qg = qs(i, icb(i)) |
---|
557 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
558 | |
---|
559 | ! First iteration. |
---|
560 | |
---|
561 | s = cpd + alv*alv*qg/(rv*ticb(i)*ticb(i)) |
---|
562 | s = 1./s |
---|
563 | ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
---|
564 | tg = tg + s*(ah0(i)-ahg) |
---|
565 | tg = max(tg, 35.0) |
---|
566 | tc = tg - 273.15 |
---|
567 | denom = 243.5 + tc |
---|
568 | IF (tc>=0.0) THEN |
---|
569 | es = 6.112*exp(17.67*tc/denom) |
---|
570 | ELSE |
---|
571 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
572 | END IF |
---|
573 | qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
574 | |
---|
575 | ! Second iteration. |
---|
576 | |
---|
577 | s = cpd + alv*alv*qg/(rv*ticb(i)*ticb(i)) |
---|
578 | s = 1./s |
---|
579 | ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
---|
580 | tg = tg + s*(ah0(i)-ahg) |
---|
581 | tg = max(tg, 35.0) |
---|
582 | tc = tg - 273.15 |
---|
583 | denom = 243.5 + tc |
---|
584 | IF (tc>=0.0) THEN |
---|
585 | es = 6.112*exp(17.67*tc/denom) |
---|
586 | ELSE |
---|
587 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
588 | END IF |
---|
589 | qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
590 | |
---|
591 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
592 | tp(i, icb(i)) = (ah0(i)-(cl-cpd)*qnk(i)*ticb(i)-gz(i,icb(i))-alv*qg)/cpd |
---|
593 | clw(i, icb(i)) = qnk(i) - qg |
---|
594 | clw(i, icb(i)) = max(0.0, clw(i,icb(i))) |
---|
595 | rg = qg/(1.-qnk(i)) |
---|
596 | tvp(i, icb(i)) = tp(i, icb(i))*(1.+rg*epsi) |
---|
597 | END DO |
---|
598 | |
---|
599 | DO k = minorig, icbmax |
---|
600 | DO i = 1, len |
---|
601 | tvp(i, k) = tvp(i, k) - tp(i, k)*qnk(i) |
---|
602 | END DO |
---|
603 | END DO |
---|
604 | |
---|
605 | ! ------------------------------------------------------------------- |
---|
606 | ! --- Test for instability. |
---|
607 | ! --- If there was no convection at last time step and parcel |
---|
608 | ! --- is stable at icb, then set iflag to 4. |
---|
609 | ! ------------------------------------------------------------------- |
---|
610 | |
---|
611 | DO i = 1, len |
---|
612 | IF ((cbmf(i)==0.0) .AND. (iflag(i)==0) .AND. (tvp(i, & |
---|
613 | icb(i))<=(tv(i,icb(i))-dtmax))) iflag(i) = 4 |
---|
614 | END DO |
---|
615 | |
---|
616 | ! ===================================================================== |
---|
617 | ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY |
---|
618 | ! ===================================================================== |
---|
619 | |
---|
620 | ncum = 0 |
---|
621 | DO i = 1, len |
---|
622 | IF (iflag(i)==0) THEN |
---|
623 | ncum = ncum + 1 |
---|
624 | idcum(ncum) = i |
---|
625 | END IF |
---|
626 | END DO |
---|
627 | |
---|
628 | ! Call convect2, which compresses the points and computes the heating, |
---|
629 | ! moistening, velocity mixing, and precipiation. |
---|
630 | |
---|
631 | ! print*,'cpd avant convect2 ',cpd |
---|
632 | IF (ncum>0) THEN |
---|
633 | CALL convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk, icb, t, q, qs, & |
---|
634 | u, v, gz, tv, tp, tvp, clw, h, lv, cpn, p, ph, ft, fq, fu, fv, tnk, & |
---|
635 | qnk, gznk, plcl, precip, cbmf, iflag, delt, cpd, cpv, cl, rv, rd, lv0, & |
---|
636 | g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, damp, alpha, entp, & |
---|
637 | coeffs, coeffr, omtrain, cu, ma) |
---|
638 | END IF |
---|
639 | |
---|
640 | RETURN |
---|
641 | END SUBROUTINE convect1 |
---|