1 | ! $Header$ |
---|
2 | |
---|
3 | SUBROUTINE conflx(dtime, pres_h, pres_f, t, q, con_t, con_q, pqhfl, w, d_t, & |
---|
4 | d_q, rain, snow, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & |
---|
5 | kdtop, pmflxr, pmflxs) |
---|
6 | |
---|
7 | USE dimphy |
---|
8 | USE lmdz_yoethf |
---|
9 | |
---|
10 | USE lmdz_yomcst |
---|
11 | |
---|
12 | IMPLICIT NONE |
---|
13 | INCLUDE "FCTTRE.h" |
---|
14 | ! ====================================================================== |
---|
15 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19941014 |
---|
16 | ! Objet: Schema flux de masse pour la convection |
---|
17 | ! (schema de Tiedtke avec qqs modifications mineures) |
---|
18 | ! Dec.97: Prise en compte des modifications introduites par |
---|
19 | ! Olivier Boucher et Alexandre Armengaud pour melange |
---|
20 | ! et lessivage des traceurs passifs. |
---|
21 | ! ====================================================================== |
---|
22 | ! Entree: |
---|
23 | REAL dtime ! pas d'integration (s) |
---|
24 | REAL pres_h(klon, klev + 1) ! pression half-level (Pa) |
---|
25 | REAL pres_f(klon, klev) ! pression full-level (Pa) |
---|
26 | REAL t(klon, klev) ! temperature (K) |
---|
27 | REAL q(klon, klev) ! humidite specifique (g/g) |
---|
28 | REAL w(klon, klev) ! vitesse verticale (Pa/s) |
---|
29 | REAL con_t(klon, klev) ! convergence de temperature (K/s) |
---|
30 | REAL con_q(klon, klev) ! convergence de l'eau vapeur (g/g/s) |
---|
31 | REAL pqhfl(klon) ! evaporation (negative vers haut) mm/s |
---|
32 | ! Sortie: |
---|
33 | REAL d_t(klon, klev) ! incrementation de temperature |
---|
34 | REAL d_q(klon, klev) ! incrementation d'humidite |
---|
35 | REAL pmfu(klon, klev) ! flux masse (kg/m2/s) panache ascendant |
---|
36 | REAL pmfd(klon, klev) ! flux masse (kg/m2/s) panache descendant |
---|
37 | REAL pen_u(klon, klev) |
---|
38 | REAL pen_d(klon, klev) |
---|
39 | REAL pde_u(klon, klev) |
---|
40 | REAL pde_d(klon, klev) |
---|
41 | REAL rain(klon) ! pluie (mm/s) |
---|
42 | REAL snow(klon) ! neige (mm/s) |
---|
43 | REAL pmflxr(klon, klev + 1) |
---|
44 | REAL pmflxs(klon, klev + 1) |
---|
45 | INTEGER kcbot(klon) ! niveau du bas de la convection |
---|
46 | INTEGER kctop(klon) ! niveau du haut de la convection |
---|
47 | INTEGER kdtop(klon) ! niveau du haut des downdrafts |
---|
48 | ! Local: |
---|
49 | REAL pt(klon, klev) |
---|
50 | REAL pq(klon, klev) |
---|
51 | REAL pqs(klon, klev) |
---|
52 | REAL pvervel(klon, klev) |
---|
53 | LOGICAL land(klon) |
---|
54 | |
---|
55 | REAL d_t_bis(klon, klev) |
---|
56 | REAL d_q_bis(klon, klev) |
---|
57 | REAL paprs(klon, klev + 1) |
---|
58 | REAL paprsf(klon, klev) |
---|
59 | REAL zgeom(klon, klev) |
---|
60 | REAL zcvgq(klon, klev) |
---|
61 | REAL zcvgt(klon, klev) |
---|
62 | ! AA |
---|
63 | REAL zmfu(klon, klev) |
---|
64 | REAL zmfd(klon, klev) |
---|
65 | REAL zen_u(klon, klev) |
---|
66 | REAL zen_d(klon, klev) |
---|
67 | REAL zde_u(klon, klev) |
---|
68 | REAL zde_d(klon, klev) |
---|
69 | REAL zmflxr(klon, klev + 1) |
---|
70 | REAL zmflxs(klon, klev + 1) |
---|
71 | ! AA |
---|
72 | |
---|
73 | INTEGER i, k |
---|
74 | REAL zdelta, zqsat |
---|
75 | |
---|
76 | ! initialiser les variables de sortie (pour securite) |
---|
77 | DO i = 1, klon |
---|
78 | rain(i) = 0.0 |
---|
79 | snow(i) = 0.0 |
---|
80 | kcbot(i) = 0 |
---|
81 | kctop(i) = 0 |
---|
82 | kdtop(i) = 0 |
---|
83 | END DO |
---|
84 | DO k = 1, klev |
---|
85 | DO i = 1, klon |
---|
86 | d_t(i, k) = 0.0 |
---|
87 | d_q(i, k) = 0.0 |
---|
88 | pmfu(i, k) = 0.0 |
---|
89 | pmfd(i, k) = 0.0 |
---|
90 | pen_u(i, k) = 0.0 |
---|
91 | pde_u(i, k) = 0.0 |
---|
92 | pen_d(i, k) = 0.0 |
---|
93 | pde_d(i, k) = 0.0 |
---|
94 | zmfu(i, k) = 0.0 |
---|
95 | zmfd(i, k) = 0.0 |
---|
96 | zen_u(i, k) = 0.0 |
---|
97 | zde_u(i, k) = 0.0 |
---|
98 | zen_d(i, k) = 0.0 |
---|
99 | zde_d(i, k) = 0.0 |
---|
100 | END DO |
---|
101 | END DO |
---|
102 | DO k = 1, klev + 1 |
---|
103 | DO i = 1, klon |
---|
104 | zmflxr(i, k) = 0.0 |
---|
105 | zmflxs(i, k) = 0.0 |
---|
106 | END DO |
---|
107 | END DO |
---|
108 | |
---|
109 | ! calculer la nature du sol (pour l'instant, ocean partout) |
---|
110 | DO i = 1, klon |
---|
111 | land(i) = .FALSE. |
---|
112 | END DO |
---|
113 | |
---|
114 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
115 | ! verticaux augmente du haut vers le bas) |
---|
116 | DO k = 1, klev |
---|
117 | DO i = 1, klon |
---|
118 | pt(i, k) = t(i, klev - k + 1) |
---|
119 | pq(i, k) = q(i, klev - k + 1) |
---|
120 | paprsf(i, k) = pres_f(i, klev - k + 1) |
---|
121 | paprs(i, k) = pres_h(i, klev + 1 - k + 1) |
---|
122 | pvervel(i, k) = w(i, klev + 1 - k) |
---|
123 | zcvgt(i, k) = con_t(i, klev - k + 1) |
---|
124 | zcvgq(i, k) = con_q(i, klev - k + 1) |
---|
125 | |
---|
126 | zdelta = max(0., sign(1., rtt - pt(i, k))) |
---|
127 | zqsat = r2es * foeew(pt(i, k), zdelta) / paprsf(i, k) |
---|
128 | zqsat = min(0.5, zqsat) |
---|
129 | zqsat = zqsat / (1. - retv * zqsat) |
---|
130 | pqs(i, k) = zqsat |
---|
131 | END DO |
---|
132 | END DO |
---|
133 | DO i = 1, klon |
---|
134 | paprs(i, klev + 1) = pres_h(i, 1) |
---|
135 | zgeom(i, klev) = rd * pt(i, klev) / (0.5 * (paprs(i, klev + 1) + paprsf(i, & |
---|
136 | klev))) * (paprs(i, klev + 1) - paprsf(i, klev)) |
---|
137 | END DO |
---|
138 | DO k = klev - 1, 1, -1 |
---|
139 | DO i = 1, klon |
---|
140 | zgeom(i, k) = zgeom(i, k + 1) + rd * 0.5 * (pt(i, k + 1) + pt(i, k)) / paprs(i, k + 1) * & |
---|
141 | (paprsf(i, k + 1) - paprsf(i, k)) |
---|
142 | END DO |
---|
143 | END DO |
---|
144 | |
---|
145 | ! appeler la routine principale |
---|
146 | |
---|
147 | CALL flxmain(dtime, pt, pq, pqs, pqhfl, paprsf, paprs, zgeom, land, zcvgt, & |
---|
148 | zcvgq, pvervel, rain, snow, kcbot, kctop, kdtop, zmfu, zmfd, zen_u, & |
---|
149 | zde_u, zen_d, zde_d, d_t_bis, d_q_bis, zmflxr, zmflxs) |
---|
150 | |
---|
151 | ! AA-------------------------------------------------------- |
---|
152 | ! AA rem : De la meme facon que l'on effectue le reindicage |
---|
153 | ! AA pour la temperature t et le champ q |
---|
154 | ! AA on reindice les flux necessaires a la convection |
---|
155 | ! AA des traceurs |
---|
156 | ! AA-------------------------------------------------------- |
---|
157 | DO k = 1, klev |
---|
158 | DO i = 1, klon |
---|
159 | d_q(i, klev + 1 - k) = dtime * d_q_bis(i, k) |
---|
160 | d_t(i, klev + 1 - k) = dtime * d_t_bis(i, k) |
---|
161 | END DO |
---|
162 | END DO |
---|
163 | |
---|
164 | DO i = 1, klon |
---|
165 | pmfu(i, 1) = 0. |
---|
166 | pmfd(i, 1) = 0. |
---|
167 | pen_d(i, 1) = 0. |
---|
168 | pde_d(i, 1) = 0. |
---|
169 | END DO |
---|
170 | |
---|
171 | DO k = 2, klev |
---|
172 | DO i = 1, klon |
---|
173 | pmfu(i, klev + 2 - k) = zmfu(i, k) |
---|
174 | pmfd(i, klev + 2 - k) = zmfd(i, k) |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | |
---|
178 | DO k = 1, klev |
---|
179 | DO i = 1, klon |
---|
180 | pen_u(i, klev + 1 - k) = zen_u(i, k) |
---|
181 | pde_u(i, klev + 1 - k) = zde_u(i, k) |
---|
182 | END DO |
---|
183 | END DO |
---|
184 | |
---|
185 | DO k = 1, klev - 1 |
---|
186 | DO i = 1, klon |
---|
187 | pen_d(i, klev + 1 - k) = -zen_d(i, k + 1) |
---|
188 | pde_d(i, klev + 1 - k) = -zde_d(i, k + 1) |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | |
---|
192 | DO k = 1, klev + 1 |
---|
193 | DO i = 1, klon |
---|
194 | pmflxr(i, klev + 2 - k) = zmflxr(i, k) |
---|
195 | pmflxs(i, klev + 2 - k) = zmflxs(i, k) |
---|
196 | END DO |
---|
197 | END DO |
---|
198 | |
---|
199 | END SUBROUTINE conflx |
---|
200 | ! -------------------------------------------------------------------- |
---|
201 | SUBROUTINE flxmain(pdtime, pten, pqen, pqsen, pqhfl, pap, paph, pgeo, ldland, & |
---|
202 | ptte, pqte, pvervel, prsfc, pssfc, kcbot, kctop, kdtop, & ! * |
---|
203 | ! ldcum, ktype, |
---|
204 | pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, dt_con, dq_con, pmflxr, pmflxs) |
---|
205 | USE dimphy |
---|
206 | USE lmdz_YOECUMF |
---|
207 | USE lmdz_yoethf |
---|
208 | USE lmdz_yomcst |
---|
209 | |
---|
210 | IMPLICIT NONE |
---|
211 | |
---|
212 | REAL pten(klon, klev), pqen(klon, klev), pqsen(klon, klev) |
---|
213 | REAL ptte(klon, klev) |
---|
214 | REAL pqte(klon, klev) |
---|
215 | REAL pvervel(klon, klev) |
---|
216 | REAL pgeo(klon, klev), pap(klon, klev), paph(klon, klev + 1) |
---|
217 | REAL pqhfl(klon) |
---|
218 | |
---|
219 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
220 | REAL plude(klon, klev) |
---|
221 | REAL pmfu(klon, klev) |
---|
222 | REAL prsfc(klon), pssfc(klon) |
---|
