[524] | 1 | ! $Header$ |
---|
[1992] | 2 | |
---|
| 3 | SUBROUTINE conccm(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, rain, snow, & |
---|
[5143] | 4 | kbascm, ktopcm) |
---|
[1992] | 5 | |
---|
| 6 | USE dimphy |
---|
[5144] | 7 | USE lmdz_yoethf |
---|
| 8 | USE lmdz_yomcst |
---|
[5143] | 9 | |
---|
[1992] | 10 | IMPLICIT NONE |
---|
| 11 | ! ====================================================================== |
---|
| 12 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: le 14 mars 1996 |
---|
| 13 | ! Objet: Schema simple (avec flux de masse) pour la convection |
---|
| 14 | ! (schema standard du modele NCAR CCM2) |
---|
| 15 | ! ====================================================================== |
---|
| 16 | |
---|
| 17 | ! Entree: |
---|
| 18 | REAL dtime ! pas d'integration |
---|
[5143] | 19 | REAL paprs(klon, klev + 1) ! pression inter-couche (Pa) |
---|
[1992] | 20 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 21 | REAL t(klon, klev) ! temperature (K) |
---|
| 22 | REAL q(klon, klev) ! humidite specifique (g/g) |
---|
| 23 | REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
---|
| 24 | ! Sortie: |
---|
| 25 | REAL d_t(klon, klev) ! incrementation temperature |
---|
| 26 | REAL d_q(klon, klev) ! incrementation vapeur |
---|
| 27 | REAL rain(klon) ! pluie (mm/s) |
---|
| 28 | REAL snow(klon) ! neige (mm/s) |
---|
| 29 | INTEGER kbascm(klon) ! niveau du bas de convection |
---|
| 30 | INTEGER ktopcm(klon) ! niveau du haut de convection |
---|
| 31 | |
---|
| 32 | REAL pt(klon, klev) |
---|
| 33 | REAL pq(klon, klev) |
---|
| 34 | REAL pres(klon, klev) |
---|
| 35 | REAL dp(klon, klev) |
---|
| 36 | REAL zgeom(klon, klev) |
---|
| 37 | REAL cmfprs(klon) |
---|
| 38 | REAL cmfprt(klon) |
---|
| 39 | INTEGER ntop(klon) |
---|
| 40 | INTEGER nbas(klon) |
---|
| 41 | INTEGER i, k |
---|
| 42 | REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
---|
| 43 | |
---|
| 44 | LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
---|
[5143] | 45 | PARAMETER (usekuo = .TRUE.) |
---|
[1992] | 46 | |
---|
| 47 | REAL d_t_bis(klon, klev) |
---|
| 48 | REAL d_q_bis(klon, klev) |
---|
| 49 | REAL rain_bis(klon) |
---|
| 50 | REAL snow_bis(klon) |
---|
| 51 | INTEGER ibas_bis(klon) |
---|
| 52 | INTEGER itop_bis(klon) |
---|
| 53 | REAL d_ql_bis(klon, klev) |
---|
| 54 | REAL rneb_bis(klon, klev) |
---|
| 55 | |
---|
| 56 | ! initialiser les variables de sortie (pour securite) |
---|
| 57 | DO i = 1, klon |
---|
| 58 | rain(i) = 0.0 |
---|
| 59 | snow(i) = 0.0 |
---|
| 60 | kbascm(i) = 0 |
---|
| 61 | ktopcm(i) = 0 |
---|
| 62 | END DO |
---|
| 63 | DO k = 1, klev |
---|
| 64 | DO i = 1, klon |
---|
| 65 | d_t(i, k) = 0.0 |
---|
| 66 | d_q(i, k) = 0.0 |
---|
| 67 | END DO |
---|
| 68 | END DO |
---|
| 69 | |
---|
| 70 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 71 | ! verticaux augmente du haut vers le bas) |
