1 | ! $Header$ |
---|
2 | |
---|
3 | SUBROUTINE conccm(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, rain, snow, & |
---|
4 | kbascm, ktopcm) |
---|
5 | |
---|
6 | USE dimphy |
---|
7 | USE lmdz_yoethf |
---|
8 | USE lmdz_yomcst |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | ! ====================================================================== |
---|
12 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: le 14 mars 1996 |
---|
13 | ! Objet: Schema simple (avec flux de masse) pour la convection |
---|
14 | ! (schema standard du modele NCAR CCM2) |
---|
15 | ! ====================================================================== |
---|
16 | |
---|
17 | ! Entree: |
---|
18 | REAL dtime ! pas d'integration |
---|
19 | REAL paprs(klon, klev + 1) ! pression inter-couche (Pa) |
---|
20 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
21 | REAL t(klon, klev) ! temperature (K) |
---|
22 | REAL q(klon, klev) ! humidite specifique (g/g) |
---|
23 | REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
---|
24 | ! Sortie: |
---|
25 | REAL d_t(klon, klev) ! incrementation temperature |
---|
26 | REAL d_q(klon, klev) ! incrementation vapeur |
---|
27 | REAL rain(klon) ! pluie (mm/s) |
---|
28 | REAL snow(klon) ! neige (mm/s) |
---|
29 | INTEGER kbascm(klon) ! niveau du bas de convection |
---|
30 | INTEGER ktopcm(klon) ! niveau du haut de convection |
---|
31 | |
---|
32 | REAL pt(klon, klev) |
---|
33 | REAL pq(klon, klev) |
---|
34 | REAL pres(klon, klev) |
---|
35 | REAL dp(klon, klev) |
---|
36 | REAL zgeom(klon, klev) |
---|
37 | REAL cmfprs(klon) |
---|
38 | REAL cmfprt(klon) |
---|
39 | INTEGER ntop(klon) |
---|
40 | INTEGER nbas(klon) |
---|
41 | INTEGER i, k |
---|
42 | REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
---|
43 | |
---|
44 | LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
---|
45 | PARAMETER (usekuo = .TRUE.) |
---|
46 | |
---|
47 | REAL d_t_bis(klon, klev) |
---|
48 | REAL d_q_bis(klon, klev) |
---|
49 | REAL rain_bis(klon) |
---|
50 | REAL snow_bis(klon) |
---|
51 | INTEGER ibas_bis(klon) |
---|
52 | INTEGER itop_bis(klon) |
---|
53 | REAL d_ql_bis(klon, klev) |
---|
54 | REAL rneb_bis(klon, klev) |
---|
55 | |
---|
56 | ! initialiser les variables de sortie (pour securite) |
---|
57 | DO i = 1, klon |
---|
58 | rain(i) = 0.0 |
---|
59 | snow(i) = 0.0 |
---|
60 | kbascm(i) = 0 |
---|
61 | ktopcm(i) = 0 |
---|
62 | END DO |
---|
63 | DO k = 1, klev |
---|
64 | DO i = 1, klon |
---|
65 | d_t(i, k) = 0.0 |
---|
66 | d_q(i, k) = 0.0 |
---|
67 | END DO |
---|
68 | END DO |
---|
69 | |
---|
70 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
71 | ! verticaux augmente du haut vers le bas) |
---|
72 | DO k = 1, klev |
---|
73 | DO i = 1, klon |
---|
74 | pt(i, k) = t(i, klev - k + 1) |
---|
75 | pq(i, k) = q(i, klev - k + 1) |
---|
76 | pres(i, k) = pplay(i, klev - k + 1) |
---|
77 | dp(i, k) = paprs(i, klev + 1 - k) - paprs(i, klev + 1 - k + 1) |
---|
78 | END DO |
---|
79 | END DO |
---|
80 | DO i = 1, klon |
---|
81 | zgeom(i, klev) = rd * t(i, 1) / (0.5 * (paprs(i, 1) + pplay(i, & |
---|
82 | 1))) * (paprs(i, 1) - pplay(i, 1)) |
---|
83 | END DO |
---|
84 | DO k = 2, klev |
---|
85 | DO i = 1, klon |
---|
86 | zgeom(i, klev + 1 - k) = zgeom(i, klev + 1 - k + 1) + rd * 0.5 * (t(i, k - 1) + t(i, k)) / & |
---|
87 | paprs(i, k) * (pplay(i, k - 1) - pplay(i, k)) |
---|
88 | END DO |
---|
89 | END DO |
---|
90 | |
---|
91 | CALL cmfmca(dtime, pres, dp, zgeom, pt, pq, cmfprt, cmfprs, ntop, nbas) |
---|
92 | |
---|
93 | DO k = 1, klev |
---|
94 | DO i = 1, klon |
---|
95 | d_q(i, klev + 1 - k) = pq(i, k) - q(i, klev + 1 - k) |
---|
96 | d_t(i, klev + 1 - k) = pt(i, k) - t(i, klev + 1 - k) |
---|
97 | END DO |
---|
98 | END DO |
---|
99 | |
---|
100 | DO i = 1, klon |
---|
101 | rain(i) = cmfprt(i) * rhoh2o |
---|
102 | snow(i) = cmfprs(i) * rhoh2o |
---|
103 | kbascm(i) = klev + 1 - nbas(i) |
---|
104 | ktopcm(i) = klev + 1 - ntop(i) |
---|
105 | END DO |
---|
106 | |
---|
107 | IF (usekuo) THEN |
---|
108 | CALL conkuo(dtime, paprs, pplay, t, q, conv_q, d_t_bis, d_q_bis, & |
---|
109 | d_ql_bis, rneb_bis, rain_bis, snow_bis, ibas_bis, itop_bis) |
---|
110 | DO k = 1, klev |
---|
111 | DO i = 1, klon |
---|
112 | d_t(i, k) = d_t(i, k) + d_t_bis(i, k) |
---|
113 | d_q(i, k) = d_q(i, k) + d_q_bis(i, k) |
---|
114 | END DO |
---|
115 | END DO |
---|
116 | DO i = 1, klon |
---|
117 | rain(i) = rain(i) + rain_bis(i) |
---|
118 | snow(i) = snow(i) + snow_bis(i) |