223 | INTEGER kcbot(klon), kctop(klon), ktype(klon) |
---|
224 | LOGICAL ldland(klon), ldcum(klon) |
---|
225 | |
---|
226 | REAL ztenh(klon, klev), zqenh(klon, klev), zqsenh(klon, klev) |
---|
227 | REAL zgeoh(klon, klev) |
---|
228 | REAL zmfub(klon), zmfub1(klon) |
---|
229 | REAL zmfus(klon, klev), zmfuq(klon, klev), zmful(klon, klev) |
---|
230 | REAL zdmfup(klon, klev), zdpmel(klon, klev) |
---|
231 | REAL zentr(klon), zhcbase(klon) |
---|
232 | REAL zdqpbl(klon), zdqcv(klon), zdhpbl(klon) |
---|
233 | REAL zrfl(klon) |
---|
234 | REAL pmflxr(klon, klev + 1) |
---|
235 | REAL pmflxs(klon, klev + 1) |
---|
236 | INTEGER ilab(klon, klev), ictop0(klon) |
---|
237 | LOGICAL llo1 |
---|
238 | REAL dt_con(klon, klev), dq_con(klon, klev) |
---|
239 | REAL zmfmax, zdh |
---|
240 | REAL pdtime, zqumqe, zdqmin, zalvdcp, zhsat, zzz |
---|
241 | REAL zhhat, zpbmpt, zgam, zeps, zfac |
---|
242 | INTEGER i, k, ikb, itopm2, kcum |
---|
243 | |
---|
244 | REAL pen_u(klon, klev), pde_u(klon, klev) |
---|
245 | REAL pen_d(klon, klev), pde_d(klon, klev) |
---|
246 | |
---|
247 | REAL ptd(klon, klev), pqd(klon, klev), pmfd(klon, klev) |
---|
248 | REAL zmfds(klon, klev), zmfdq(klon, klev), zdmfdp(klon, klev) |
---|
249 | INTEGER kdtop(klon) |
---|
250 | LOGICAL lddraf(klon) |
---|
251 | ! --------------------------------------------------------------------- |
---|
252 | LOGICAL firstcal |
---|
253 | SAVE firstcal |
---|
254 | DATA firstcal/.TRUE./ |
---|
255 | !$OMP THREADPRIVATE(firstcal) |
---|
256 | ! --------------------------------------------------------------------- |
---|
257 | IF (firstcal) THEN |
---|
258 | CALL flxsetup |
---|
259 | firstcal = .FALSE. |
---|
260 | END IF |
---|
261 | ! --------------------------------------------------------------------- |
---|
262 | DO i = 1, klon |
---|
263 | ldcum(i) = .FALSE. |
---|
264 | END DO |
---|
265 | DO k = 1, klev |
---|
266 | DO i = 1, klon |
---|
267 | dt_con(i, k) = 0.0 |
---|
268 | dq_con(i, k) = 0.0 |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | ! ---------------------------------------------------------------------- |
---|
272 | ! initialiser les variables et faire l'interpolation verticale |
---|
273 | ! ---------------------------------------------------------------------- |
---|
274 | CALL flxini(pten, pqen, pqsen, pgeo, paph, zgeoh, ztenh, zqenh, zqsenh, & |
---|
275 | ptu, pqu, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, pmfu, zmfus, zmfuq, & |
---|
276 | zdmfup, zdpmel, plu, plude, ilab, pen_u, pde_u, pen_d, pde_d) |
---|
277 | ! --------------------------------------------------------------------- |
---|
278 | ! determiner les valeurs au niveau de base de la tour convective |
---|
279 | ! --------------------------------------------------------------------- |
---|
280 | CALL flxbase(ztenh, zqenh, zgeoh, paph, ptu, pqu, plu, ldcum, kcbot, ilab) |
---|
281 | ! --------------------------------------------------------------------- |
---|
282 | ! calculer la convergence totale de l'humidite et celle en provenance |
---|
283 | ! de la couche limite, plus precisement, la convergence integree entre |
---|
284 | ! le sol et la base de la convection. Cette derniere convergence est |
---|
285 | ! comparee avec l'evaporation obtenue dans la couche limite pour |
---|
286 | ! determiner le type de la convection |
---|
287 | ! --------------------------------------------------------------------- |
---|
288 | k = 1 |
---|
289 | DO i = 1, klon |
---|
290 | zdqcv(i) = pqte(i, k) * (paph(i, k + 1) - paph(i, k)) |
---|
291 | zdhpbl(i) = 0.0 |
---|
292 | zdqpbl(i) = 0.0 |
---|
293 | END DO |
---|
294 | |
---|
295 | DO k = 2, klev |
---|
296 | DO i = 1, klon |
---|
297 | zdqcv(i) = zdqcv(i) + pqte(i, k) * (paph(i, k + 1) - paph(i, k)) |
---|
298 | IF (k>=kcbot(i)) THEN |
---|
299 | zdqpbl(i) = zdqpbl(i) + pqte(i, k) * (paph(i, k + 1) - paph(i, k)) |
---|
300 | zdhpbl(i) = zdhpbl(i) + (rcpd * ptte(i, k) + rlvtt * pqte(i, k)) * (paph(i, k + 1) & |
---|
301 | - paph(i, k)) |
---|
302 | END IF |
---|
303 | END DO |
---|
304 | END DO |
---|
305 | |
---|
306 | DO i = 1, klon |
---|
307 | ktype(i) = 2 |
---|
308 | IF (zdqcv(i)>max(0., -1.5 * pqhfl(i) * rg)) ktype(i) = 1 |
---|
309 | ! cc if (zdqcv(i).GT.MAX(0.,-1.1*pqhfl(i)*RG)) ktype(i) = 1 |
---|
310 | END DO |
---|
311 | |
---|
312 | ! --------------------------------------------------------------------- |
---|
313 | ! determiner le flux de masse entrant a travers la base. |
---|
314 | ! on ignore, pour l'instant, l'effet du panache descendant |
---|
315 | ! --------------------------------------------------------------------- |
---|
316 | DO i = 1, klon |
---|
317 | ikb = kcbot(i) |
---|
318 | zqumqe = pqu(i, ikb) + plu(i, ikb) - zqenh(i, ikb) |
---|
319 | zdqmin = max(0.01 * zqenh(i, ikb), 1.E-10) |
---|
320 | IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i)) THEN |
---|
321 | zmfub(i) = zdqpbl(i) / (rg * max(zqumqe, zdqmin)) |
---|
322 | ELSE |
---|
323 | zmfub(i) = 0.01 |
---|
324 | ldcum(i) = .FALSE. |
---|
325 | END IF |
---|
326 | IF (ktype(i)==2) THEN |
---|
327 | zdh = rcpd * (ptu(i, ikb) - ztenh(i, ikb)) + rlvtt * zqumqe |
---|
328 | zdh = rg * max(zdh, 1.0E5 * zdqmin) |
---|
329 | IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub(i) = zdhpbl(i) / zdh |
---|
330 | END IF |
---|
331 | zmfmax = (paph(i, ikb) - paph(i, ikb - 1)) / (rg * pdtime) |
---|
332 | zmfub(i) = min(zmfub(i), zmfmax) |
---|
333 | zentr(i) = entrscv |
---|
334 | IF (ktype(i)==1) zentr(i) = entrpen |
---|
335 | END DO |
---|
336 | ! ----------------------------------------------------------------------- |
---|
337 | ! DETERMINE CLOUD ASCENT FOR ENTRAINING PLUME |
---|
338 | ! ----------------------------------------------------------------------- |
---|
339 | ! (A) calculer d'abord la hauteur "theorique" de la tour convective sans |
---|
340 | ! considerer l'entrainement ni le detrainement du panache, sachant |
---|
341 | ! ces derniers peuvent abaisser la hauteur theorique. |
---|
342 | |
---|
343 | DO i = 1, klon |
---|
344 | ikb = kcbot(i) |
---|
345 | zhcbase(i) = rcpd * ptu(i, ikb) + zgeoh(i, ikb) + rlvtt * pqu(i, ikb) |
---|
346 | ictop0(i) = kcbot(i) - 1 |
---|
347 | END DO |
---|
348 | |
---|
349 | zalvdcp = rlvtt / rcpd |
---|
350 | DO k = klev - 1, 3, -1 |
---|
351 | DO i = 1, klon |
---|
352 | zhsat = rcpd * ztenh(i, k) + zgeoh(i, k) + rlvtt * zqsenh(i, k) |
---|
353 | zgam = r5les * zalvdcp * zqsenh(i, k) / ((1. - retv * zqsenh(i, k)) * (ztenh(i, & |
---|
354 | k) - r4les)**2) |
---|
355 | zzz = rcpd * ztenh(i, k) * 0.608 |
---|
356 | zhhat = zhsat - (zzz + zgam * zzz) / (1. + zgam * zzz / rlvtt) * max(zqsenh(i, k) - & |
---|
357 | zqenh(i, k), 0.) |
---|
358 | IF (k<ictop0(i) .AND. zhcbase(i)>zhhat) ictop0(i) = k |
---|
359 | END DO |
---|
360 | END DO |
---|
361 | |
---|
362 | ! (B) calculer le panache ascendant |
---|
363 | |
---|
364 | CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
---|
365 | paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
---|
366 | zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
---|
367 | kcum, pen_u, pde_u) |
---|
368 | IF (kcum==0) GO TO 1000 |
---|
369 | |
---|
370 | ! verifier l'epaisseur de la convection et changer eventuellement |
---|
371 | ! le taux d'entrainement/detrainement |
---|
372 | |
---|
373 | DO i = 1, klon |
---|
374 | zpbmpt = paph(i, kcbot(i)) - paph(i, kctop(i)) |
---|
375 | IF (ldcum(i) .AND. ktype(i)==1 .AND. zpbmpt<2.E4) ktype(i) = 2 |
---|
376 | IF (ldcum(i)) ictop0(i) = kctop(i) |
---|
377 | IF (ktype(i)==2) zentr(i) = entrscv |
---|
378 | END DO |
---|
379 | |
---|
380 | IF (lmfdd) THEN ! si l'on considere le panache descendant |
---|
381 | |
---|
382 | ! calculer la precipitation issue du panache ascendant pour |
---|
383 | ! determiner l'existence du panache descendant dans la convection |
---|
384 | DO i = 1, klon |
---|
385 | zrfl(i) = zdmfup(i, 1) |
---|
386 | END DO |
---|
387 | DO k = 2, klev |
---|
388 | DO i = 1, klon |
---|
389 | zrfl(i) = zrfl(i) + zdmfup(i, k) |
---|
390 | END DO |
---|
391 | END DO |
---|
392 | |
---|
393 | ! determiner le LFS (level of free sinking: niveau de plonge libre) |
---|
394 | CALL flxdlfs(ztenh, zqenh, zgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
---|
395 | zmfub, zrfl, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, kdtop, lddraf) |
---|
396 | |
---|
397 | ! calculer le panache descendant |
---|
398 | CALL flxddraf(ztenh, zqenh, zgeoh, paph, zrfl, ptd, pqd, pmfd, zmfds, & |
---|
399 | zmfdq, zdmfdp, lddraf, pen_d, pde_d) |
---|
400 | |
---|
401 | ! calculer de nouveau le flux de masse entrant a travers la base |
---|