---|
| 72 | DO k = 1, klev |
---|
| 73 | DO i = 1, klon |
---|
[5143] | 74 | pt(i, k) = t(i, klev - k + 1) |
---|
| 75 | pq(i, k) = q(i, klev - k + 1) |
---|
| 76 | pres(i, k) = pplay(i, klev - k + 1) |
---|
| 77 | dp(i, k) = paprs(i, klev + 1 - k) - paprs(i, klev + 1 - k + 1) |
---|
[1992] | 78 | END DO |
---|
| 79 | END DO |
---|
| 80 | DO i = 1, klon |
---|
[5143] | 81 | zgeom(i, klev) = rd * t(i, 1) / (0.5 * (paprs(i, 1) + pplay(i, & |
---|
| 82 | 1))) * (paprs(i, 1) - pplay(i, 1)) |
---|
[1992] | 83 | END DO |
---|
| 84 | DO k = 2, klev |
---|
| 85 | DO i = 1, klon |
---|
[5143] | 86 | zgeom(i, klev + 1 - k) = zgeom(i, klev + 1 - k + 1) + rd * 0.5 * (t(i, k - 1) + t(i, k)) / & |
---|
| 87 | paprs(i, k) * (pplay(i, k - 1) - pplay(i, k)) |
---|
[1992] | 88 | END DO |
---|
| 89 | END DO |
---|
| 90 | |
---|
| 91 | CALL cmfmca(dtime, pres, dp, zgeom, pt, pq, cmfprt, cmfprs, ntop, nbas) |
---|
| 92 | |
---|
| 93 | DO k = 1, klev |
---|
| 94 | DO i = 1, klon |
---|
[5143] | 95 | d_q(i, klev + 1 - k) = pq(i, k) - q(i, klev + 1 - k) |
---|
| 96 | d_t(i, klev + 1 - k) = pt(i, k) - t(i, klev + 1 - k) |
---|
[1992] | 97 | END DO |
---|
| 98 | END DO |
---|
| 99 | |
---|
| 100 | DO i = 1, klon |
---|
[5143] | 101 | rain(i) = cmfprt(i) * rhoh2o |
---|
| 102 | snow(i) = cmfprs(i) * rhoh2o |
---|
[1992] | 103 | kbascm(i) = klev + 1 - nbas(i) |
---|
| 104 | ktopcm(i) = klev + 1 - ntop(i) |
---|
| 105 | END DO |
---|
| 106 | |
---|
| 107 | IF (usekuo) THEN |
---|
| 108 | CALL conkuo(dtime, paprs, pplay, t, q, conv_q, d_t_bis, d_q_bis, & |
---|
[5143] | 109 | d_ql_bis, rneb_bis, rain_bis, snow_bis, ibas_bis, itop_bis) |
---|
[1992] | 110 | DO k = 1, klev |
---|
[524] | 111 | DO i = 1, klon |
---|
[1992] | 112 | d_t(i, k) = d_t(i, k) + d_t_bis(i, k) |
---|
| 113 | d_q(i, k) = d_q(i, k) + d_q_bis(i, k) |
---|
| 114 | END DO |
---|
| 115 | END DO |
---|
| 116 | DO i = 1, klon |
---|
| 117 | rain(i) = rain(i) + rain_bis(i) |
---|
| 118 | snow(i) = snow(i) + snow_bis(i) |
---|
| 119 | kbascm(i) = min(kbascm(i), ibas_bis(i)) |
---|
| 120 | ktopcm(i) = max(ktopcm(i), itop_bis(i)) |
---|
| 121 | END DO |
---|
| 122 | DO k = 1, klev ! eau liquide convective est |
---|
[524] | 123 | DO i = 1, klon ! dispersee dans l'air |
---|
[5143] | 124 | zlvdcp = rlvtt / rcpd / (1.0 + rvtmp2 * q(i, k)) |
---|
| 125 | zlsdcp = rlstt / rcpd / (1.0 + rvtmp2 * q(i, k)) |
---|
| 126 | zdelta = max(0., sign(1., rtt - t(i, k))) |
---|
[1992] | 127 | zz = d_ql_bis(i, k) ! re-evap. de l'eau liquide |
---|
| 128 | zb = max(0.0, zz) |
---|
[5143] | 129 | za = -max(0.0, zz) * (zlvdcp * (1. - zdelta) + zlsdcp * zdelta) |
---|
[1992] | 130 | d_t(i, k) = d_t(i, k) + za |
---|
| 131 | d_q(i, k) = d_q(i, k) + zb |
---|
| 132 | END DO |
---|
| 133 | END DO |
---|
| 134 | END IF |
---|
| 135 | |
---|
| 136 | END SUBROUTINE conccm |