---|
119 | kbascm(i) = min(kbascm(i), ibas_bis(i)) |
---|
120 | ktopcm(i) = max(ktopcm(i), itop_bis(i)) |
---|
121 | END DO |
---|
122 | DO k = 1, klev ! eau liquide convective est |
---|
123 | DO i = 1, klon ! dispersee dans l'air |
---|
124 | zlvdcp = rlvtt / rcpd / (1.0 + rvtmp2 * q(i, k)) |
---|
125 | zlsdcp = rlstt / rcpd / (1.0 + rvtmp2 * q(i, k)) |
---|
126 | zdelta = max(0., sign(1., rtt - t(i, k))) |
---|
127 | zz = d_ql_bis(i, k) ! re-evap. de l'eau liquide |
---|
128 | zb = max(0.0, zz) |
---|
129 | za = -max(0.0, zz) * (zlvdcp * (1. - zdelta) + zlsdcp * zdelta) |
---|
130 | d_t(i, k) = d_t(i, k) + za |
---|
131 | d_q(i, k) = d_q(i, k) + zb |
---|
132 | END DO |
---|
133 | END DO |
---|
134 | END IF |
---|
135 | |
---|
136 | END SUBROUTINE conccm |
---|
137 | SUBROUTINE cmfmca(deltat, p, dp, gz, tb, shb, cmfprt, cmfprs, cnt, cnb) |
---|
138 | USE dimphy |
---|
139 | USE lmdz_yoethf |
---|
140 | |
---|
141 | USE lmdz_yomcst |
---|
142 | |
---|
143 | IMPLICIT NONE |
---|
144 | INCLUDE "FCTTRE.h" |
---|
145 | ! ----------------------------------------------------------------------- |
---|
146 | ! Moist convective mass flux procedure: |
---|
147 | ! If stratification is unstable to nonentraining parcel ascent, |
---|
148 | ! complete an adjustment making use of a simple cloud model |
---|
149 | |
---|
150 | ! Code generalized to allow specification of parcel ("updraft") |
---|
151 | ! properties, as well as convective transport of an arbitrary |
---|
152 | ! number of passive constituents (see cmrb array). |
---|
153 | ! ----------------------------Code History------------------------------- |
---|
154 | ! Original version: J. J. Hack, March 22, 1990 |
---|
155 | ! Standardized: J. Rosinski, June 1992 |
---|
156 | ! Reviewed: J. Hack, G. Taylor, August 1992 |
---|
157 | ! Adaptation au LMD: Z.X. Li, mars 1996 (reference: Hack 1994, |
---|
158 | ! J. Geophys. Res. vol 99, D3, 5551-5568). J'ai |
---|
159 | ! introduit les constantes et les fonctions thermo- |
---|
160 | ! dynamiques du Centre Europeen. J'ai elimine le |
---|
161 | ! re-indicage du code en esperant que cela pourra |
---|
162 | ! simplifier la lecture et la comprehension. |
---|
163 | ! ----------------------------------------------------------------------- |
---|
164 | INTEGER pcnst ! nombre de traceurs passifs |
---|
165 | PARAMETER (pcnst = 1) |
---|
166 | ! ------------------------------Arguments-------------------------------- |
---|
167 | ! Input arguments |
---|
168 | |
---|
169 | REAL deltat ! time step (seconds) |
---|
170 | REAL p(klon, klev) ! pressure |
---|
171 | REAL dp(klon, klev) ! delta-p |
---|
172 | REAL gz(klon, klev) ! geopotential (a partir du sol) |
---|
173 | |
---|
174 | REAL thtap(klon) ! PBL perturbation theta |
---|
175 | REAL shp(klon) ! PBL perturbation specific humidity |
---|
176 | REAL pblh(klon) ! PBL height (provided by PBL routine) |
---|
177 | REAL cmrp(klon, pcnst) ! constituent perturbations in PBL |
---|
178 | |
---|
179 | ! Updated arguments: |
---|
180 | |
---|
181 | REAL tb(klon, klev) ! temperature (t bar) |
---|
182 | REAL shb(klon, klev) ! specific humidity (sh bar) |
---|
183 | REAL cmrb(klon, klev, pcnst) ! constituent mixing ratios (cmr bar) |
---|
184 | |
---|
185 | ! Output arguments |
---|
186 | |
---|
187 | REAL cmfdt(klon, klev) ! dT/dt due to moist convection |
---|
188 | REAL cmfdq(klon, klev) ! dq/dt due to moist convection |
---|
189 | REAL cmfmc(klon, klev) ! moist convection cloud mass flux |
---|
190 | REAL cmfdqr(klon, klev) ! dq/dt due to convective rainout |
---|
191 | REAL cmfsl(klon, klev) ! convective lw static energy flux |
---|
192 | REAL cmflq(klon, klev) ! convective total water flux |
---|
193 | REAL cmfprt(klon) ! convective precipitation rate |
---|
194 | REAL cmfprs(klon) ! convective snowfall rate |
---|
195 | REAL qc(klon, klev) ! dq/dt due to rainout terms |
---|
196 | INTEGER cnt(klon) ! top level of convective activity |
---|
197 | INTEGER cnb(klon) ! bottom level of convective activity |
---|
198 | ! ------------------------------Parameters------------------------------- |
---|
199 | REAL c0 ! rain water autoconversion coefficient |
---|
200 | PARAMETER (c0 = 1.0E-4) |
---|
201 | REAL dzmin ! minimum convective depth for precipitation |
---|
202 | PARAMETER (dzmin = 0.0) |
---|
203 | REAL betamn ! minimum overshoot parameter |
---|
204 | PARAMETER (betamn = 0.10) |
---|
205 | REAL cmftau ! characteristic adjustment time scale |
---|
206 | PARAMETER (cmftau = 3600.) |