402 | ! de la convection, sachant qu'il a ete modifie par le panache |
---|
403 | ! descendant |
---|
404 | DO i = 1, klon |
---|
405 | IF (lddraf(i)) THEN |
---|
406 | ikb = kcbot(i) |
---|
407 | llo1 = pmfd(i, ikb) < 0. |
---|
408 | zeps = 0. |
---|
409 | IF (llo1) zeps = cmfdeps |
---|
410 | zqumqe = pqu(i, ikb) + plu(i, ikb) - zeps * pqd(i, ikb) - & |
---|
411 | (1. - zeps) * zqenh(i, ikb) |
---|
412 | zdqmin = max(0.01 * zqenh(i, ikb), 1.E-10) |
---|
413 | zmfmax = (paph(i, ikb) - paph(i, ikb - 1)) / (rg * pdtime) |
---|
414 | IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i) .AND. & |
---|
415 | zmfub(i)<zmfmax) THEN |
---|
416 | zmfub1(i) = zdqpbl(i) / (rg * max(zqumqe, zdqmin)) |
---|
417 | ELSE |
---|
418 | zmfub1(i) = zmfub(i) |
---|
419 | END IF |
---|
420 | IF (ktype(i)==2) THEN |
---|
421 | zdh = rcpd * (ptu(i, ikb) - zeps * ptd(i, ikb) - (1. - zeps) * ztenh(i, ikb)) + & |
---|
422 | rlvtt * zqumqe |
---|
423 | zdh = rg * max(zdh, 1.0E5 * zdqmin) |
---|
424 | IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub1(i) = zdhpbl(i) / zdh |
---|
425 | END IF |
---|
426 | IF (.NOT. ((ktype(i)==1 .OR. ktype(i)==2) .AND. abs(zmfub1(i) - zmfub(i & |
---|
427 | ))<0.2 * zmfub(i))) zmfub1(i) = zmfub(i) |
---|
428 | END IF |
---|
429 | END DO |
---|
430 | DO k = 1, klev |
---|
431 | DO i = 1, klon |
---|
432 | IF (lddraf(i)) THEN |
---|
433 | zfac = zmfub1(i) / max(zmfub(i), 1.E-10) |
---|
434 | pmfd(i, k) = pmfd(i, k) * zfac |
---|
435 | zmfds(i, k) = zmfds(i, k) * zfac |
---|
436 | zmfdq(i, k) = zmfdq(i, k) * zfac |
---|
437 | zdmfdp(i, k) = zdmfdp(i, k) * zfac |
---|
438 | pen_d(i, k) = pen_d(i, k) * zfac |
---|
439 | pde_d(i, k) = pde_d(i, k) * zfac |
---|
440 | END IF |
---|
441 | END DO |
---|
442 | END DO |
---|
443 | DO i = 1, klon |
---|
444 | IF (lddraf(i)) zmfub(i) = zmfub1(i) |
---|
445 | END DO |
---|
446 | |
---|
447 | END IF ! fin de test sur lmfdd |
---|
448 | |
---|
449 | ! ----------------------------------------------------------------------- |
---|
450 | ! calculer de nouveau le panache ascendant |
---|
451 | ! ----------------------------------------------------------------------- |
---|
452 | CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
---|
453 | paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
---|
454 | zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
---|
455 | kcum, pen_u, pde_u) |
---|
456 | |
---|
457 | ! ----------------------------------------------------------------------- |
---|
458 | ! determiner les flux convectifs en forme finale, ainsi que |
---|
459 | ! la quantite des precipitations |
---|
460 | ! ----------------------------------------------------------------------- |
---|
461 | CALL flxflux(pdtime, pqen, pqsen, ztenh, zqenh, pap, paph, ldland, zgeoh, & |
---|
462 | kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, zmfus, zmfds, & |
---|
463 | zmfuq, zmfdq, zmful, plude, zdmfup, zdmfdp, pten, prsfc, pssfc, zdpmel, & |
---|
464 | itopm2, pmflxr, pmflxs) |
---|
465 | |
---|
466 | ! ---------------------------------------------------------------------- |
---|
467 | ! calculer les tendances pour T et Q |
---|
468 | ! ---------------------------------------------------------------------- |
---|
469 | CALL flxdtdq(pdtime, itopm2, paph, ldcum, pten, zmfus, zmfds, zmfuq, zmfdq, & |
---|
470 | zmful, zdmfup, zdmfdp, zdpmel, dt_con, dq_con) |
---|
471 | |
---|
472 | 1000 CONTINUE |
---|
473 | |
---|
474 | END SUBROUTINE flxmain |
---|
475 | SUBROUTINE flxini(pten, pqen, pqsen, pgeo, paph, pgeoh, ptenh, pqenh, pqsenh, & |
---|
476 | ptu, pqu, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, pmfu, pmfus, pmfuq, & |
---|
477 | pdmfup, pdpmel, plu, plude, klab, pen_u, pde_u, pen_d, pde_d) |
---|
478 | USE dimphy |
---|
479 | USE lmdz_yoethf |
---|
480 | USE lmdz_yomcst |
---|
481 | |
---|
482 | IMPLICIT NONE |
---|
483 | ! ---------------------------------------------------------------------- |
---|
484 | ! THIS ROUTINE INTERPOLATES LARGE-SCALE FIELDS OF T,Q ETC. |
---|
485 | ! TO HALF LEVELS (I.E. GRID FOR MASSFLUX SCHEME), |
---|
486 | ! AND INITIALIZES VALUES FOR UPDRAFTS |
---|
487 | ! ---------------------------------------------------------------------- |
---|
488 | |
---|
489 | REAL pten(klon, klev) ! temperature (environnement) |
---|
490 | REAL pqen(klon, klev) ! humidite (environnement) |
---|
491 | REAL pqsen(klon, klev) ! humidite saturante (environnement) |
---|
492 | REAL pgeo(klon, klev) ! geopotentiel (g * metre) |
---|
493 | REAL pgeoh(klon, klev) ! geopotentiel aux demi-niveaux |
---|
494 | REAL paph(klon, klev + 1) ! pression aux demi-niveaux |
---|
495 | REAL ptenh(klon, klev) ! temperature aux demi-niveaux |
---|
496 | REAL pqenh(klon, klev) ! humidite aux demi-niveaux |
---|
497 | REAL pqsenh(klon, klev) ! humidite saturante aux demi-niveaux |
---|
498 | |
---|
499 | REAL ptu(klon, klev) ! temperature du panache ascendant (p-a) |
---|
500 | REAL pqu(klon, klev) ! humidite du p-a |
---|
501 | REAL plu(klon, klev) ! eau liquide du p-a |
---|
502 | REAL pmfu(klon, klev) ! flux de masse du p-a |
---|
503 | REAL pmfus(klon, klev) ! flux de l'energie seche dans le p-a |
---|
504 | REAL pmfuq(klon, klev) ! flux de l'humidite dans le p-a |
---|
505 | REAL pdmfup(klon, klev) ! quantite de l'eau precipitee dans p-a |
---|
506 | REAL plude(klon, klev) ! quantite de l'eau liquide jetee du |
---|
507 | ! p-a a l'environnement |
---|
508 | REAL pdpmel(klon, klev) ! quantite de neige fondue |
---|
509 | |
---|
510 | REAL ptd(klon, klev) ! temperature du panache descendant (p-d) |
---|
511 | REAL pqd(klon, klev) ! humidite du p-d |
---|
512 | REAL pmfd(klon, klev) ! flux de masse du p-d |
---|
513 | REAL pmfds(klon, klev) ! flux de l'energie seche dans le p-d |
---|
514 | REAL pmfdq(klon, klev) ! flux de l'humidite dans le p-d |
---|
515 | REAL pdmfdp(klon, klev) ! quantite de precipitation dans p-d |
---|
516 | |
---|
517 | REAL pen_u(klon, klev) ! quantite de masse entrainee pour p-a |
---|
518 | REAL pde_u(klon, klev) ! quantite de masse detrainee pour p-a |
---|
519 | REAL pen_d(klon, klev) ! quantite de masse entrainee pour p-d |
---|
520 | REAL pde_d(klon, klev) ! quantite de masse detrainee pour p-d |
---|
521 | |
---|
522 | INTEGER klab(klon, klev) |
---|
523 | LOGICAL llflag(klon) |
---|
524 | INTEGER k, i, icall |
---|
525 | REAL zzs |
---|
526 | ! ---------------------------------------------------------------------- |
---|
527 | ! SPECIFY LARGE SCALE PARAMETERS AT HALF LEVELS |
---|
528 | ! ADJUST TEMPERATURE FIELDS IF STATICLY UNSTABLE |
---|
529 | ! ---------------------------------------------------------------------- |
---|
530 | DO k = 2, klev |
---|
531 | |
---|
532 | DO i = 1, klon |
---|
533 | pgeoh(i, k) = pgeo(i, k) + (pgeo(i, k - 1) - pgeo(i, k)) * 0.5 |
---|
534 | ptenh(i, k) = (max(rcpd * pten(i, k - 1) + pgeo(i, k - 1), rcpd * pten(i, k) + pgeo(i, & |
---|
535 | k)) - pgeoh(i, k)) / rcpd |
---|
536 | pqsenh(i, k) = pqsen(i, k - 1) |
---|
537 | llflag(i) = .TRUE. |
---|
538 | END DO |
---|
539 | |
---|
540 | iCALL = 0 |
---|
541 | CALL flxadjtq(paph(1, k), ptenh(1, k), pqsenh(1, k), llflag, icall) |
---|
542 | |
---|
543 | DO i = 1, klon |
---|
544 | pqenh(i, k) = min(pqen(i, k - 1), pqsen(i, k - 1)) + & |
---|
545 | (pqsenh(i, k) - pqsen(i, k - 1)) |
---|
546 | pqenh(i, k) = max(pqenh(i, k), 0.) |
---|
547 | END DO |
---|
548 | |
---|
549 | END DO |
---|
550 | |
---|
551 | DO i = 1, klon |
---|
552 | ptenh(i, klev) = (rcpd * pten(i, klev) + pgeo(i, klev) - pgeoh(i, klev)) / rcpd |
---|
553 | pqenh(i, klev) = pqen(i, klev) |
---|
554 | ptenh(i, 1) = pten(i, 1) |
---|
555 | pqenh(i, 1) = pqen(i, 1) |
---|
556 | pgeoh(i, 1) = pgeo(i, 1) |
---|
557 | END DO |
---|
558 | |
---|
559 | DO k = klev - 1, 2, -1 |
---|
560 | DO i = 1, klon |
---|
561 | zzs = max(rcpd * ptenh(i, k) + pgeoh(i, k), rcpd * ptenh(i, k + 1) + pgeoh(i, k + 1)) |
---|
562 | ptenh(i, k) = (zzs - pgeoh(i, k)) / rcpd |
---|
563 | END DO |
---|
564 | END DO |
---|
565 | |
---|
566 | ! ----------------------------------------------------------------------- |
---|
567 | ! INITIALIZE VALUES FOR UPDRAFTS AND DOWNDRAFTS |
---|
568 | ! ----------------------------------------------------------------------- |
---|
569 | DO k = 1, klev |
---|
570 | DO i = 1, klon |
---|
571 | ptu(i, k) = ptenh(i, k) |
---|
572 | pqu(i, k) = pqenh(i, k) |
---|
573 | plu(i, k) = 0. |
---|
574 | pmfu(i, k) = 0. |
---|
575 | pmfus(i, k) = 0. |
---|
576 | pmfuq(i, k) = 0. |
---|
577 | pdmfup(i, k) = 0. |
---|
578 | pdpmel(i, k) = 0. |
---|
579 | plude(i, k) = 0. |
---|
580 | |
---|
581 | klab(i, k) = 0 |
---|
582 | |
---|
583 | ptd(i, k) = ptenh(i, k) |