---|
| 137 | SUBROUTINE cmfmca(deltat, p, dp, gz, tb, shb, cmfprt, cmfprs, cnt, cnb) |
---|
| 138 | USE dimphy |
---|
[5144] | 139 | USE lmdz_yoethf |
---|
[5153] | 140 | |
---|
[5144] | 141 | USE lmdz_yomcst |
---|
[5143] | 142 | |
---|
[1992] | 143 | IMPLICIT NONE |
---|
[5153] | 144 | INCLUDE "FCTTRE.h" |
---|
[1992] | 145 | ! ----------------------------------------------------------------------- |
---|
| 146 | ! Moist convective mass flux procedure: |
---|
| 147 | ! If stratification is unstable to nonentraining parcel ascent, |
---|
| 148 | ! complete an adjustment making use of a simple cloud model |
---|
| 149 | |
---|
| 150 | ! Code generalized to allow specification of parcel ("updraft") |
---|
| 151 | ! properties, as well as convective transport of an arbitrary |
---|
| 152 | ! number of passive constituents (see cmrb array). |
---|
| 153 | ! ----------------------------Code History------------------------------- |
---|
| 154 | ! Original version: J. J. Hack, March 22, 1990 |
---|
| 155 | ! Standardized: J. Rosinski, June 1992 |
---|
| 156 | ! Reviewed: J. Hack, G. Taylor, August 1992 |
---|
| 157 | ! Adaptation au LMD: Z.X. Li, mars 1996 (reference: Hack 1994, |
---|
| 158 | ! J. Geophys. Res. vol 99, D3, 5551-5568). J'ai |
---|
| 159 | ! introduit les constantes et les fonctions thermo- |
---|
| 160 | ! dynamiques du Centre Europeen. J'ai elimine le |
---|
| 161 | ! re-indicage du code en esperant que cela pourra |
---|
| 162 | ! simplifier la lecture et la comprehension. |
---|
| 163 | ! ----------------------------------------------------------------------- |
---|
| 164 | INTEGER pcnst ! nombre de traceurs passifs |
---|
[5143] | 165 | PARAMETER (pcnst = 1) |
---|
[1992] | 166 | ! ------------------------------Arguments-------------------------------- |
---|
| 167 | ! Input arguments |
---|
| 168 | |
---|
| 169 | REAL deltat ! time step (seconds) |
---|
| 170 | REAL p(klon, klev) ! pressure |
---|
| 171 | REAL dp(klon, klev) ! delta-p |
---|
| 172 | REAL gz(klon, klev) ! geopotential (a partir du sol) |
---|
| 173 | |
---|
| 174 | REAL thtap(klon) ! PBL perturbation theta |
---|
| 175 | REAL shp(klon) ! PBL perturbation specific humidity |
---|
| 176 | REAL pblh(klon) ! PBL height (provided by PBL routine) |
---|
| 177 | REAL cmrp(klon, pcnst) ! constituent perturbations in PBL |
---|
| 178 | |
---|
| 179 | ! Updated arguments: |
---|
| 180 | |
---|
| 181 | REAL tb(klon, klev) ! temperature (t bar) |
---|
| 182 | REAL shb(klon, klev) ! specific humidity (sh bar) |
---|
| 183 | REAL cmrb(klon, klev, pcnst) ! constituent mixing ratios (cmr bar) |
---|
| 184 | |
---|
| 185 | ! Output arguments |
---|
| 186 | |
---|
| 187 | REAL cmfdt(klon, klev) ! dT/dt due to moist convection |
---|
| 188 | REAL cmfdq(klon, klev) ! dq/dt due to moist convection |
---|
| 189 | REAL cmfmc(klon, klev) ! moist convection cloud mass flux |