---|
207 | INTEGER limcnv ! top interface level limit for convection |
---|
208 | PARAMETER (limcnv = 1) |
---|
209 | REAL tpmax ! maximum acceptable t perturbation (degrees C) |
---|
210 | PARAMETER (tpmax = 1.50) |
---|
211 | REAL shpmax ! maximum acceptable q perturbation (g/g) |
---|
212 | PARAMETER (shpmax = 1.50E-3) |
---|
213 | REAL tiny ! arbitrary small num used in transport estimates |
---|
214 | PARAMETER (tiny = 1.0E-36) |
---|
215 | REAL eps ! convergence criteria (machine dependent) |
---|
216 | PARAMETER (eps = 1.0E-13) |
---|
217 | REAL tmelt ! freezing point of water(req'd for rain vs snow) |
---|
218 | PARAMETER (tmelt = 273.15) |
---|
219 | REAL ssfac ! supersaturation bound (detrained air) |
---|
220 | PARAMETER (ssfac = 1.001) |
---|
221 | |
---|
222 | ! ---------------------------Local workspace----------------------------- |
---|
223 | REAL gam(klon, klev) ! L/cp (d(qsat)/dT) |
---|
224 | REAL sb(klon, klev) ! dry static energy (s bar) |
---|
225 | REAL hb(klon, klev) ! moist static energy (h bar) |
---|
226 | REAL shbs(klon, klev) ! sat. specific humidity (sh bar star) |
---|
227 | REAL hbs(klon, klev) ! sat. moist static energy (h bar star) |
---|
228 | REAL shbh(klon, klev + 1) ! specific humidity on interfaces |
---|
229 | REAL sbh(klon, klev + 1) ! s bar on interfaces |
---|
230 | REAL hbh(klon, klev + 1) ! h bar on interfaces |
---|
231 | REAL cmrh(klon, klev + 1) ! interface constituent mixing ratio |
---|
232 | REAL prec(klon) ! instantaneous total precipitation |
---|
233 | REAL dzcld(klon) ! depth of convective layer (m) |
---|
234 | REAL beta(klon) ! overshoot parameter (fraction) |
---|
235 | REAL betamx ! local maximum on overshoot |
---|
236 | REAL eta(klon) ! convective mass flux (kg/m^2 s) |
---|
237 | REAL etagdt ! eta*grav*deltat |
---|
238 | REAL cldwtr(klon) ! cloud water (mass) |
---|
239 | REAL rnwtr(klon) ! rain water (mass) |
---|
240 | REAL sc(klon) ! dry static energy ("in-cloud") |
---|
241 | REAL shc(klon) ! specific humidity ("in-cloud") |
---|
242 | REAL hc(klon) ! moist static energy ("in-cloud") |
---|
243 | REAL cmrc(klon) ! constituent mix rat ("in-cloud") |
---|
244 | REAL dq1(klon) ! shb convective change (lower lvl) |
---|
245 | REAL dq2(klon) ! shb convective change (mid level) |
---|
246 | REAL dq3(klon) ! shb convective change (upper lvl) |
---|
247 | REAL ds1(klon) ! sb convective change (lower lvl) |
---|
248 | REAL ds2(klon) ! sb convective change (mid level) |
---|
249 | REAL ds3(klon) ! sb convective change (upper lvl) |
---|
250 | REAL dcmr1(klon) ! cmrb convective change (lower lvl) |
---|
251 | REAL dcmr2(klon) ! cmrb convective change (mid level) |
---|
252 | REAL dcmr3(klon) ! cmrb convective change (upper lvl) |
---|
253 | REAL flotab(klon) ! hc - hbs (mesure d'instabilite) |
---|
254 | LOGICAL ldcum(klon) ! .TRUE. si la convection existe |
---|
255 | LOGICAL etagt0 ! true if eta > 0.0 |
---|
256 | REAL dt ! current 2 delta-t (model time step) |
---|
257 | REAL cats ! modified characteristic adj. time |
---|
258 | REAL rdt ! 1./dt |
---|
259 | REAL qprime ! modified specific humidity pert. |
---|
260 | REAL tprime ! modified thermal perturbation |
---|
261 | REAL pblhgt ! bounded pbl height (max[pblh,1m]) |
---|
262 | REAL fac1 ! intermediate scratch variable |
---|
263 | REAL shprme ! intermediate specific humidity pert. |
---|
264 | REAL qsattp ! saturation mixing ratio for |
---|
265 | ! thermally perturbed PBL parcels |
---|
266 | REAL dz ! local layer depth |
---|
267 | REAL b1 ! bouyancy measure in detrainment lvl |
---|
268 | REAL b2 ! bouyancy measure in condensation lvl |
---|
269 | REAL g ! bounded vertical gradient of hb |
---|
270 | REAL tmass ! total mass available for convective exchange |
---|
271 | REAL denom ! intermediate scratch variable |
---|
272 | REAL qtest1 ! used in negative q test (middle lvl) |
---|
273 | REAL qtest2 ! used in negative q test (lower lvl) |
---|
274 | REAL fslkp ! flux lw static energy (bot interface) |
---|
275 | REAL fslkm ! flux lw static energy (top interface) |
---|
276 | REAL fqlkp ! flux total water (bottom interface) |
---|
277 | REAL fqlkm ! flux total water (top interface) |
---|
278 | REAL botflx ! bottom constituent mixing ratio flux |
---|
279 | REAL topflx ! top constituent mixing ratio flux |
---|
280 | REAL efac1 ! ratio cmrb to convectively induced change (bot lvl) |
---|
281 | REAL efac2 ! ratio cmrb to convectively induced change (mid lvl) |
---|