---|
584 | pqd(i, k) = pqenh(i, k) |
---|
585 | pmfd(i, k) = 0.0 |
---|
586 | pmfds(i, k) = 0.0 |
---|
587 | pmfdq(i, k) = 0.0 |
---|
588 | pdmfdp(i, k) = 0.0 |
---|
589 | |
---|
590 | pen_u(i, k) = 0.0 |
---|
591 | pde_u(i, k) = 0.0 |
---|
592 | pen_d(i, k) = 0.0 |
---|
593 | pde_d(i, k) = 0.0 |
---|
594 | END DO |
---|
595 | END DO |
---|
596 | |
---|
597 | END SUBROUTINE flxini |
---|
598 | SUBROUTINE flxbase(ptenh, pqenh, pgeoh, paph, ptu, pqu, plu, ldcum, kcbot, klab) |
---|
599 | USE dimphy |
---|
600 | USE lmdz_yoethf |
---|
601 | USE lmdz_yomcst |
---|
602 | |
---|
603 | IMPLICIT NONE |
---|
604 | ! ---------------------------------------------------------------------- |
---|
605 | ! THIS ROUTINE CALCULATES CLOUD BASE VALUES (T AND Q) |
---|
606 | |
---|
607 | ! INPUT ARE ENVIRONM. VALUES OF T,Q,P,PHI AT HALF LEVELS. |
---|
608 | ! IT RETURNS CLOUD BASE VALUES AND FLAGS AS FOLLOWS; |
---|
609 | ! klab=1 FOR SUBCLOUD LEVELS |
---|
610 | ! klab=2 FOR CONDENSATION LEVEL |
---|
611 | |
---|
612 | ! LIFT SURFACE AIR DRY-ADIABATICALLY TO CLOUD BASE |
---|
613 | ! (NON ENTRAINING PLUME,I.E.CONSTANT MASSFLUX) |
---|
614 | |
---|
615 | REAL ptenh(klon, klev), pqenh(klon, klev) |
---|
616 | REAL pgeoh(klon, klev), paph(klon, klev + 1) |
---|
617 | |
---|
618 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
619 | INTEGER klab(klon, klev), kcbot(klon) |
---|
620 | |
---|
621 | LOGICAL llflag(klon), ldcum(klon) |
---|
622 | INTEGER i, k, icall, is |
---|
623 | REAL zbuo, zqold(klon) |
---|
624 | ! ---------------------------------------------------------------------- |
---|
625 | ! INITIALIZE VALUES AT LIFTING LEVEL |
---|
626 | ! ---------------------------------------------------------------------- |
---|
627 | DO i = 1, klon |
---|
628 | klab(i, klev) = 1 |
---|
629 | kcbot(i) = klev - 1 |
---|
630 | ldcum(i) = .FALSE. |
---|
631 | END DO |
---|
632 | ! ---------------------------------------------------------------------- |
---|
633 | ! DO ASCENT IN SUBCLOUD LAYER, |
---|
634 | ! CHECK FOR EXISTENCE OF CONDENSATION LEVEL, |
---|
635 | ! ADJUST T,Q AND L ACCORDINGLY |
---|
636 | ! CHECK FOR BUOYANCY AND SET FLAGS |
---|
637 | ! ---------------------------------------------------------------------- |
---|
638 | DO k = klev - 1, 2, -1 |
---|
639 | |
---|
640 | is = 0 |
---|
641 | DO i = 1, klon |
---|
642 | IF (klab(i, k + 1)==1) is = is + 1 |
---|
643 | llflag(i) = .FALSE. |
---|
644 | IF (klab(i, k + 1)==1) llflag(i) = .TRUE. |
---|
645 | END DO |
---|
646 | IF (is==0) GO TO 290 |
---|
647 | |
---|
648 | DO i = 1, klon |
---|
649 | IF (llflag(i)) THEN |
---|
650 | pqu(i, k) = pqu(i, k + 1) |
---|
651 | ptu(i, k) = ptu(i, k + 1) + (pgeoh(i, k + 1) - pgeoh(i, k)) / rcpd |
---|
652 | zbuo = ptu(i, k) * (1. + retv * pqu(i, k)) - ptenh(i, k) * (1. + retv * pqenh(i, k) & |
---|
653 | ) + 0.5 |
---|
654 | IF (zbuo>0.) klab(i, k) = 1 |
---|
655 | zqold(i) = pqu(i, k) |
---|
656 | END IF |
---|
657 | END DO |
---|
658 | |
---|
659 | iCALL = 1 |
---|
660 | CALL flxadjtq(paph(1, k), ptu(1, k), pqu(1, k), llflag, icall) |
---|
661 | |
---|
662 | DO i = 1, klon |
---|
663 | IF (llflag(i) .AND. pqu(i, k)/=zqold(i)) THEN |
---|
664 | klab(i, k) = 2 |
---|
665 | plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
---|
666 | zbuo = ptu(i, k) * (1. + retv * pqu(i, k)) - ptenh(i, k) * (1. + retv * pqenh(i, k) & |
---|
667 | ) + 0.5 |
---|
668 | IF (zbuo>0.) kcbot(i) = k |
---|
669 | IF (zbuo>0.) ldcum(i) = .TRUE. |
---|
670 | END IF |
---|
671 | END DO |
---|
672 | |
---|
673 | 290 END DO |
---|
674 | |
---|
675 | END SUBROUTINE flxbase |
---|
676 | SUBROUTINE flxasc(pdtime, ptenh, pqenh, pten, pqen, pqsen, pgeo, pgeoh, pap, & |
---|
677 | paph, pqte, pvervel, ldland, ldcum, ktype, klab, ptu, pqu, plu, pmfu, & |
---|
678 | pmfub, pentr, pmfus, pmfuq, pmful, plude, pdmfup, kcbot, kctop, kctop0, & |
---|
679 | kcum, pen_u, pde_u) |
---|
680 | USE dimphy |
---|
681 | USE lmdz_YOECUMF |
---|
682 | USE lmdz_yoethf |
---|
683 | USE lmdz_yomcst |
---|
684 | |
---|
685 | IMPLICIT NONE |
---|
686 | ! ---------------------------------------------------------------------- |
---|
687 | ! THIS ROUTINE DOES THE CALCULATIONS FOR CLOUD ASCENTS |
---|
688 | ! FOR CUMULUS PARAMETERIZATION |
---|
689 | ! ---------------------------------------------------------------------- |
---|
690 | |
---|
691 | REAL pdtime |
---|
692 | REAL pten(klon, klev), ptenh(klon, klev) |
---|
693 | REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
---|
694 | REAL pgeo(klon, klev), pgeoh(klon, klev) |
---|
695 | REAL pap(klon, klev), paph(klon, klev + 1) |
---|
696 | REAL pqte(klon, klev) |
---|
697 | REAL pvervel(klon, klev) ! vitesse verticale en Pa/s |
---|
698 | |
---|
699 | REAL pmfub(klon), pentr(klon) |
---|
700 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
701 | REAL plude(klon, klev) |
---|
702 | REAL pmfu(klon, klev), pmfus(klon, klev) |
---|
703 | REAL pmfuq(klon, klev), pmful(klon, klev) |
---|
704 | REAL pdmfup(klon, klev) |
---|
705 | INTEGER ktype(klon), klab(klon, klev), kcbot(klon), kctop(klon) |
---|
706 | INTEGER kctop0(klon) |
---|
707 | LOGICAL ldland(klon), ldcum(klon) |
---|
708 | |
---|
709 | REAL pen_u(klon, klev), pde_u(klon, klev) |
---|
710 | REAL zqold(klon) |
---|
711 | REAL zdland(klon) |
---|
712 | LOGICAL llflag(klon) |
---|
713 | INTEGER k, i, is, icall, kcum |
---|
714 | REAL ztglace, zdphi, zqeen, zseen, zscde, zqude |
---|
715 | REAL zmfusk, zmfuqk, zmfulk, zbuo, zdnoprc, zprcon, zlnew |
---|
716 | |
---|
717 | REAL zpbot(klon), zptop(klon), zrho(klon) |
---|
718 | REAL zdprho, zentr, zpmid, zmftest, zmfmax |
---|
719 | LOGICAL llo1, llo2 |
---|
720 | |
---|
721 | REAL zwmax(klon), zzzmb |
---|
722 | INTEGER klwmin(klon) ! level of maximum vertical velocity |
---|
723 | REAL fact |
---|
724 | ! ---------------------------------------------------------------------- |
---|
725 | ztglace = rtt - 13. |
---|
726 | |
---|
727 | ! Chercher le niveau ou la vitesse verticale est maximale: |
---|
728 | DO i = 1, klon |
---|
729 | klwmin(i) = klev |
---|
730 | zwmax(i) = 0.0 |
---|
731 | END DO |
---|
732 | DO k = klev, 3, -1 |
---|
733 | DO i = 1, klon |
---|
734 | IF (pvervel(i, k)<zwmax(i)) THEN |
---|
735 | zwmax(i) = pvervel(i, k) |
---|
736 | klwmin(i) = k |
---|
737 | END IF |
---|
738 | END DO |
---|
739 | END DO |
---|
740 | ! ---------------------------------------------------------------------- |
---|
741 | ! SET DEFAULT VALUES |
---|
742 | ! ---------------------------------------------------------------------- |
---|
743 | DO i = 1, klon |
---|
744 | IF (.NOT. ldcum(i)) ktype(i) = 0 |
---|
745 | END DO |
---|
746 | |
---|
747 | DO k = 1, klev |
---|
748 | DO i = 1, klon |
---|
749 | plu(i, k) = 0. |
---|
750 | pmfu(i, k) = 0. |
---|
751 | pmfus(i, k) = 0. |
---|
752 | pmfuq(i, k) = 0. |
---|
753 | pmful(i, k) = 0. |
---|
754 | plude(i, k) = 0. |
---|
755 | pdmfup(i, k) = 0. |
---|
756 | IF (.NOT. ldcum(i) .OR. ktype(i)==3) klab(i, k) = 0 |
---|
757 | IF (.NOT. ldcum(i) .AND. paph(i, k)<4.E4) kctop0(i) = k |
---|
758 | END DO |
---|
759 | END DO |
---|
760 | |
---|
761 | DO i = 1, klon |
---|
762 | IF (ldland(i)) THEN |
---|
763 | zdland(i) = 3.0E4 |
---|
764 | zdphi = pgeoh(i, kctop0(i)) - pgeoh(i, kcbot(i)) |
---|
765 | IF (ptu(i, kctop0(i))>=ztglace) zdland(i) = zdphi |
---|
766 | zdland(i) = max(3.0E4, zdland(i)) |
---|
767 | zdland(i) = min(5.0E4, zdland(i)) |
---|
768 | END IF |
---|
769 | END DO |
---|
770 | |
---|
771 | ! Initialiser les valeurs au niveau d'ascendance |
---|
772 | |
---|
773 | DO i = 1, klon |
---|
774 | kctop(i) = klev - 1 |
---|
775 | IF (.NOT. ldcum(i)) THEN |
---|
776 | kcbot(i) = klev - 1 |
---|
777 | pmfub(i) = 0. |
---|
778 | pqu(i, klev) = 0. |
---|
779 | END IF |
---|
780 | pmfu(i, klev) = pmfub(i) |
---|
781 | pmfus(i, klev) = pmfub(i) * (rcpd * ptu(i, klev) + pgeoh(i, klev)) |
---|
782 | pmfuq(i, klev) = pmfub(i) * pqu(i, klev) |
---|
783 | END DO |
---|
784 | |
---|
785 | DO i = 1, klon |
---|
786 | ldcum(i) = .FALSE. |
---|
787 | END DO |
---|
788 | ! ---------------------------------------------------------------------- |
---|
789 | ! DO ASCENT: SUBCLOUD LAYER (klab=1) ,CLOUDS (klab=2) |
---|
790 | ! BY DOING FIRST DRY-ADIABATIC ASCENT AND THEN |
---|
791 | ! BY ADJUSTING T,Q AND L ACCORDINGLY IN *flxadjtq*, |
---|
792 | ! THEN CHECK FOR BUOYANCY AND SET FLAGS ACCORDINGLY |
---|
793 | ! ---------------------------------------------------------------------- |
---|
794 | DO k = klev - 1, 3, -1 |
---|
795 | |
---|
796 | IF (lmfmid .AND. k<klev - 1) THEN |
---|
797 | DO i = 1, klon |
---|