---|
| 190 | REAL cmfdqr(klon, klev) ! dq/dt due to convective rainout |
---|
| 191 | REAL cmfsl(klon, klev) ! convective lw static energy flux |
---|
| 192 | REAL cmflq(klon, klev) ! convective total water flux |
---|
| 193 | REAL cmfprt(klon) ! convective precipitation rate |
---|
| 194 | REAL cmfprs(klon) ! convective snowfall rate |
---|
| 195 | REAL qc(klon, klev) ! dq/dt due to rainout terms |
---|
| 196 | INTEGER cnt(klon) ! top level of convective activity |
---|
| 197 | INTEGER cnb(klon) ! bottom level of convective activity |
---|
| 198 | ! ------------------------------Parameters------------------------------- |
---|
| 199 | REAL c0 ! rain water autoconversion coefficient |
---|
[5143] | 200 | PARAMETER (c0 = 1.0E-4) |
---|
[1992] | 201 | REAL dzmin ! minimum convective depth for precipitation |
---|
[5143] | 202 | PARAMETER (dzmin = 0.0) |
---|
[1992] | 203 | REAL betamn ! minimum overshoot parameter |
---|
[5143] | 204 | PARAMETER (betamn = 0.10) |
---|
[1992] | 205 | REAL cmftau ! characteristic adjustment time scale |
---|
[5143] | 206 | PARAMETER (cmftau = 3600.) |
---|
[1992] | 207 | INTEGER limcnv ! top interface level limit for convection |
---|
[5143] | 208 | PARAMETER (limcnv = 1) |
---|
[1992] | 209 | REAL tpmax ! maximum acceptable t perturbation (degrees C) |
---|
[5143] | 210 | PARAMETER (tpmax = 1.50) |
---|
[1992] | 211 | REAL shpmax ! maximum acceptable q perturbation (g/g) |
---|
[5143] | 212 | PARAMETER (shpmax = 1.50E-3) |
---|
[1992] | 213 | REAL tiny ! arbitrary small num used in transport estimates |
---|
[5143] | 214 | PARAMETER (tiny = 1.0E-36) |
---|
[1992] | 215 | REAL eps ! convergence criteria (machine dependent) |
---|
[5143] | 216 | PARAMETER (eps = 1.0E-13) |
---|
[1992] | 217 | REAL tmelt ! freezing point of water(req'd for rain vs snow) |
---|
[5143] | 218 | PARAMETER (tmelt = 273.15) |
---|
[1992] | 219 | REAL ssfac ! supersaturation bound (detrained air) |
---|
[5143] | 220 | PARAMETER (ssfac = 1.001) |
---|
[1992] | 221 | |
---|
| 222 | ! ---------------------------Local workspace----------------------------- |
---|
| 223 | REAL gam(klon, klev) ! L/cp (d(qsat)/dT) |
---|
| 224 | REAL sb(klon, klev) ! dry static energy (s bar) |
---|
| 225 | REAL hb(klon, klev) ! moist static energy (h bar) |
---|
| 226 | REAL shbs(klon, klev) ! sat. specific humidity (sh bar star) |
---|
| 227 | REAL hbs(klon, klev) ! sat. moist static energy (h bar star) |
---|
[5143] | 228 | REAL shbh(klon, klev + 1) ! specific humidity on interfaces |
---|
| 229 | REAL sbh(klon, klev + 1) ! s bar on interfaces |
---|
| 230 | REAL hbh(klon, klev + 1) ! h bar on interfaces |
---|
| 231 | REAL cmrh(klon, klev + 1) ! interface constituent mixing ratio |
---|
[1992] | 232 | REAL prec(klon) ! instantaneous total precipitation |
---|
| 233 | REAL dzcld(klon) ! depth of convective layer (m) |