282 | REAL efac3 ! ratio cmrb to convectively induced change (top lvl) |
---|
283 | |
---|
284 | INTEGER i, k ! indices horizontal et vertical |
---|
285 | INTEGER km1 ! k-1 (index offset) |
---|
286 | INTEGER kp1 ! k+1 (index offset) |
---|
287 | INTEGER m ! constituent index |
---|
288 | INTEGER ktp ! temporary index used to track top |
---|
289 | INTEGER is ! nombre de points a ajuster |
---|
290 | |
---|
291 | REAL tmp1, tmp2, tmp3, tmp4 |
---|
292 | REAL zx_t, zx_p, zx_q, zx_qs, zx_gam |
---|
293 | REAL zcor, zdelta, zcvm5 |
---|
294 | |
---|
295 | REAL qhalf, sh1, sh2, shbs1, shbs2 |
---|
296 | qhalf(sh1, sh2, shbs1, shbs2) = min(max(sh1, sh2), & |
---|
297 | (shbs2 * sh1 + shbs1 * sh2) / (shbs1 + shbs2)) |
---|
298 | |
---|
299 | ! ----------------------------------------------------------------------- |
---|
300 | ! pas de traceur pour l'instant |
---|
301 | DO m = 1, pcnst |
---|
302 | DO k = 1, klev |
---|
303 | DO i = 1, klon |
---|
304 | cmrb(i, k, m) = 0.0 |
---|
305 | END DO |
---|
306 | END DO |
---|
307 | END DO |
---|
308 | |
---|
309 | ! Les perturbations de la couche limite sont zero pour l'instant |
---|
310 | |
---|
311 | DO m = 1, pcnst |
---|
312 | DO i = 1, klon |
---|
313 | cmrp(i, m) = 0.0 |
---|
314 | END DO |
---|
315 | END DO |
---|
316 | DO i = 1, klon |
---|
317 | thtap(i) = 0.0 |
---|
318 | shp(i) = 0.0 |
---|
319 | pblh(i) = 1.0 |
---|
320 | END DO |
---|
321 | |
---|
322 | ! Ensure that characteristic adjustment time scale (cmftau) assumed |
---|
323 | ! in estimate of eta isn't smaller than model time scale (deltat) |
---|
324 | |
---|
325 | dt = deltat |
---|
326 | cats = max(dt, cmftau) |
---|
327 | rdt = 1.0 / dt |
---|
328 | |
---|
329 | ! Compute sb,hb,shbs,hbs |
---|
330 | |
---|
331 | DO k = 1, klev |
---|
332 | DO i = 1, klon |
---|
333 | zx_t = tb(i, k) |
---|
334 | zx_p = p(i, k) |
---|
335 | zx_q = shb(i, k) |
---|
336 | zdelta = max(0., sign(1., rtt - zx_t)) |
---|
337 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
338 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zx_q) |
---|
339 | zx_qs = r2es * foeew(zx_t, zdelta) / zx_p |
---|
340 | zx_qs = min(0.5, zx_qs) |
---|
341 | zcor = 1. / (1. - retv * zx_qs) |
---|
342 | zx_qs = zx_qs * zcor |
---|
343 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
344 | shbs(i, k) = zx_qs |
---|
345 | gam(i, k) = zx_gam |
---|
346 | END DO |
---|
347 | END DO |
---|
348 | |
---|
349 | DO k = limcnv, klev |
---|
350 | DO i = 1, klon |
---|
351 | sb(i, k) = rcpd * tb(i, k) + gz(i, k) |
---|
352 | hb(i, k) = sb(i, k) + rlvtt * shb(i, k) |
---|
353 | hbs(i, k) = sb(i, k) + rlvtt * shbs(i, k) |
---|
354 | END DO |
---|
355 | END DO |
---|
356 | |
---|
357 | ! Compute sbh, shbh |
---|
358 | |
---|
359 | DO k = limcnv + 1, klev |
---|
360 | km1 = k - 1 |
---|
361 | DO i = 1, klon |
---|
362 | sbh(i, k) = 0.5 * (sb(i, km1) + sb(i, k)) |
---|
363 | shbh(i, k) = qhalf(shb(i, km1), shb(i, k), shbs(i, km1), shbs(i, k)) |
---|
364 | hbh(i, k) = sbh(i, k) + rlvtt * shbh(i, k) |
---|
365 | END DO |
---|
366 | END DO |
---|
367 | |
---|
368 | ! Specify properties at top of model (not used, but filling anyway) |
---|
369 | |
---|
370 | DO i = 1, klon |
---|
371 | sbh(i, limcnv) = sb(i, limcnv) |
---|
372 | shbh(i, limcnv) = shb(i, limcnv) |
---|
373 | hbh(i, limcnv) = hb(i, limcnv) |
---|
374 | END DO |
---|
375 | |
---|
376 | ! Zero vertically independent control, tendency & diagnostic arrays |
---|
377 | |
---|
378 | DO i = 1, klon |
---|
379 | prec(i) = 0.0 |
---|
380 | dzcld(i) = 0.0 |
---|
381 | cnb(i) = 0 |
---|
382 | cnt(i) = klev + 1 |
---|
383 | END DO |
---|
384 | |
---|
385 | DO k = 1, klev |
---|
386 | DO i = 1, klon |
---|
387 | cmfdt(i, k) = 0. |
---|
388 | cmfdq(i, k) = 0. |
---|
389 | cmfdqr(i, k) = 0. |
---|
390 | cmfmc(i, k) = 0. |
---|
391 | cmfsl(i, k) = 0. |
---|
392 | cmflq(i, k) = 0. |
---|
393 | END DO |
---|
394 | END DO |
---|
395 | |
---|
396 | ! Begin moist convective mass flux adjustment procedure. |
---|
397 | ! Formalism ensures that negative cloud liquid water can never occur |
---|
398 | |
---|
399 | DO k = klev - 1, limcnv + 1, -1 |
---|
400 | km1 = k - 1 |
---|
401 | kp1 = k + 1 |
---|
402 | DO i = 1, klon |
---|
403 | eta(i) = 0.0 |
---|
404 | beta(i) = 0.0 |
---|
405 | ds1(i) = 0.0 |
---|
406 | ds2(i) = 0.0 |
---|
407 | ds3(i) = 0.0 |
---|
408 | dq1(i) = 0.0 |
---|
409 | dq2(i) = 0.0 |
---|
410 | dq3(i) = 0.0 |
---|
411 | |
---|
412 | ! Specification of "cloud base" conditions |
---|
413 | |
---|
414 | qprime = 0.0 |