798 | IF (.NOT. ldcum(i) .AND. klab(i, k + 1)==0 .AND. & |
---|
799 | pqen(i, k)>0.9 * pqsen(i, k) .AND. pap(i, k) / paph(i, klev + 1)>0.4) THEN |
---|
800 | ptu(i, k + 1) = pten(i, k) + (pgeo(i, k) - pgeoh(i, k + 1)) / rcpd |
---|
801 | pqu(i, k + 1) = pqen(i, k) |
---|
802 | plu(i, k + 1) = 0.0 |
---|
803 | zzzmb = max(cmfcmin, -pvervel(i, k) / rg) |
---|
804 | zmfmax = (paph(i, k) - paph(i, k - 1)) / (rg * pdtime) |
---|
805 | pmfub(i) = min(zzzmb, zmfmax) |
---|
806 | pmfu(i, k + 1) = pmfub(i) |
---|
807 | pmfus(i, k + 1) = pmfub(i) * (rcpd * ptu(i, k + 1) + pgeoh(i, k + 1)) |
---|
808 | pmfuq(i, k + 1) = pmfub(i) * pqu(i, k + 1) |
---|
809 | pmful(i, k + 1) = 0.0 |
---|
810 | pdmfup(i, k + 1) = 0.0 |
---|
811 | kcbot(i) = k |
---|
812 | klab(i, k + 1) = 1 |
---|
813 | ktype(i) = 3 |
---|
814 | pentr(i) = entrmid |
---|
815 | END IF |
---|
816 | END DO |
---|
817 | END IF |
---|
818 | |
---|
819 | is = 0 |
---|
820 | DO i = 1, klon |
---|
821 | is = is + klab(i, k + 1) |
---|
822 | IF (klab(i, k + 1)==0) klab(i, k) = 0 |
---|
823 | llflag(i) = .FALSE. |
---|
824 | IF (klab(i, k + 1)>0) llflag(i) = .TRUE. |
---|
825 | END DO |
---|
826 | IF (is==0) GO TO 480 |
---|
827 | |
---|
828 | ! calculer le taux d'entrainement et de detrainement |
---|
829 | |
---|
830 | DO i = 1, klon |
---|
831 | pen_u(i, k) = 0.0 |
---|
832 | pde_u(i, k) = 0.0 |
---|
833 | zrho(i) = paph(i, k + 1) / (rd * ptenh(i, k + 1)) |
---|
834 | zpbot(i) = paph(i, kcbot(i)) |
---|
835 | zptop(i) = paph(i, kctop0(i)) |
---|
836 | END DO |
---|
837 | |
---|
838 | DO i = 1, klon |
---|
839 | IF (ldcum(i)) THEN |
---|
840 | zdprho = (paph(i, k + 1) - paph(i, k)) / (rg * zrho(i)) |
---|
841 | zentr = pentr(i) * pmfu(i, k + 1) * zdprho |
---|
842 | llo1 = k < kcbot(i) |
---|
843 | IF (llo1) pde_u(i, k) = zentr |
---|
844 | zpmid = 0.5 * (zpbot(i) + zptop(i)) |
---|
845 | llo2 = llo1 .AND. ktype(i) == 2 .AND. (zpbot(i) - paph(i, k)<0.2E5 .OR. & |
---|
846 | paph(i, k)>zpmid) |
---|
847 | IF (llo2) pen_u(i, k) = zentr |
---|
848 | llo2 = llo1 .AND. (ktype(i)==1 .OR. ktype(i)==3) .AND. & |
---|
849 | (k>=max(klwmin(i), kctop0(i) + 2) .OR. pap(i, k)>zpmid) |
---|
850 | IF (llo2) pen_u(i, k) = zentr |
---|
851 | llo1 = pen_u(i, k) > 0. .AND. (ktype(i)==1 .OR. ktype(i)==2) |
---|
852 | IF (llo1) THEN |
---|
853 | fact = 1. + 3. * (1. - min(1., (zpbot(i) - pap(i, k)) / 1.5E4)) |
---|
854 | zentr = zentr * fact |
---|
855 | pen_u(i, k) = pen_u(i, k) * fact |
---|
856 | pde_u(i, k) = pde_u(i, k) * fact |
---|
857 | END IF |
---|
858 | IF (llo2 .AND. pqenh(i, k + 1)>1.E-5) pen_u(i, k) = zentr + & |
---|
859 | max(pqte(i, k), 0.) / pqenh(i, k + 1) * zrho(i) * zdprho |
---|
860 | END IF |
---|
861 | END DO |
---|
862 | |
---|
863 | ! ---------------------------------------------------------------------- |
---|
864 | ! DO ADIABATIC ASCENT FOR ENTRAINING/DETRAINING PLUME |
---|
865 | ! ---------------------------------------------------------------------- |
---|
866 | |
---|
867 | DO i = 1, klon |
---|
868 | IF (llflag(i)) THEN |
---|
869 | IF (k<kcbot(i)) THEN |
---|
870 | zmftest = pmfu(i, k + 1) + pen_u(i, k) - pde_u(i, k) |
---|
871 | zmfmax = min(zmftest, (paph(i, k) - paph(i, k - 1)) / (rg * pdtime)) |
---|
872 | pen_u(i, k) = max(pen_u(i, k) - max(0.0, zmftest - zmfmax), 0.0) |
---|
873 | END IF |
---|
874 | pde_u(i, k) = min(pde_u(i, k), 0.75 * pmfu(i, k + 1)) |
---|
875 | ! calculer le flux de masse du niveau k a partir de celui du k+1 |
---|
876 | pmfu(i, k) = pmfu(i, k + 1) + pen_u(i, k) - pde_u(i, k) |
---|
877 | ! calculer les valeurs Su, Qu et l du niveau k dans le panache |
---|
878 | ! montant |
---|
879 | zqeen = pqenh(i, k + 1) * pen_u(i, k) |
---|
880 | zseen = (rcpd * ptenh(i, k + 1) + pgeoh(i, k + 1)) * pen_u(i, k) |
---|
881 | zscde = (rcpd * ptu(i, k + 1) + pgeoh(i, k + 1)) * pde_u(i, k) |
---|
882 | zqude = pqu(i, k + 1) * pde_u(i, k) |
---|
883 | plude(i, k) = plu(i, k + 1) * pde_u(i, k) |
---|
884 | zmfusk = pmfus(i, k + 1) + zseen - zscde |
---|
885 | zmfuqk = pmfuq(i, k + 1) + zqeen - zqude |
---|
886 | zmfulk = pmful(i, k + 1) - plude(i, k) |
---|
887 | plu(i, k) = zmfulk * (1. / max(cmfcmin, pmfu(i, k))) |
---|
888 | pqu(i, k) = zmfuqk * (1. / max(cmfcmin, pmfu(i, k))) |
---|
889 | ptu(i, k) = (zmfusk * (1. / max(cmfcmin, pmfu(i, k))) - pgeoh(i, k)) / rcpd |
---|
890 | ptu(i, k) = max(100., ptu(i, k)) |
---|
891 | ptu(i, k) = min(400., ptu(i, k)) |
---|
892 | zqold(i) = pqu(i, k) |
---|
893 | ELSE |
---|
894 | zqold(i) = 0.0 |
---|
895 | END IF |
---|
896 | END DO |
---|
897 | |
---|
898 | ! ---------------------------------------------------------------------- |
---|
899 | ! DO CORRECTIONS FOR MOIST ASCENT BY ADJUSTING T,Q AND L |
---|
900 | ! ---------------------------------------------------------------------- |
---|
901 | |
---|
902 | iCALL = 1 |
---|
903 | CALL flxadjtq(paph(1, k), ptu(1, k), pqu(1, k), llflag, icall) |
---|
904 | |
---|
905 | DO i = 1, klon |
---|
906 | IF (llflag(i) .AND. pqu(i, k)/=zqold(i)) THEN |
---|
907 | klab(i, k) = 2 |
---|
908 | plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
---|
909 | zbuo = ptu(i, k) * (1. + retv * pqu(i, k)) - ptenh(i, k) * (1. + retv * pqenh(i, k) & |
---|
910 | ) |
---|
911 | IF (klab(i, k + 1)==1) zbuo = zbuo + 0.5 |
---|
912 | IF (zbuo>0. .AND. pmfu(i, k)>=0.1 * pmfub(i)) THEN |
---|
913 | kctop(i) = k |
---|
914 | ldcum(i) = .TRUE. |
---|
915 | zdnoprc = 1.5E4 |
---|
916 | IF (ldland(i)) zdnoprc = zdland(i) |
---|
917 | zprcon = cprcon |
---|
918 | IF ((zpbot(i) - paph(i, k))<zdnoprc) zprcon = 0.0 |
---|
919 | zlnew = plu(i, k) / (1. + zprcon * (pgeoh(i, k) - pgeoh(i, k + 1))) |
---|
920 | pdmfup(i, k) = max(0., (plu(i, k) - zlnew) * pmfu(i, k)) |
---|
921 | plu(i, k) = zlnew |
---|
922 | ELSE |
---|
923 | klab(i, k) = 0 |
---|
924 | pmfu(i, k) = 0. |
---|
925 | END IF |
---|
926 | END IF |
---|
927 | END DO |
---|
928 | DO i = 1, klon |
---|
929 | IF (llflag(i)) THEN |
---|
930 | pmful(i, k) = plu(i, k) * pmfu(i, k) |
---|
931 | pmfus(i, k) = (rcpd * ptu(i, k) + pgeoh(i, k)) * pmfu(i, k) |
---|
932 | pmfuq(i, k) = pqu(i, k) * pmfu(i, k) |
---|
933 | END IF |
---|
934 | END DO |
---|
935 | |
---|
936 | 480 END DO |
---|
937 | ! ---------------------------------------------------------------------- |
---|
938 | ! DETERMINE CONVECTIVE FLUXES ABOVE NON-BUOYANCY LEVEL |
---|
939 | ! (NOTE: CLOUD VARIABLES LIKE T,Q AND L ARE NOT |
---|
940 | ! AFFECTED BY DETRAINMENT AND ARE ALREADY KNOWN |
---|
941 | ! FROM PREVIOUS CALCULATIONS ABOVE) |
---|
942 | ! ---------------------------------------------------------------------- |
---|
943 | DO i = 1, klon |
---|
944 | IF (kctop(i)==klev - 1) ldcum(i) = .FALSE. |
---|
945 | kcbot(i) = max(kcbot(i), kctop(i)) |
---|
946 | END DO |
---|
947 | |
---|
948 | ldcum(1) = ldcum(1) |
---|
949 | |
---|
950 | is = 0 |
---|
951 | DO i = 1, klon |
---|
952 | IF (ldcum(i)) is = is + 1 |
---|
953 | END DO |
---|
954 | kcum = is |
---|
955 | IF (is==0) GO TO 800 |
---|
956 | |
---|
957 | DO i = 1, klon |
---|
958 | IF (ldcum(i)) THEN |
---|
959 | k = kctop(i) - 1 |
---|
960 | pde_u(i, k) = (1. - cmfctop) * pmfu(i, k + 1) |
---|
961 | plude(i, k) = pde_u(i, k) * plu(i, k + 1) |
---|
962 | pmfu(i, k) = pmfu(i, k + 1) - pde_u(i, k) |
---|
963 | zlnew = plu(i, k) |
---|
964 | pdmfup(i, k) = max(0., (plu(i, k) - zlnew) * pmfu(i, k)) |
---|
965 | plu(i, k) = zlnew |
---|
966 | pmfus(i, k) = (rcpd * ptu(i, k) + pgeoh(i, k)) * pmfu(i, k) |
---|
967 | pmfuq(i, k) = pqu(i, k) * pmfu(i, k) |
---|
968 | pmful(i, k) = plu(i, k) * pmfu(i, k) |
---|
969 | plude(i, k - 1) = pmful(i, k) |
---|
970 | END IF |
---|
971 | END DO |
---|
972 | |
---|
973 | 800 CONTINUE |
---|
974 | |
---|
975 | END SUBROUTINE flxasc |
---|
976 | SUBROUTINE flxflux(pdtime, pqen, pqsen, ptenh, pqenh, pap, paph, ldland, & |
---|
977 | pgeoh, kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, pmfus, & |
---|
978 | pmfds, pmfuq, pmfdq, pmful, plude, pdmfup, pdmfdp, pten, prfl, psfl, & |
---|
979 | pdpmel, ktopm2, pmflxr, pmflxs) |
---|
980 | USE dimphy |
---|
981 | USE lmdz_print_control, ONLY: prt_level |
---|
982 | USE lmdz_YOECUMF |
---|
983 | USE lmdz_yoethf |
---|
984 | |
---|
985 | USE lmdz_yomcst |
---|
986 | |
---|
987 | IMPLICIT NONE |
---|
988 | INCLUDE "FCTTRE.h" |
---|
989 | ! ---------------------------------------------------------------------- |
---|
990 | ! THIS ROUTINE DOES THE FINAL CALCULATION OF CONVECTIVE |
---|
991 | ! FLUXES IN THE CLOUD LAYER AND IN THE SUBCLOUD LAYER |
---|
992 | ! ---------------------------------------------------------------------- |
---|
993 | |
---|
994 | REAL cevapcu(klon, klev) |
---|