---|
| 234 | REAL beta(klon) ! overshoot parameter (fraction) |
---|
| 235 | REAL betamx ! local maximum on overshoot |
---|
| 236 | REAL eta(klon) ! convective mass flux (kg/m^2 s) |
---|
| 237 | REAL etagdt ! eta*grav*deltat |
---|
| 238 | REAL cldwtr(klon) ! cloud water (mass) |
---|
| 239 | REAL rnwtr(klon) ! rain water (mass) |
---|
| 240 | REAL sc(klon) ! dry static energy ("in-cloud") |
---|
| 241 | REAL shc(klon) ! specific humidity ("in-cloud") |
---|
| 242 | REAL hc(klon) ! moist static energy ("in-cloud") |
---|
| 243 | REAL cmrc(klon) ! constituent mix rat ("in-cloud") |
---|
| 244 | REAL dq1(klon) ! shb convective change (lower lvl) |
---|
| 245 | REAL dq2(klon) ! shb convective change (mid level) |
---|
| 246 | REAL dq3(klon) ! shb convective change (upper lvl) |
---|
| 247 | REAL ds1(klon) ! sb convective change (lower lvl) |
---|
| 248 | REAL ds2(klon) ! sb convective change (mid level) |
---|
| 249 | REAL ds3(klon) ! sb convective change (upper lvl) |
---|
| 250 | REAL dcmr1(klon) ! cmrb convective change (lower lvl) |
---|
| 251 | REAL dcmr2(klon) ! cmrb convective change (mid level) |
---|
| 252 | REAL dcmr3(klon) ! cmrb convective change (upper lvl) |
---|
| 253 | REAL flotab(klon) ! hc - hbs (mesure d'instabilite) |
---|
[5103] | 254 | LOGICAL ldcum(klon) ! .TRUE. si la convection existe |
---|
[1992] | 255 | LOGICAL etagt0 ! true if eta > 0.0 |
---|
| 256 | REAL dt ! current 2 delta-t (model time step) |
---|
| 257 | REAL cats ! modified characteristic adj. time |
---|
| 258 | REAL rdt ! 1./dt |
---|
| 259 | REAL qprime ! modified specific humidity pert. |
---|
| 260 | REAL tprime ! modified thermal perturbation |
---|
| 261 | REAL pblhgt ! bounded pbl height (max[pblh,1m]) |
---|
| 262 | REAL fac1 ! intermediate scratch variable |
---|
| 263 | REAL shprme ! intermediate specific humidity pert. |
---|
| 264 | REAL qsattp ! saturation mixing ratio for |
---|
[5113] | 265 | ! thermally perturbed PBL parcels |
---|
[1992] | 266 | REAL dz ! local layer depth |
---|
| 267 | REAL b1 ! bouyancy measure in detrainment lvl |
---|
| 268 | REAL b2 ! bouyancy measure in condensation lvl |
---|
| 269 | REAL g ! bounded vertical gradient of hb |
---|
| 270 | REAL tmass ! total mass available for convective exchange |
---|
| 271 | REAL denom ! intermediate scratch variable |
---|
| 272 | REAL qtest1 ! used in negative q test (middle lvl) |
---|
| 273 | REAL qtest2 ! used in negative q test (lower lvl) |
---|
| 274 | REAL fslkp ! flux lw static energy (bot interface) |
---|
| 275 | REAL fslkm ! flux lw static energy (top interface) |
---|
| 276 | REAL fqlkp ! flux total water (bottom interface) |
---|
| 277 | REAL fqlkm ! flux total water (top interface) |
---|
| 278 | REAL botflx ! bottom constituent mixing ratio flux |
---|
| 279 | REAL topflx ! top constituent mixing ratio flux |
---|