---|
415 | tprime = 0.0 |
---|
416 | |
---|
417 | ! Assign tprime within the PBL to be proportional to the quantity |
---|
418 | ! thtap (which will be bounded by tpmax), passed to this routine by |
---|
419 | ! the PBL routine. Don't allow perturbation to produce a dry |
---|
420 | ! adiabatically unstable parcel. Assign qprime within the PBL to be |
---|
421 | ! an appropriately modified value of the quantity shp (which will be |
---|
422 | ! bounded by shpmax) passed to this routine by the PBL routine. The |
---|
423 | ! quantity qprime should be less than the local saturation value |
---|
424 | ! (qsattp=qsat[t+tprime,p]). In both cases, thtap and shp are |
---|
425 | ! linearly reduced toward zero as the PBL top is approached. |
---|
426 | |
---|
427 | pblhgt = max(pblh(i), 1.0) |
---|
428 | IF (gz(i, kp1) / rg<=pblhgt .AND. dzcld(i)==0.0) THEN |
---|
429 | fac1 = max(0.0, 1.0 - gz(i, kp1) / rg / pblhgt) |
---|
430 | tprime = min(thtap(i), tpmax) * fac1 |
---|
431 | qsattp = shbs(i, kp1) + rcpd / rlvtt * gam(i, kp1) * tprime |
---|
432 | shprme = min(min(shp(i), shpmax) * fac1, max(qsattp - shb(i, kp1), 0.0)) |
---|
433 | qprime = max(qprime, shprme) |
---|
434 | ELSE |
---|
435 | tprime = 0.0 |
---|
436 | qprime = 0.0 |
---|
437 | END IF |
---|
438 | |
---|
439 | ! Specify "updraft" (in-cloud) thermodynamic properties |
---|
440 | |
---|
441 | sc(i) = sb(i, kp1) + rcpd * tprime |
---|
442 | shc(i) = shb(i, kp1) + qprime |
---|
443 | hc(i) = sc(i) + rlvtt * shc(i) |
---|
444 | flotab(i) = hc(i) - hbs(i, k) |
---|
445 | dz = dp(i, k) * rd * tb(i, k) / rg / p(i, k) |
---|
446 | IF (flotab(i)>0.0) THEN |
---|
447 | dzcld(i) = dzcld(i) + dz |
---|
448 | ELSE |
---|
449 | dzcld(i) = 0.0 |
---|
450 | END IF |
---|
451 | END DO |
---|
452 | |
---|
453 | ! Check on moist convective instability |
---|
454 | |
---|
455 | is = 0 |
---|
456 | DO i = 1, klon |
---|
457 | IF (flotab(i)>0.0) THEN |
---|
458 | ldcum(i) = .TRUE. |
---|
459 | is = is + 1 |
---|
460 | ELSE |
---|
461 | ldcum(i) = .FALSE. |
---|
462 | END IF |
---|
463 | END DO |
---|
464 | |
---|
465 | IF (is==0) THEN |
---|
466 | DO i = 1, klon |
---|
467 | dzcld(i) = 0.0 |
---|
468 | END DO |
---|
469 | GO TO 70 |
---|
470 | END IF |
---|
471 | |
---|
472 | ! Current level just below top level => no overshoot |
---|
473 | |
---|
474 | IF (k<=limcnv + 1) THEN |
---|
475 | DO i = 1, klon |
---|
476 | IF (ldcum(i)) THEN |
---|
477 | cldwtr(i) = sb(i, k) - sc(i) + flotab(i) / (1.0 + gam(i, k)) |
---|
478 | cldwtr(i) = max(0.0, cldwtr(i)) |
---|
479 | beta(i) = 0.0 |
---|
480 | END IF |
---|
481 | END DO |
---|
482 | GO TO 20 |
---|
483 | END IF |
---|
484 | |
---|
485 | ! First guess at overshoot parameter using crude buoyancy closure |
---|
486 | ! 10% overshoot assumed as a minimum and 1-c0*dz maximum to start |
---|
487 | ! If pre-existing supersaturation in detrainment layer, beta=0 |
---|
488 | ! cldwtr is temporarily equal to RLVTT*l (l=> liquid water) |
---|
489 | |
---|
490 | DO i = 1, klon |
---|
491 | IF (ldcum(i)) THEN |
---|
492 | cldwtr(i) = sb(i, k) - sc(i) + flotab(i) / (1.0 + gam(i, k)) |
---|
493 | cldwtr(i) = max(0.0, cldwtr(i)) |
---|
494 | betamx = 1.0 - c0 * max(0.0, (dzcld(i) - dzmin)) |
---|
495 | b1 = (hc(i) - hbs(i, km1)) * dp(i, km1) |
---|
496 | b2 = (hc(i) - hbs(i, k)) * dp(i, k) |
---|
497 | beta(i) = max(betamn, min(betamx, 1.0 + b1 / b2)) |
---|
498 | IF (hbs(i, km1)<=hb(i, km1)) beta(i) = 0.0 |
---|
499 | END IF |
---|
500 | END DO |
---|
501 | |
---|
502 | ! Bound maximum beta to ensure physically realistic solutions |
---|
503 | |
---|
504 | ! First check constrains beta so that eta remains positive |
---|
505 | ! (assuming that eta is already positive for beta equal zero) |
---|
506 | ! La premiere contrainte de beta est que le flux eta doit etre positif. |
---|
507 | |
---|
508 | DO i = 1, klon |
---|
509 | IF (ldcum(i)) THEN |
---|
510 | tmp1 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - & |
---|
511 | (hbh(i, kp1) - hc(i)) * dp(i, k) / dp(i, kp1) |
---|
512 | tmp2 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, k)) |
---|
513 | IF ((beta(i) * tmp2 - tmp1)>0.0) THEN |
---|
514 | betamx = 0.99 * (tmp1 / tmp2) |
---|
515 | beta(i) = max(0.0, min(betamx, beta(i))) |
---|
516 | END IF |
---|
517 | |
---|
518 | ! Second check involves supersaturation of "detrainment layer" |
---|
519 | ! small amount of supersaturation acceptable (by ssfac factor) |
---|
520 | ! La 2e contrainte est que la convection ne doit pas sursaturer |