995 | ! ----------------------------------------------------------------- |
---|
996 | REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
---|
997 | REAL pten(klon, klev), ptenh(klon, klev) |
---|
998 | REAL paph(klon, klev + 1), pgeoh(klon, klev) |
---|
999 | |
---|
1000 | REAL pap(klon, klev) |
---|
1001 | REAL ztmsmlt, zdelta, zqsat |
---|
1002 | |
---|
1003 | REAL pmfu(klon, klev), pmfus(klon, klev) |
---|
1004 | REAL pmfd(klon, klev), pmfds(klon, klev) |
---|
1005 | REAL pmfuq(klon, klev), pmful(klon, klev) |
---|
1006 | REAL pmfdq(klon, klev) |
---|
1007 | REAL plude(klon, klev) |
---|
1008 | REAL pdmfup(klon, klev), pdpmel(klon, klev) |
---|
1009 | ! jq The variable maxpdmfdp(klon) has been introduced by Olivier Boucher |
---|
1010 | ! jq 14/11/00 to fix the problem with the negative precipitation. |
---|
1011 | REAL pdmfdp(klon, klev), maxpdmfdp(klon, klev) |
---|
1012 | REAL prfl(klon), psfl(klon) |
---|
1013 | REAL pmflxr(klon, klev + 1), pmflxs(klon, klev + 1) |
---|
1014 | INTEGER kcbot(klon), kctop(klon), ktype(klon) |
---|
1015 | LOGICAL ldland(klon), ldcum(klon) |
---|
1016 | INTEGER k, kp, i |
---|
1017 | REAL zcons1, zcons2, zcucov, ztmelp2 |
---|
1018 | REAL pdtime, zdp, zzp, zfac, zsnmlt, zrfl, zrnew |
---|
1019 | REAL zrmin, zrfln, zdrfl |
---|
1020 | REAL zpds, zpdr, zdenom |
---|
1021 | INTEGER ktopm2, itop, ikb |
---|
1022 | |
---|
1023 | LOGICAL lddraf(klon) |
---|
1024 | INTEGER kdtop(klon) |
---|
1025 | |
---|
1026 | DO k = 1, klev |
---|
1027 | DO i = 1, klon |
---|
1028 | cevapcu(i, k) = 1.93E-6 * 261. * sqrt(1.E3 / (38.3 * 0.293) * sqrt(0.5 * (paph(i, k) & |
---|
1029 | + paph(i, k + 1)) / paph(i, klev + 1))) * 0.5 / rg |
---|
1030 | END DO |
---|
1031 | END DO |
---|
1032 | |
---|
1033 | ! SPECIFY CONSTANTS |
---|
1034 | |
---|
1035 | zcons1 = rcpd / (rlmlt * rg * pdtime) |
---|
1036 | zcons2 = 1. / (rg * pdtime) |
---|
1037 | zcucov = 0.05 |
---|
1038 | ztmelp2 = rtt + 2. |
---|
1039 | |
---|
1040 | ! DETERMINE FINAL CONVECTIVE FLUXES |
---|
1041 | |
---|
1042 | itop = klev |
---|
1043 | DO i = 1, klon |
---|
1044 | itop = min(itop, kctop(i)) |
---|
1045 | IF (.NOT. ldcum(i) .OR. kdtop(i)<kctop(i)) lddraf(i) = .FALSE. |
---|
1046 | IF (.NOT. ldcum(i)) ktype(i) = 0 |
---|
1047 | END DO |
---|
1048 | |
---|
1049 | ktopm2 = itop - 2 |
---|
1050 | DO k = ktopm2, klev |
---|
1051 | DO i = 1, klon |
---|
1052 | IF (ldcum(i) .AND. k>=kctop(i) - 1) THEN |
---|
1053 | pmfus(i, k) = pmfus(i, k) - pmfu(i, k) * (rcpd * ptenh(i, k) + pgeoh(i, k)) |
---|
1054 | pmfuq(i, k) = pmfuq(i, k) - pmfu(i, k) * pqenh(i, k) |
---|
1055 | zdp = 1.5E4 |
---|
1056 | IF (ldland(i)) zdp = 3.E4 |
---|
1057 | |
---|
1058 | ! l'eau liquide detrainee est precipitee quand certaines |
---|
1059 | ! conditions sont reunies (sinon, elle est consideree |
---|
1060 | ! evaporee dans l'environnement) |
---|
1061 | |
---|
1062 | IF (paph(i, kcbot(i)) - paph(i, kctop(i))>=zdp .AND. pqen(i, k - 1)>0.8 * & |
---|
1063 | pqsen(i, k - 1)) pdmfup(i, k - 1) = pdmfup(i, k - 1) + plude(i, k - 1) |
---|
1064 | |
---|
1065 | IF (lddraf(i) .AND. k>=kdtop(i)) THEN |
---|
1066 | pmfds(i, k) = pmfds(i, k) - pmfd(i, k) * (rcpd * ptenh(i, k) + pgeoh(i, k)) |
---|
1067 | pmfdq(i, k) = pmfdq(i, k) - pmfd(i, k) * pqenh(i, k) |
---|
1068 | ELSE |
---|
1069 | pmfd(i, k) = 0. |
---|
1070 | pmfds(i, k) = 0. |
---|
1071 | pmfdq(i, k) = 0. |
---|
1072 | pdmfdp(i, k - 1) = 0. |
---|
1073 | END IF |
---|
1074 | ELSE |
---|
1075 | pmfu(i, k) = 0. |
---|
1076 | pmfus(i, k) = 0. |
---|
1077 | pmfuq(i, k) = 0. |
---|
1078 | pmful(i, k) = 0. |
---|
1079 | pdmfup(i, k - 1) = 0. |
---|
1080 | plude(i, k - 1) = 0. |
---|
1081 | pmfd(i, k) = 0. |
---|
1082 | pmfds(i, k) = 0. |
---|
1083 | pmfdq(i, k) = 0. |
---|
1084 | pdmfdp(i, k - 1) = 0. |
---|
1085 | END IF |
---|
1086 | END DO |
---|
1087 | END DO |
---|
1088 | |
---|
1089 | DO k = ktopm2, klev |
---|
1090 | DO i = 1, klon |
---|
1091 | IF (ldcum(i) .AND. k>kcbot(i)) THEN |
---|
1092 | ikb = kcbot(i) |
---|
1093 | zzp = ((paph(i, klev + 1) - paph(i, k)) / (paph(i, klev + 1) - paph(i, ikb))) |
---|
1094 | IF (ktype(i)==3) zzp = zzp**2 |
---|
1095 | pmfu(i, k) = pmfu(i, ikb) * zzp |
---|
1096 | pmfus(i, k) = pmfus(i, ikb) * zzp |
---|
1097 | pmfuq(i, k) = pmfuq(i, ikb) * zzp |
---|
1098 | pmful(i, k) = pmful(i, ikb) * zzp |
---|
1099 | END IF |
---|
1100 | END DO |
---|
1101 | END DO |
---|
1102 | |
---|
1103 | ! CALCULATE RAIN/SNOW FALL RATES |
---|
1104 | ! CALCULATE MELTING OF SNOW |
---|
1105 | ! CALCULATE EVAPORATION OF PRECIP |
---|
1106 | |
---|
1107 | DO k = 1, klev + 1 |
---|
1108 | DO i = 1, klon |
---|
1109 | pmflxr(i, k) = 0.0 |
---|
1110 | pmflxs(i, k) = 0.0 |
---|
1111 | END DO |
---|
1112 | END DO |
---|
1113 | DO k = ktopm2, klev |
---|
1114 | DO i = 1, klon |
---|
1115 | IF (ldcum(i)) THEN |
---|
1116 | IF (pmflxs(i, k)>0.0 .AND. pten(i, k)>ztmelp2) THEN |
---|
1117 | zfac = zcons1 * (paph(i, k + 1) - paph(i, k)) |
---|
1118 | zsnmlt = min(pmflxs(i, k), zfac * (pten(i, k) - ztmelp2)) |
---|
1119 | pdpmel(i, k) = zsnmlt |
---|
1120 | ztmsmlt = pten(i, k) - zsnmlt / zfac |
---|
1121 | zdelta = max(0., sign(1., rtt - ztmsmlt)) |
---|
1122 | zqsat = r2es * foeew(ztmsmlt, zdelta) / pap(i, k) |
---|
1123 | zqsat = min(0.5, zqsat) |
---|
1124 | zqsat = zqsat / (1. - retv * zqsat) |
---|
1125 | pqsen(i, k) = zqsat |
---|
1126 | END IF |
---|
1127 | IF (pten(i, k)>rtt) THEN |
---|
1128 | pmflxr(i, k + 1) = pmflxr(i, k) + pdmfup(i, k) + pdmfdp(i, k) + & |
---|
1129 | pdpmel(i, k) |
---|
1130 | pmflxs(i, k + 1) = pmflxs(i, k) - pdpmel(i, k) |
---|
1131 | ELSE |
---|
1132 | pmflxs(i, k + 1) = pmflxs(i, k) + pdmfup(i, k) + pdmfdp(i, k) |
---|
1133 | pmflxr(i, k + 1) = pmflxr(i, k) |
---|
1134 | END IF |
---|
1135 | ! si la precipitation est negative, on ajuste le plux du |
---|
1136 | ! panache descendant pour eliminer la negativite |
---|
1137 | IF ((pmflxr(i, k + 1) + pmflxs(i, k + 1))<0.0) THEN |
---|
1138 | pdmfdp(i, k) = -pmflxr(i, k) - pmflxs(i, k) - pdmfup(i, k) |
---|
1139 | pmflxr(i, k + 1) = 0.0 |
---|
1140 | pmflxs(i, k + 1) = 0.0 |
---|
1141 | pdpmel(i, k) = 0.0 |
---|
1142 | END IF |
---|
1143 | END IF |
---|
1144 | END DO |
---|
1145 | END DO |
---|
1146 | |
---|
1147 | ! jq The new variable is initialized here. |
---|
1148 | ! jq It contains the humidity which is fed to the downdraft |
---|
1149 | ! jq by evaporation of precipitation in the column below the base |
---|
1150 | ! jq of convection. |
---|
1151 | ! jq |
---|
1152 | ! jq In the former version, this term has been subtracted from precip |
---|
1153 | ! jq as well as the evaporation. |
---|
1154 | ! jq |
---|
1155 | DO k = 1, klev |
---|
1156 | DO i = 1, klon |
---|
1157 | maxpdmfdp(i, k) = 0.0 |
---|
1158 | END DO |
---|
1159 | END DO |
---|
1160 | DO k = 1, klev |
---|
1161 | DO kp = k, klev |
---|
1162 | DO i = 1, klon |
---|
1163 | maxpdmfdp(i, k) = maxpdmfdp(i, k) + pdmfdp(i, kp) |
---|
1164 | END DO |
---|
1165 | END DO |
---|
1166 | END DO |
---|
1167 | ! jq End of initialization |
---|
1168 | |
---|
1169 | DO k = ktopm2, klev |
---|
1170 | DO i = 1, klon |
---|
1171 | IF (ldcum(i) .AND. k>=kcbot(i)) THEN |
---|
1172 | zrfl = pmflxr(i, k) + pmflxs(i, k) |
---|
1173 | IF (zrfl>1.0E-20) THEN |
---|
1174 | zrnew = (max(0., sqrt(zrfl / zcucov) - cevapcu(i, & |
---|
1175 | k) * (paph(i, k + 1) - paph(i, k)) * max(0., pqsen(i, k) - pqen(i, k))))**2 * & |
---|
1176 | zcucov |
---|
1177 | zrmin = zrfl - zcucov * max(0., 0.8 * pqsen(i, k) - pqen(i, k)) * zcons2 * (& |
---|
1178 | paph(i, k + 1) - paph(i, k)) |
---|
1179 | zrnew = max(zrnew, zrmin) |
---|
1180 | zrfln = max(zrnew, 0.) |
---|
1181 | zdrfl = min(0., zrfln - zrfl) |
---|
1182 | ! jq At least the amount of precipiation needed to feed the |
---|
1183 | ! downdraft |
---|
1184 | ! jq with humidity below the base of convection has to be left and |
---|
1185 | ! can't |
---|
1186 | ! jq be evaporated (surely the evaporation can't be positive): |
---|
1187 | zdrfl = max(zdrfl, min(-pmflxr(i, k) - pmflxs(i, k) - maxpdmfdp(i, & |
---|
1188 | k), 0.0)) |
---|
1189 | ! jq End of insertion |
---|
1190 | |
---|
1191 | zdenom = 1.0 / max(1.0E-20, pmflxr(i, k) + pmflxs(i, k)) |
---|
1192 | IF (pten(i, k)>rtt) THEN |
---|
1193 | zpdr = pdmfdp(i, k) |
---|
1194 | zpds = 0.0 |
---|
1195 | ELSE |
---|
1196 | zpdr = 0.0 |
---|
1197 | zpds = pdmfdp(i, k) |
---|
1198 | END IF |
---|
1199 | pmflxr(i, k + 1) = pmflxr(i, k) + zpdr + pdpmel(i, k) + & |
---|
1200 | zdrfl * pmflxr(i, k) * zdenom |
---|
1201 | pmflxs(i, k + 1) = pmflxs(i, k) + zpds - pdpmel(i, k) + & |
---|
1202 | zdrfl * pmflxs(i, k) * zdenom |
---|
1203 | pdmfup(i, k) = pdmfup(i, k) + zdrfl |