| 280 | REAL efac1 ! ratio cmrb to convectively induced change (bot lvl) |
---|
| 281 | REAL efac2 ! ratio cmrb to convectively induced change (mid lvl) |
---|
| 282 | REAL efac3 ! ratio cmrb to convectively induced change (top lvl) |
---|
| 283 | |
---|
| 284 | INTEGER i, k ! indices horizontal et vertical |
---|
| 285 | INTEGER km1 ! k-1 (index offset) |
---|
| 286 | INTEGER kp1 ! k+1 (index offset) |
---|
| 287 | INTEGER m ! constituent index |
---|
| 288 | INTEGER ktp ! temporary index used to track top |
---|
| 289 | INTEGER is ! nombre de points a ajuster |
---|
| 290 | |
---|
| 291 | REAL tmp1, tmp2, tmp3, tmp4 |
---|
| 292 | REAL zx_t, zx_p, zx_q, zx_qs, zx_gam |
---|
| 293 | REAL zcor, zdelta, zcvm5 |
---|
| 294 | |
---|
| 295 | REAL qhalf, sh1, sh2, shbs1, shbs2 |
---|
[5143] | 296 | qhalf(sh1, sh2, shbs1, shbs2) = min(max(sh1, sh2), & |
---|
| 297 | (shbs2 * sh1 + shbs1 * sh2) / (shbs1 + shbs2)) |
---|
[1992] | 298 | |
---|
| 299 | ! ----------------------------------------------------------------------- |
---|
| 300 | ! pas de traceur pour l'instant |
---|
| 301 | DO m = 1, pcnst |
---|
| 302 | DO k = 1, klev |
---|
[524] | 303 | DO i = 1, klon |
---|
[1992] | 304 | cmrb(i, k, m) = 0.0 |
---|
| 305 | END DO |
---|
| 306 | END DO |
---|
| 307 | END DO |
---|
| 308 | |
---|
| 309 | ! Les perturbations de la couche limite sont zero pour l'instant |
---|
| 310 | |
---|
| 311 | DO m = 1, pcnst |
---|
| 312 | DO i = 1, klon |
---|
| 313 | cmrp(i, m) = 0.0 |
---|
| 314 | END DO |
---|
| 315 | END DO |
---|
| 316 | DO i = 1, klon |
---|
| 317 | thtap(i) = 0.0 |
---|
| 318 | shp(i) = 0.0 |
---|
| 319 | pblh(i) = 1.0 |
---|
| 320 | END DO |
---|
| 321 | |
---|
| 322 | ! Ensure that characteristic adjustment time scale (cmftau) assumed |
---|
| 323 | ! in estimate of eta isn't smaller than model time scale (deltat) |
---|
| 324 | |
---|
| 325 | dt = deltat |
---|
| 326 | cats = max(dt, cmftau) |
---|
[5143] | 327 | rdt = 1.0 / dt |
---|
[1992] | 328 | |
---|
| 329 | ! Compute sb,hb,shbs,hbs |
---|
| 330 | |
---|
| 331 | DO k = 1, klev |
---|
| 332 | DO i = 1, klon |
---|
| 333 | zx_t = tb(i, k) |
---|
| 334 | zx_p = p(i, k) |
---|
| 335 | zx_q = shb(i, k) |
---|
[5143] | 336 | zdelta = max(0., sign(1., rtt - zx_t)) |
---|
| 337 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
| 338 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zx_q) |
---|
| 339 | zx_qs = r2es * foeew(zx_t, zdelta) / zx_p |
---|
[1992] | 340 | zx_qs = min(0.5, zx_qs) |
---|
[5143] | 341 | zcor = 1. / (1. - retv * zx_qs) |
---|
| 342 | zx_qs = zx_qs * zcor |
---|
[1992] | 343 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
| 344 | shbs(i, k) = zx_qs |
---|
| 345 | gam(i, k) = zx_gam |
---|
| 346 | END DO |
---|
| 347 | END DO |
---|
| 348 | |
---|
| 349 | DO k = limcnv, klev |
---|
| 350 | DO i = 1, klon |
---|
[5143] | 351 | sb(i, k) = rcpd * tb(i, k) + gz(i, k) |