---|
521 | ! la "detrainment layer", Neanmoins, une petite sursaturation |
---|
522 | ! est acceptee (facteur ssfac). |
---|
523 | |
---|
524 | IF (hb(i, km1)<hbs(i, km1)) THEN |
---|
525 | tmp1 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - & |
---|
526 | (hbh(i, kp1) - hc(i)) * dp(i, k) / dp(i, kp1) |
---|
527 | tmp1 = tmp1 / dp(i, k) |
---|
528 | tmp2 = gam(i, km1) * (sbh(i, k) - sc(i) + cldwtr(i)) - hbh(i, k) + hc(i) - & |
---|
529 | sc(i) + sbh(i, k) |
---|
530 | tmp3 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, k)) / dp(i, k) |
---|
531 | tmp4 = (dt / cats) * (hc(i) - hbs(i, k)) * tmp2 / (dp(i, km1) * (hbs(i, km1) - hb(i, & |
---|
532 | km1))) + tmp3 |
---|
533 | IF ((beta(i) * tmp4 - tmp1)>0.0) THEN |
---|
534 | betamx = ssfac * (tmp1 / tmp4) |
---|
535 | beta(i) = max(0.0, min(betamx, beta(i))) |
---|
536 | END IF |
---|
537 | ELSE |
---|
538 | beta(i) = 0.0 |
---|
539 | END IF |
---|
540 | |
---|
541 | ! Third check to avoid introducing 2 delta x thermodynamic |
---|
542 | ! noise in the vertical ... constrain adjusted h (or theta e) |
---|
543 | ! so that the adjustment doesn't contribute to "kinks" in h |
---|
544 | |
---|
545 | g = min(0.0, hb(i, k) - hb(i, km1)) |
---|
546 | tmp3 = (hb(i, k) - hb(i, km1) - g) * (cats / dt) / (hc(i) - hbs(i, k)) |
---|
547 | tmp1 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - & |
---|
548 | (hbh(i, kp1) - hc(i)) * dp(i, k) / dp(i, kp1) |
---|
549 | tmp1 = tmp1 / dp(i, k) |
---|
550 | tmp1 = tmp3 * tmp1 + (hc(i) - hbh(i, kp1)) / dp(i, k) |
---|
551 | tmp2 = tmp3 * (1.0 + gam(i, k)) * (sc(i) - sbh(i, k)) / dp(i, k) + & |
---|
552 | (hc(i) - hbh(i, k) - cldwtr(i)) * (1.0 / dp(i, k) + 1.0 / dp(i, kp1)) |
---|
553 | IF ((beta(i) * tmp2 - tmp1)>0.0) THEN |
---|
554 | betamx = 0.0 |
---|
555 | IF (tmp2/=0.0) betamx = tmp1 / tmp2 |
---|
556 | beta(i) = max(0.0, min(betamx, beta(i))) |
---|
557 | END IF |
---|
558 | END IF |
---|
559 | END DO |
---|
560 | |
---|
561 | ! Calculate mass flux required for stabilization. |
---|
562 | |
---|
563 | ! Ensure that the convective mass flux, eta, is positive by |
---|
564 | ! setting negative values of eta to zero.. |
---|
565 | ! Ensure that estimated mass flux cannot move more than the |
---|
566 | ! minimum of total mass contained in either layer k or layer k+1. |
---|
567 | ! Also test for other pathological cases that result in non- |
---|
568 | ! physical states and adjust eta accordingly. |
---|
569 | |
---|
570 | 20 CONTINUE |
---|
571 | DO i = 1, klon |
---|
572 | IF (ldcum(i)) THEN |
---|
573 | beta(i) = max(0.0, beta(i)) |
---|
574 | tmp1 = hc(i) - hbs(i, k) |
---|
575 | tmp2 = ((1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - beta(i) * (1.0 + gam(& |
---|
576 | i, k)) * (sc(i) - sbh(i, k))) / dp(i, k) - (hbh(i, kp1) - hc(i)) / dp(i, kp1) |
---|
577 | eta(i) = tmp1 / (tmp2 * rg * cats) |
---|
578 | tmass = min(dp(i, k), dp(i, kp1)) / rg |
---|
579 | IF (eta(i)>tmass * rdt .OR. eta(i)<=0.0) eta(i) = 0.0 |
---|
580 | |
---|
581 | ! Check on negative q in top layer (bound beta) |
---|
582 | |
---|
583 | IF (shc(i) - shbh(i, k)<0.0 .AND. beta(i) * eta(i)/=0.0) THEN |
---|
584 | denom = eta(i) * rg * dt * (shc(i) - shbh(i, k)) / dp(i, km1) |
---|
585 | beta(i) = max(0.0, min(-0.999 * shb(i, km1) / denom, beta(i))) |
---|
586 | END IF |
---|
587 | |
---|
588 | ! Check on negative q in middle layer (zero eta) |
---|
589 | |
---|
590 | qtest1 = shb(i, k) + eta(i) * rg * dt * ((shc(i) - shbh(i, & |
---|
591 | kp1)) - (1.0 - beta(i)) * cldwtr(i) / rlvtt - beta(i) * (shc(i) - shbh(i, & |
---|
592 | k))) / dp(i, k) |
---|
593 | IF (qtest1<=0.0) eta(i) = 0.0 |
---|
594 | |
---|
595 | ! Check on negative q in lower layer (bound eta) |
---|
596 | |
---|
597 | fac1 = -(shbh(i, kp1) - shc(i)) / dp(i, kp1) |
---|
598 | qtest2 = shb(i, kp1) - eta(i) * rg * dt * fac1 |
---|
599 | IF (qtest2<0.0) THEN |
---|
600 | eta(i) = 0.99 * shb(i, kp1) / (rg * dt * fac1) |
---|
601 | END IF |
---|
602 | END IF |
---|
603 | END DO |
---|
604 | |
---|
605 | |
---|
606 | ! Calculate cloud water, rain water, and thermodynamic changes |
---|
607 | |
---|
608 | DO i = 1, klon |
---|
609 | IF (ldcum(i)) THEN |
---|
610 | etagdt = eta(i) * rg * dt |
---|
611 | cldwtr(i) = etagdt * cldwtr(i) / rlvtt / rg |
---|
612 | rnwtr(i) = (1.0 - beta(i)) * cldwtr(i) |
---|
613 | ds1(i) = etagdt * (sbh(i, kp1) - sc(i)) / dp(i, kp1) |
---|
614 | dq1(i) = etagdt * (shbh(i, kp1) - shc(i)) / dp(i, kp1) |
---|