---|
1204 | ELSE |
---|
1205 | pmflxr(i, k + 1) = 0.0 |
---|
1206 | pmflxs(i, k + 1) = 0.0 |
---|
1207 | pdmfdp(i, k) = 0.0 |
---|
1208 | pdpmel(i, k) = 0.0 |
---|
1209 | END IF |
---|
1210 | IF (pmflxr(i, k) + pmflxs(i, k)<-1.E-26 .AND. prt_level>=1) WRITE (*, *) & |
---|
1211 | 'precip. < 1e-16 ', pmflxr(i, k) + pmflxs(i, k) |
---|
1212 | END IF |
---|
1213 | END DO |
---|
1214 | END DO |
---|
1215 | |
---|
1216 | DO i = 1, klon |
---|
1217 | prfl(i) = pmflxr(i, klev + 1) |
---|
1218 | psfl(i) = pmflxs(i, klev + 1) |
---|
1219 | END DO |
---|
1220 | |
---|
1221 | END SUBROUTINE flxflux |
---|
1222 | SUBROUTINE flxdtdq(pdtime, ktopm2, paph, ldcum, pten, pmfus, pmfds, pmfuq, & |
---|
1223 | pmfdq, pmful, pdmfup, pdmfdp, pdpmel, dt_con, dq_con) |
---|
1224 | USE dimphy |
---|
1225 | USE lmdz_YOECUMF |
---|
1226 | USE lmdz_yoethf |
---|
1227 | USE lmdz_yomcst |
---|
1228 | |
---|
1229 | IMPLICIT NONE |
---|
1230 | ! ---------------------------------------------------------------------- |
---|
1231 | ! calculer les tendances T et Q |
---|
1232 | ! ---------------------------------------------------------------------- |
---|
1233 | LOGICAL llo1 |
---|
1234 | |
---|
1235 | REAL pten(klon, klev), paph(klon, klev + 1) |
---|
1236 | REAL pmfus(klon, klev), pmfuq(klon, klev), pmful(klon, klev) |
---|
1237 | REAL pmfds(klon, klev), pmfdq(klon, klev) |
---|
1238 | REAL pdmfup(klon, klev) |
---|
1239 | REAL pdmfdp(klon, klev) |
---|
1240 | REAL pdpmel(klon, klev) |
---|
1241 | LOGICAL ldcum(klon) |
---|
1242 | REAL dt_con(klon, klev), dq_con(klon, klev) |
---|
1243 | |
---|
1244 | INTEGER ktopm2 |
---|
1245 | REAL pdtime |
---|
1246 | |
---|
1247 | INTEGER i, k |
---|
1248 | REAL zalv, zdtdt, zdqdt |
---|
1249 | |
---|
1250 | DO k = ktopm2, klev - 1 |
---|
1251 | DO i = 1, klon |
---|
1252 | IF (ldcum(i)) THEN |
---|
1253 | llo1 = (pten(i, k) - rtt) > 0. |
---|
1254 | zalv = rlstt |
---|
1255 | IF (llo1) zalv = rlvtt |
---|
1256 | zdtdt = rg / (paph(i, k + 1) - paph(i, k)) / rcpd * (pmfus(i, k + 1) - pmfus(i, k) + & |
---|
1257 | pmfds(i, k + 1) - pmfds(i, k) - rlmlt * pdpmel(i, k) - zalv * (pmful(i, & |
---|
1258 | k + 1) - pmful(i, k) - pdmfup(i, k) - pdmfdp(i, k))) |
---|
1259 | dt_con(i, k) = zdtdt |
---|
1260 | zdqdt = rg / (paph(i, k + 1) - paph(i, k)) * (pmfuq(i, k + 1) - pmfuq(i, k) + pmfdq(i, k & |
---|
1261 | + 1) - pmfdq(i, k) + pmful(i, k + 1) - pmful(i, k) - pdmfup(i, k) - pdmfdp(i, k)) |
---|
1262 | dq_con(i, k) = zdqdt |
---|
1263 | END IF |
---|
1264 | END DO |
---|
1265 | END DO |
---|
1266 | |
---|
1267 | k = klev |
---|
1268 | DO i = 1, klon |
---|
1269 | IF (ldcum(i)) THEN |
---|
1270 | llo1 = (pten(i, k) - rtt) > 0. |
---|
1271 | zalv = rlstt |
---|
1272 | IF (llo1) zalv = rlvtt |
---|
1273 | zdtdt = -rg / (paph(i, k + 1) - paph(i, k)) / rcpd * (pmfus(i, k) + pmfds(i, k) + rlmlt * & |
---|
1274 | pdpmel(i, k) - zalv * (pmful(i, k) + pdmfup(i, k) + pdmfdp(i, k))) |
---|
1275 | dt_con(i, k) = zdtdt |
---|
1276 | zdqdt = -rg / (paph(i, k + 1) - paph(i, k)) * (pmfuq(i, k) + pmfdq(i, k) + pmful(i, k) + & |
---|
1277 | pdmfup(i, k) + pdmfdp(i, k)) |
---|
1278 | dq_con(i, k) = zdqdt |
---|
1279 | END IF |
---|
1280 | END DO |
---|
1281 | |
---|
1282 | END SUBROUTINE flxdtdq |
---|
1283 | SUBROUTINE flxdlfs(ptenh, pqenh, pgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
---|
1284 | pmfub, prfl, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, kdtop, lddraf) |
---|
1285 | USE dimphy |
---|
1286 | USE lmdz_YOECUMF |
---|
1287 | USE lmdz_yoethf |
---|
1288 | USE lmdz_yomcst |
---|
1289 | |
---|
1290 | IMPLICIT NONE |
---|
1291 | |
---|
1292 | ! ---------------------------------------------------------------------- |
---|
1293 | ! THIS ROUTINE CALCULATES LEVEL OF FREE SINKING FOR |
---|
1294 | ! CUMULUS DOWNDRAFTS AND SPECIFIES T,Q,U AND V VALUES |
---|
1295 | |
---|
1296 | ! TO PRODUCE LFS-VALUES FOR CUMULUS DOWNDRAFTS |
---|
1297 | ! FOR MASSFLUX CUMULUS PARAMETERIZATION |
---|
1298 | |
---|
1299 | ! INPUT ARE ENVIRONMENTAL VALUES OF T,Q,U,V,P,PHI |
---|
1300 | ! AND UPDRAFT VALUES T,Q,U AND V AND ALSO |
---|
1301 | ! CLOUD BASE MASSFLUX AND CU-PRECIPITATION RATE. |
---|
1302 | ! IT RETURNS T,Q,U AND V VALUES AND MASSFLUX AT LFS. |
---|
1303 | |
---|
1304 | ! CHECK FOR NEGATIVE BUOYANCY OF AIR OF EQUAL PARTS OF |
---|
1305 | ! MOIST ENVIRONMENTAL AIR AND CLOUD AIR. |
---|
1306 | ! ---------------------------------------------------------------------- |
---|
1307 | |
---|
1308 | REAL ptenh(klon, klev) |
---|
1309 | REAL pqenh(klon, klev) |
---|
1310 | REAL pgeoh(klon, klev), paph(klon, klev + 1) |
---|
1311 | REAL ptu(klon, klev), pqu(klon, klev) |
---|
1312 | REAL pmfub(klon) |
---|
1313 | REAL prfl(klon) |
---|
1314 | |
---|
1315 | REAL ptd(klon, klev), pqd(klon, klev) |
---|
1316 | REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
---|
1317 | REAL pdmfdp(klon, klev) |
---|
1318 | INTEGER kcbot(klon), kctop(klon), kdtop(klon) |
---|
1319 | LOGICAL ldcum(klon), lddraf(klon) |
---|
1320 | |
---|
1321 | REAL ztenwb(klon, klev), zqenwb(klon, klev), zcond(klon) |
---|
1322 | REAL zttest, zqtest, zbuo, zmftop |
---|
1323 | LOGICAL llo2(klon) |
---|
1324 | INTEGER i, k, is, icall |
---|
1325 | ! ---------------------------------------------------------------------- |
---|
1326 | DO i = 1, klon |
---|
1327 | lddraf(i) = .FALSE. |
---|
1328 | kdtop(i) = klev + 1 |
---|
1329 | END DO |
---|
1330 | |
---|
1331 | ! ---------------------------------------------------------------------- |
---|
1332 | ! DETERMINE LEVEL OF FREE SINKING BY |
---|
1333 | ! DOING A SCAN FROM TOP TO BASE OF CUMULUS CLOUDS |
---|
1334 | |
---|
1335 | ! FOR EVERY POINT AND PROCEED AS FOLLOWS: |
---|
1336 | ! (1) DETEMINE WET BULB ENVIRONMENTAL T AND Q |
---|
1337 | ! (2) DO MIXING WITH CUMULUS CLOUD AIR |
---|
1338 | ! (3) CHECK FOR NEGATIVE BUOYANCY |
---|
1339 | |
---|
1340 | ! THE ASSUMPTION IS THAT AIR OF DOWNDRAFTS IS MIXTURE |
---|
1341 | ! OF 50% CLOUD AIR + 50% ENVIRONMENTAL AIR AT WET BULB |
---|
1342 | ! TEMPERATURE (I.E. WHICH BECAME SATURATED DUE TO |
---|
1343 | ! EVAPORATION OF RAIN AND CLOUD WATER) |
---|
1344 | ! ---------------------------------------------------------------------- |
---|
1345 | |
---|
1346 | DO k = 3, klev - 3 |
---|
1347 | |
---|
1348 | is = 0 |
---|
1349 | DO i = 1, klon |
---|
1350 | ztenwb(i, k) = ptenh(i, k) |
---|
1351 | zqenwb(i, k) = pqenh(i, k) |
---|
1352 | llo2(i) = ldcum(i) .AND. prfl(i) > 0. .AND. .NOT. lddraf(i) .AND. & |
---|
1353 | (k<kcbot(i) .AND. k>kctop(i)) |
---|
1354 | IF (llo2(i)) is = is + 1 |
---|
1355 | END DO |
---|
1356 | IF (is==0) GO TO 290 |
---|
1357 | |
---|
1358 | iCALL = 2 |
---|
1359 | CALL flxadjtq(paph(1, k), ztenwb(1, k), zqenwb(1, k), llo2, icall) |
---|
1360 | |
---|
1361 | ! ---------------------------------------------------------------------- |
---|
1362 | ! DO MIXING OF CUMULUS AND ENVIRONMENTAL AIR |
---|
1363 | ! AND CHECK FOR NEGATIVE BUOYANCY. |
---|
1364 | ! THEN SET VALUES FOR DOWNDRAFT AT LFS. |
---|
1365 | ! ---------------------------------------------------------------------- |
---|
1366 | DO i = 1, klon |
---|
1367 | IF (llo2(i)) THEN |
---|
1368 | zttest = 0.5 * (ptu(i, k) + ztenwb(i, k)) |
---|
1369 | zqtest = 0.5 * (pqu(i, k) + zqenwb(i, k)) |
---|
1370 | zbuo = zttest * (1. + retv * zqtest) - ptenh(i, k) * (1. + retv * pqenh(i, k)) |
---|
1371 | zcond(i) = pqenh(i, k) - zqenwb(i, k) |
---|
1372 | zmftop = -cmfdeps * pmfub(i) |
---|
1373 | IF (zbuo<0. .AND. prfl(i)>10. * zmftop * zcond(i)) THEN |
---|
1374 | kdtop(i) = k |
---|
1375 | lddraf(i) = .TRUE. |
---|
1376 | ptd(i, k) = zttest |
---|
1377 | pqd(i, k) = zqtest |
---|
1378 | pmfd(i, k) = zmftop |
---|
1379 | pmfds(i, k) = pmfd(i, k) * (rcpd * ptd(i, k) + pgeoh(i, k)) |
---|
1380 | pmfdq(i, k) = pmfd(i, k) * pqd(i, k) |
---|
1381 | pdmfdp(i, k - 1) = -0.5 * pmfd(i, k) * zcond(i) |
---|
1382 | prfl(i) = prfl(i) + pdmfdp(i, k - 1) |
---|
1383 | END IF |
---|
1384 | END IF |
---|
1385 | END DO |
---|
1386 | |
---|
1387 | 290 END DO |
---|
1388 | |
---|
1389 | END SUBROUTINE flxdlfs |
---|
1390 | SUBROUTINE flxddraf(ptenh, pqenh, pgeoh, paph, prfl, ptd, pqd, pmfd, pmfds, & |
---|
1391 | pmfdq, pdmfdp, lddraf, pen_d, pde_d) |
---|
1392 | USE dimphy |
---|
1393 | USE lmdz_YOECUMF |
---|
1394 | USE lmdz_yoethf |
---|
1395 | USE lmdz_yomcst |
---|
1396 | |
---|
1397 | IMPLICIT NONE |
---|
1398 | |
---|
1399 | ! ---------------------------------------------------------------------- |
---|
1400 | ! THIS ROUTINE CALCULATES CUMULUS DOWNDRAFT DESCENT |
---|
1401 | |
---|
1402 | ! TO PRODUCE THE VERTICAL PROFILES FOR CUMULUS DOWNDRAFTS |
---|
1403 | ! (I.E. T,Q,U AND V AND FLUXES) |
---|
1404 | |
---|
1405 | ! INPUT IS T,Q,P,PHI,U,V AT HALF LEVELS. |
---|
1406 | ! IT RETURNS FLUXES OF S,Q AND EVAPORATION RATE |
---|
1407 | ! AND U,V AT LEVELS WHERE DOWNDRAFT OCCURS |
---|
1408 | |
---|
1409 | ! CALCULATE MOIST DESCENT FOR ENTRAINING/DETRAINING PLUME BY |
---|
1410 | ! A) MOVING AIR DRY-ADIABATICALLY TO NEXT LEVEL BELOW AND |
---|
1411 | ! B) CORRECTING FOR EVAPORATION TO OBTAIN SATURATED STATE. |
---|
1412 | |
---|
1413 | ! ---------------------------------------------------------------------- |
---|
1414 | |
---|
1415 | REAL ptenh(klon, klev), pqenh(klon, klev) |
---|
1416 | REAL pgeoh(klon, klev), paph(klon, klev + 1) |
---|
1417 | |
---|
1418 | REAL ptd(klon, klev), pqd(klon, klev) |
---|
1419 | REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
---|
1420 | REAL pdmfdp(klon, klev) |
---|
1421 | REAL prfl(klon) |
---|
1422 | LOGICAL lddraf(klon) |
---|
1423 | |
---|
1424 | REAL pen_d(klon, klev), pde_d(klon, klev), zcond(klon) |
---|
1425 | LOGICAL llo2(klon), llo1 |
---|
1426 | INTEGER i, k, is, icall, itopde |
---|
1427 | REAL zentr, zseen, zqeen, zsdde, zqdde, zmfdsk, zmfdqk, zdmfdp |
---|
1428 | REAL zbuo |
---|
1429 | ! ---------------------------------------------------------------------- |
---|
1430 | ! CALCULATE MOIST DESCENT FOR CUMULUS DOWNDRAFT BY |
---|
1431 | ! (A) CALCULATING ENTRAINMENT RATES, ASSUMING |
---|
1432 | ! LINEAR DECREASE OF MASSFLUX IN PBL |
---|
1433 | ! (B) DOING MOIST DESCENT - EVAPORATIVE COOLING |
---|
1434 | ! AND MOISTENING IS CALCULATED IN *flxadjtq* |
---|
1435 | ! (C) CHECKING FOR NEGATIVE BUOYANCY AND |
---|
1436 | ! SPECIFYING FINAL T,Q,U,V AND DOWNWARD FLUXES |
---|
1437 | |
---|
1438 | DO k = 3, klev |
---|
1439 | |
---|
1440 | is = 0 |
---|
1441 | DO i = 1, klon |
---|
1442 | llo2(i) = lddraf(i) .AND. pmfd(i, k - 1) < 0. |
---|
1443 | IF (llo2(i)) is = is + 1 |
---|
1444 | END DO |
---|
1445 | IF (is==0) GO TO 180 |
---|
1446 | |
---|
1447 | DO i = 1, klon |
---|
1448 | IF (llo2(i)) THEN |
---|
1449 | zentr = entrdd * pmfd(i, k - 1) * rd * ptenh(i, k - 1) / (rg * paph(i, k - 1)) * & |
---|
1450 | (paph(i, k) - paph(i, k - 1)) |
---|
1451 | pen_d(i, k) = zentr |
---|
1452 | pde_d(i, k) = zentr |
---|
1453 | END IF |
---|
1454 | END DO |
---|
1455 | |
---|
1456 | itopde = klev - 2 |
---|
1457 | IF (k>itopde) THEN |
---|
1458 | DO i = 1, klon |
---|
1459 | IF (llo2(i)) THEN |
---|
1460 | pen_d(i, k) = 0. |
---|
1461 | pde_d(i, k) = pmfd(i, itopde) * (paph(i, k) - paph(i, k - 1)) / & |
---|
1462 | (paph(i, klev + 1) - paph(i, itopde)) |
---|
1463 | END IF |
---|
1464 | END DO |
---|
1465 | END IF |
---|
1466 | |
---|
1467 | DO i = 1, klon |
---|
1468 | IF (llo2(i)) THEN |
---|
1469 | pmfd(i, k) = pmfd(i, k - 1) + pen_d(i, k) - pde_d(i, k) |
---|
1470 | zseen = (rcpd * ptenh(i, k - 1) + pgeoh(i, k - 1)) * pen_d(i, k) |
---|
1471 | zqeen = pqenh(i, k - 1) * pen_d(i, k) |
---|
1472 | zsdde = (rcpd * ptd(i, k - 1) + pgeoh(i, k - 1)) * pde_d(i, k) |
---|
1473 | zqdde = pqd(i, k - 1) * pde_d(i, k) |
---|
1474 | zmfdsk = pmfds(i, k - 1) + zseen - zsdde |
---|
1475 | zmfdqk = pmfdq(i, k - 1) + zqeen - zqdde |
---|
1476 | pqd(i, k) = zmfdqk * (1. / min(-cmfcmin, pmfd(i, k))) |
---|
1477 | ptd(i, k) = (zmfdsk * (1. / min(-cmfcmin, pmfd(i, k))) - pgeoh(i, k)) / rcpd |
---|
1478 | ptd(i, k) = min(400., ptd(i, k)) |
---|
1479 | ptd(i, k) = max(100., ptd(i, k)) |
---|
1480 | zcond(i) = pqd(i, k) |
---|
1481 | END IF |
---|
1482 | END DO |
---|
1483 | |
---|
1484 | iCALL = 2 |
---|
1485 | CALL flxadjtq(paph(1, k), ptd(1, k), pqd(1, k), llo2, icall) |
---|
1486 | |
---|
1487 | DO i = 1, klon |
---|
1488 | IF (llo2(i)) THEN |
---|
1489 | zcond(i) = zcond(i) - pqd(i, k) |
---|
1490 | zbuo = ptd(i, k) * (1. + retv * pqd(i, k)) - ptenh(i, k) * (1. + retv * pqenh(i, k) & |
---|
1491 | ) |
---|
1492 | llo1 = zbuo < 0. .AND. (prfl(i) - pmfd(i, k) * zcond(i)>0.) |
---|
1493 | IF (.NOT. llo1) pmfd(i, k) = 0.0 |
---|
1494 | pmfds(i, k) = (rcpd * ptd(i, k) + pgeoh(i, k)) * pmfd(i, k) |
---|
1495 | pmfdq(i, k) = pqd(i, k) * pmfd(i, k) |
---|
1496 | zdmfdp = -pmfd(i, k) * zcond(i) |
---|
1497 | pdmfdp(i, k - 1) = zdmfdp |
---|
1498 | prfl(i) = prfl(i) + zdmfdp |
---|
1499 | END IF |
---|
1500 | END DO |
---|
1501 | |
---|
1502 | 180 END DO |
---|
1503 | |
---|
1504 | END SUBROUTINE flxddraf |
---|
1505 | SUBROUTINE flxadjtq(pp, pt, pq, ldflag, kcall) |
---|
1506 | USE dimphy |
---|
1507 | USE lmdz_yoethf |
---|
1508 | |
---|
1509 | USE lmdz_yomcst |
---|
1510 | |
---|
1511 | IMPLICIT NONE |
---|
1512 | INCLUDE "FCTTRE.h" |
---|
1513 | ! ====================================================================== |
---|
1514 | ! Objet: ajustement entre T et Q |
---|
1515 | ! ====================================================================== |
---|
1516 | ! NOTE: INPUT PARAMETER kCALL DEFINES CALCULATION AS |
---|
1517 | ! kcall=0 ENV. T AND QS IN*CUINI* |
---|
1518 | ! kcall=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
---|
1519 | ! kcall=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
---|
1520 | |
---|
1521 | REAL pt(klon), pq(klon), pp(klon) |
---|
1522 | LOGICAL ldflag(klon) |
---|
1523 | INTEGER kcall |
---|
1524 | |
---|
1525 | REAL zcond(klon), zcond1 |
---|
1526 | REAL z5alvcp, z5alscp, zalvdcp, zalsdcp |
---|
1527 | REAL zdelta, zcvm5, zldcp, zqsat, zcor |
---|
1528 | INTEGER is, i |
---|
1529 | |
---|
1530 | z5alvcp = r5les * rlvtt / rcpd |
---|
1531 | z5alscp = r5ies * rlstt / rcpd |
---|
1532 | zalvdcp = rlvtt / rcpd |
---|
1533 | zalsdcp = rlstt / rcpd |
---|
1534 | |
---|
1535 | DO i = 1, klon |
---|
1536 | zcond(i) = 0.0 |
---|
1537 | END DO |
---|
1538 | |
---|
1539 | DO i = 1, klon |
---|
1540 | IF (ldflag(i)) THEN |
---|
1541 | zdelta = max(0., sign(1., rtt - pt(i))) |
---|
1542 | zcvm5 = z5alvcp * (1. - zdelta) + zdelta * z5alscp |
---|
1543 | zldcp = zalvdcp * (1. - zdelta) + zdelta * zalsdcp |
---|
1544 | zqsat = r2es * foeew(pt(i), zdelta) / pp(i) |
---|
1545 | zqsat = min(0.5, zqsat) |
---|
1546 | zcor = 1. / (1. - retv * zqsat) |
---|
1547 | zqsat = zqsat * zcor |
---|
1548 | zcond(i) = (pq(i) - zqsat) / (1. + foede(pt(i), zdelta, zcvm5, zqsat, zcor)) |
---|
1549 | IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
---|
1550 | IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
---|
1551 | pt(i) = pt(i) + zldcp * zcond(i) |
---|
1552 | pq(i) = pq(i) - zcond(i) |
---|
1553 | END IF |
---|
1554 | END DO |
---|
1555 | |
---|
1556 | is = 0 |
---|
1557 | DO i = 1, klon |
---|
1558 | IF (zcond(i)/=0.) is = is + 1 |
---|
1559 | END DO |
---|
1560 | IF (is==0) GO TO 230 |
---|
1561 | |
---|
1562 | DO i = 1, klon |
---|
1563 | IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
---|
1564 | zdelta = max(0., sign(1., rtt - pt(i))) |
---|
1565 | zcvm5 = z5alvcp * (1. - zdelta) + zdelta * z5alscp |
---|
1566 | zldcp = zalvdcp * (1. - zdelta) + zdelta * zalsdcp |
---|
1567 | zqsat = r2es * foeew(pt(i), zdelta) / pp(i) |
---|
1568 | zqsat = min(0.5, zqsat) |
---|
1569 | zcor = 1. / (1. - retv * zqsat) |
---|
1570 | zqsat = zqsat * zcor |
---|
1571 | zcond1 = (pq(i) - zqsat) / (1. + foede(pt(i), zdelta, zcvm5, zqsat, zcor)) |
---|
1572 | pt(i) = pt(i) + zldcp * zcond1 |
---|
1573 | pq(i) = pq(i) - zcond1 |
---|
1574 | END IF |
---|
1575 | END DO |
---|
1576 | |
---|
1577 | 230 CONTINUE |
---|
1578 | |
---|
1579 | END SUBROUTINE flxadjtq |
---|
1580 | SUBROUTINE flxsetup |
---|
1581 | USE lmdz_YOECUMF |
---|
1582 | |
---|
1583 | IMPLICIT NONE |
---|
1584 | |
---|
1585 | ! THIS ROUTINE DEFINES DISPOSABLE PARAMETERS FOR MASSFLUX SCHEME |
---|
1586 | |
---|
1587 | entrpen = 1.0E-4 ! ENTRAINMENT RATE FOR PENETRATIVE CONVECTION |
---|
1588 | entrscv = 3.0E-4 ! ENTRAINMENT RATE FOR SHALLOW CONVECTION |
---|
1589 | entrmid = 1.0E-4 ! ENTRAINMENT RATE FOR MIDLEVEL CONVECTION |
---|
1590 | entrdd = 2.0E-4 ! ENTRAINMENT RATE FOR DOWNDRAFTS |
---|
1591 | cmfctop = 0.33 ! RELATIVE CLOUD MASSFLUX AT LEVEL ABOVE NONBUO LEVEL |
---|
1592 | cmfcmax = 1.0 ! MAXIMUM MASSFLUX VALUE ALLOWED FOR UPDRAFTS ETC |
---|
1593 | cmfcmin = 1.E-10 ! MINIMUM MASSFLUX VALUE (FOR SAFETY) |
---|
1594 | cmfdeps = 0.3 ! FRACTIONAL MASSFLUX FOR DOWNDRAFTS AT LFS |
---|
1595 | cprcon = 2.0E-4 ! CONVERSION FROM CLOUD WATER TO RAIN |
---|
1596 | rhcdd = 1. ! RELATIVE SATURATION IN DOWNDRAFRS (NO LONGER USED) |
---|
1597 | ! (FORMULATION IMPLIES SATURATION) |
---|
1598 | lmfpen = .TRUE. |
---|
1599 | lmfscv = .TRUE. |
---|
1600 | lmfmid = .TRUE. |
---|
1601 | lmfdd = .TRUE. |
---|
1602 | lmfdudv = .TRUE. |
---|
1603 | |
---|
1604 | END SUBROUTINE flxsetup |
---|