615 | ds2(i) = (etagdt * (sc(i) - sbh(i, kp1)) + rlvtt * rg * cldwtr(i) - beta(i) * etagdt & |
---|
616 | * (sc(i) - sbh(i, k))) / dp(i, k) |
---|
617 | dq2(i) = (etagdt * (shc(i) - shbh(i, kp1)) - rg * rnwtr(i) - beta(i) * etagdt * (shc & |
---|
618 | (i) - shbh(i, k))) / dp(i, k) |
---|
619 | ds3(i) = beta(i) * (etagdt * (sc(i) - sbh(i, k)) - rlvtt * rg * cldwtr(i)) / dp(i, & |
---|
620 | km1) |
---|
621 | dq3(i) = beta(i) * etagdt * (shc(i) - shbh(i, k)) / dp(i, km1) |
---|
622 | |
---|
623 | ! Isolate convective fluxes for later diagnostics |
---|
624 | |
---|
625 | fslkp = eta(i) * (sc(i) - sbh(i, kp1)) |
---|
626 | fslkm = beta(i) * (eta(i) * (sc(i) - sbh(i, k)) - rlvtt * cldwtr(i) * rdt) |
---|
627 | fqlkp = eta(i) * (shc(i) - shbh(i, kp1)) |
---|
628 | fqlkm = beta(i) * eta(i) * (shc(i) - shbh(i, k)) |
---|
629 | |
---|
630 | |
---|
631 | ! Update thermodynamic profile (update sb, hb, & hbs later) |
---|
632 | |
---|
633 | tb(i, kp1) = tb(i, kp1) + ds1(i) / rcpd |
---|
634 | tb(i, k) = tb(i, k) + ds2(i) / rcpd |
---|
635 | tb(i, km1) = tb(i, km1) + ds3(i) / rcpd |
---|
636 | shb(i, kp1) = shb(i, kp1) + dq1(i) |
---|
637 | shb(i, k) = shb(i, k) + dq2(i) |
---|
638 | shb(i, km1) = shb(i, km1) + dq3(i) |
---|
639 | prec(i) = prec(i) + rnwtr(i) / rhoh2o |
---|
640 | |
---|
641 | ! Update diagnostic information for final budget |
---|
642 | ! Tracking temperature & specific humidity tendencies, |
---|
643 | ! rainout term, convective mass flux, convective liquid |
---|
644 | ! water static energy flux, and convective total water flux |
---|
645 | |
---|
646 | cmfdt(i, kp1) = cmfdt(i, kp1) + ds1(i) / rcpd * rdt |
---|
647 | cmfdt(i, k) = cmfdt(i, k) + ds2(i) / rcpd * rdt |
---|
648 | cmfdt(i, km1) = cmfdt(i, km1) + ds3(i) / rcpd * rdt |
---|
649 | cmfdq(i, kp1) = cmfdq(i, kp1) + dq1(i) * rdt |
---|
650 | cmfdq(i, k) = cmfdq(i, k) + dq2(i) * rdt |
---|
651 | cmfdq(i, km1) = cmfdq(i, km1) + dq3(i) * rdt |
---|
652 | cmfdqr(i, k) = cmfdqr(i, k) + (rg * rnwtr(i) / dp(i, k)) * rdt |
---|
653 | cmfmc(i, kp1) = cmfmc(i, kp1) + eta(i) |
---|
654 | cmfmc(i, k) = cmfmc(i, k) + beta(i) * eta(i) |
---|
655 | cmfsl(i, kp1) = cmfsl(i, kp1) + fslkp |
---|
656 | cmfsl(i, k) = cmfsl(i, k) + fslkm |
---|
657 | cmflq(i, kp1) = cmflq(i, kp1) + rlvtt * fqlkp |
---|
658 | cmflq(i, k) = cmflq(i, k) + rlvtt * fqlkm |
---|
659 | qc(i, k) = (rg * rnwtr(i) / dp(i, k)) * rdt |
---|
660 | END IF |
---|
661 | END DO |
---|
662 | |
---|
663 | ! Next, convectively modify passive constituents |
---|
664 | |
---|
665 | DO m = 1, pcnst |
---|
666 | DO i = 1, klon |
---|
667 | IF (ldcum(i)) THEN |
---|
668 | |
---|
669 | ! If any of the reported values of the constituent is negative in |
---|
670 | ! the three adjacent levels, nothing will be done to the profile |
---|
671 | |
---|
672 | IF ((cmrb(i, kp1, m)<0.0) .OR. (cmrb(i, k, m)<0.0) .OR. (cmrb(i, km1, & |
---|
673 | m)<0.0)) GO TO 40 |
---|
674 | |
---|
675 | ! Specify constituent interface values (linear interpolation) |
---|
676 | |
---|
677 | cmrh(i, k) = 0.5 * (cmrb(i, km1, m) + cmrb(i, k, m)) |
---|
678 | cmrh(i, kp1) = 0.5 * (cmrb(i, k, m) + cmrb(i, kp1, m)) |
---|
679 | |
---|
680 | ! Specify perturbation properties of constituents in PBL |
---|
681 | |
---|
682 | pblhgt = max(pblh(i), 1.0) |
---|
683 | IF (gz(i, kp1) / rg<=pblhgt .AND. dzcld(i)==0.) THEN |
---|
684 | fac1 = max(0.0, 1.0 - gz(i, kp1) / rg / pblhgt) |
---|
685 | cmrc(i) = cmrb(i, kp1, m) + cmrp(i, m) * fac1 |
---|
686 | ELSE |
---|
687 | cmrc(i) = cmrb(i, kp1, m) |
---|
688 | END IF |
---|
689 | |
---|
690 | ! Determine fluxes, flux divergence => changes due to convection |
---|
691 | ! Logic must be included to avoid producing negative values. A bit |
---|
692 | ! messy since there are no a priori assumptions about profiles. |
---|
693 | ! Tendency is modified (reduced) when pending disaster detected. |
---|
694 | |
---|
695 | etagdt = eta(i) * rg * dt |
---|
696 | botflx = etagdt * (cmrc(i) - cmrh(i, kp1)) |
---|
697 | topflx = beta(i) * etagdt * (cmrc(i) - cmrh(i, k)) |
---|
698 | dcmr1(i) = -botflx / dp(i, kp1) |
---|
699 | efac1 = 1.0 |
---|
700 | efac2 = 1.0 |
---|
701 | efac3 = 1.0 |
---|
702 | |
---|
703 | IF (cmrb(i, kp1, m) + dcmr1(i)<0.0) THEN |
---|
704 | efac1 = max(tiny, abs(cmrb(i, kp1, m) / dcmr1(i)) - eps) |
---|
705 | END IF |
---|
706 | |
---|
707 | IF (efac1==tiny .OR. efac1>1.0) efac1 = 0.0 |
---|
708 | dcmr1(i) = -efac1 * botflx / dp(i, kp1) |
---|
709 | dcmr2(i) = (efac1 * botflx - topflx) / dp(i, k) |
---|
710 | |
---|
711 | IF (cmrb(i, k, m) + dcmr2(i)<0.0) THEN |
---|
712 | efac2 = max(tiny, abs(cmrb(i, k, m) / dcmr2(i)) - eps) |
---|
713 | END IF |
---|
714 | |
---|
715 | IF (efac2==tiny .OR. efac2>1.0) efac2 = 0.0 |
---|
716 | dcmr2(i) = (efac1 * botflx - efac2 * topflx) / dp(i, k) |
---|
717 | dcmr3(i) = efac2 * topflx / dp(i, km1) |
---|
718 | |
---|
719 | IF (cmrb(i, km1, m) + dcmr3(i)<0.0) THEN |
---|
720 | efac3 = max(tiny, abs(cmrb(i, km1, m) / dcmr3(i)) - eps) |
---|
721 | END IF |
---|
722 | |
---|
723 | IF (efac3==tiny .OR. efac3>1.0) efac3 = 0.0 |
---|
724 | efac3 = min(efac2, efac3) |
---|
725 | dcmr2(i) = (efac1 * botflx - efac3 * topflx) / dp(i, k) |
---|
726 | dcmr3(i) = efac3 * topflx / dp(i, km1) |
---|
727 | |
---|
728 | cmrb(i, kp1, m) = cmrb(i, kp1, m) + dcmr1(i) |
---|
729 | cmrb(i, k, m) = cmrb(i, k, m) + dcmr2(i) |
---|
730 | cmrb(i, km1, m) = cmrb(i, km1, m) + dcmr3(i) |
---|
731 | END IF |
---|
732 | 40 END DO |
---|
733 | END DO ! end of m=1,pcnst loop |
---|
734 | |
---|
735 | IF (k==limcnv + 1) GO TO 60 ! on ne pourra plus glisser |
---|
736 | |
---|
737 | ! Dans la procedure de glissage ascendant, les variables thermo- |
---|
738 | ! dynamiques des couches k et km1 servent au calcul des couches |
---|
739 | ! superieures. Elles ont donc besoin d'une mise-a-jour. |
---|
740 | |
---|
741 | DO i = 1, klon |
---|
742 | IF (ldcum(i)) THEN |
---|
743 | zx_t = tb(i, k) |
---|
744 | zx_p = p(i, k) |
---|
745 | zx_q = shb(i, k) |
---|
746 | zdelta = max(0., sign(1., rtt - zx_t)) |
---|
747 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
748 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zx_q) |
---|
749 | zx_qs = r2es * foeew(zx_t, zdelta) / zx_p |
---|
750 | zx_qs = min(0.5, zx_qs) |
---|
751 | zcor = 1. / (1. - retv * zx_qs) |
---|
752 | zx_qs = zx_qs * zcor |
---|
753 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
754 | shbs(i, k) = zx_qs |
---|
755 | gam(i, k) = zx_gam |
---|
756 | |
---|
757 | zx_t = tb(i, km1) |
---|
758 | zx_p = p(i, km1) |
---|
759 | zx_q = shb(i, km1) |
---|
760 | zdelta = max(0., sign(1., rtt - zx_t)) |
---|
761 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
762 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zx_q) |
---|
763 | zx_qs = r2es * foeew(zx_t, zdelta) / zx_p |
---|
764 | zx_qs = min(0.5, zx_qs) |
---|
765 | zcor = 1. / (1. - retv * zx_qs) |
---|
766 | zx_qs = zx_qs * zcor |
---|
767 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
768 | shbs(i, km1) = zx_qs |
---|
769 | gam(i, km1) = zx_gam |
---|
770 | |
---|
771 | sb(i, k) = sb(i, k) + ds2(i) |
---|
772 | sb(i, km1) = sb(i, km1) + ds3(i) |
---|
773 | hb(i, k) = sb(i, k) + rlvtt * shb(i, k) |
---|
774 | hb(i, km1) = sb(i, km1) + rlvtt * shb(i, km1) |
---|
775 | hbs(i, k) = sb(i, k) + rlvtt * shbs(i, k) |
---|
776 | hbs(i, km1) = sb(i, km1) + rlvtt * shbs(i, km1) |
---|
777 | |
---|
778 | sbh(i, k) = 0.5 * (sb(i, k) + sb(i, km1)) |
---|
779 | shbh(i, k) = qhalf(shb(i, km1), shb(i, k), shbs(i, km1), shbs(i, k)) |
---|
780 | hbh(i, k) = sbh(i, k) + rlvtt * shbh(i, k) |
---|
781 | sbh(i, km1) = 0.5 * (sb(i, km1) + sb(i, k - 2)) |
---|
782 | shbh(i, km1) = qhalf(shb(i, k - 2), shb(i, km1), shbs(i, k - 2), & |
---|
783 | shbs(i, km1)) |
---|
784 | hbh(i, km1) = sbh(i, km1) + rlvtt * shbh(i, km1) |
---|
785 | END IF |
---|
786 | END DO |
---|
787 | |
---|
788 | ! Ensure that dzcld is reset if convective mass flux zero |
---|
789 | ! specify the current vertical extent of the convective activity |
---|
790 | ! top of convective layer determined by size of overshoot param. |
---|
791 | |
---|
792 | 60 CONTINUE |
---|
793 | DO i = 1, klon |
---|
794 | etagt0 = eta(i) > 0.0 |
---|
795 | IF (.NOT. etagt0) dzcld(i) = 0.0 |
---|
796 | IF (etagt0 .AND. beta(i)>betamn) THEN |
---|
797 | ktp = km1 |
---|
798 | ELSE |
---|
799 | ktp = k |
---|
800 | END IF |
---|
801 | IF (etagt0) THEN |
---|
802 | cnt(i) = min(cnt(i), ktp) |
---|
803 | cnb(i) = max(cnb(i), k) |
---|
804 | END IF |
---|
805 | END DO |
---|
806 | 70 END DO ! end of k loop |
---|
807 | |
---|
808 | ! determine whether precipitation, prec, is frozen (snow) or not |
---|
809 | |
---|
810 | DO i = 1, klon |
---|
811 | IF (tb(i, klev)<tmelt .AND. tb(i, klev - 1)<tmelt) THEN |
---|
812 | cmfprs(i) = prec(i) * rdt |
---|
813 | ELSE |
---|
814 | cmfprt(i) = prec(i) * rdt |
---|
815 | END IF |
---|
816 | END DO |
---|
817 | |
---|
818 | RETURN ! we're all done ... return to calling procedure |
---|
819 | END SUBROUTINE cmfmca |
---|