---|
| 352 | hb(i, k) = sb(i, k) + rlvtt * shb(i, k) |
---|
| 353 | hbs(i, k) = sb(i, k) + rlvtt * shbs(i, k) |
---|
[1992] | 354 | END DO |
---|
| 355 | END DO |
---|
| 356 | |
---|
| 357 | ! Compute sbh, shbh |
---|
| 358 | |
---|
| 359 | DO k = limcnv + 1, klev |
---|
| 360 | km1 = k - 1 |
---|
| 361 | DO i = 1, klon |
---|
[5143] | 362 | sbh(i, k) = 0.5 * (sb(i, km1) + sb(i, k)) |
---|
| 363 | shbh(i, k) = qhalf(shb(i, km1), shb(i, k), shbs(i, km1), shbs(i, k)) |
---|
| 364 | hbh(i, k) = sbh(i, k) + rlvtt * shbh(i, k) |
---|
[1992] | 365 | END DO |
---|
| 366 | END DO |
---|
| 367 | |
---|
| 368 | ! Specify properties at top of model (not used, but filling anyway) |
---|
| 369 | |
---|
| 370 | DO i = 1, klon |
---|
| 371 | sbh(i, limcnv) = sb(i, limcnv) |
---|
| 372 | shbh(i, limcnv) = shb(i, limcnv) |
---|
| 373 | hbh(i, limcnv) = hb(i, limcnv) |
---|
| 374 | END DO |
---|
| 375 | |
---|
| 376 | ! Zero vertically independent control, tendency & diagnostic arrays |
---|
| 377 | |
---|
| 378 | DO i = 1, klon |
---|
| 379 | prec(i) = 0.0 |
---|
| 380 | dzcld(i) = 0.0 |
---|
| 381 | cnb(i) = 0 |
---|
| 382 | cnt(i) = klev + 1 |
---|
| 383 | END DO |
---|
| 384 | |
---|
| 385 | DO k = 1, klev |
---|
| 386 | DO i = 1, klon |
---|
| 387 | cmfdt(i, k) = 0. |
---|
| 388 | cmfdq(i, k) = 0. |
---|
| 389 | cmfdqr(i, k) = 0. |
---|
| 390 | cmfmc(i, k) = 0. |
---|
| 391 | cmfsl(i, k) = 0. |
---|
| 392 | cmflq(i, k) = 0. |
---|
| 393 | END DO |
---|
| 394 | END DO |
---|
| 395 | |
---|
| 396 | ! Begin moist convective mass flux adjustment procedure. |
---|
| 397 | ! Formalism ensures that negative cloud liquid water can never occur |
---|
| 398 | |
---|
| 399 | DO k = klev - 1, limcnv + 1, -1 |
---|
| 400 | km1 = k - 1 |
---|
| 401 | kp1 = k + 1 |
---|
| 402 | DO i = 1, klon |
---|
| 403 | eta(i) = 0.0 |
---|
| 404 | beta(i) = 0.0 |
---|
| 405 | ds1(i) = 0.0 |
---|
| 406 | ds2(i) = 0.0 |
---|
| 407 | ds3(i) = 0.0 |
---|
| 408 | dq1(i) = 0.0 |
---|
| 409 | dq2(i) = 0.0 |
---|
| 410 | dq3(i) = 0.0 |
---|
| 411 | |
---|
| 412 | ! Specification of "cloud base" conditions |
---|
| 413 | |
---|
| 414 | qprime = 0.0 |
---|
| 415 | tprime = 0.0 |
---|
| 416 | |
---|
| 417 | ! Assign tprime within the PBL to be proportional to the quantity |
---|
| 418 | ! thtap (which will be bounded by tpmax), passed to this routine by |
---|
| 419 | ! the PBL routine. Don't allow perturbation to produce a dry |
---|
| 420 | ! adiabatically unstable parcel. Assign qprime within the PBL to be |
---|
| 421 | ! an appropriately modified value of the quantity shp (which will be |
---|
| 422 | ! bounded by shpmax) passed to this routine by the PBL routine. The |
---|
| 423 | ! quantity qprime should be less than the local saturation value |
---|
| 424 | ! (qsattp=qsat[t+tprime,p]). In both cases, thtap and shp are |
---|
| 425 | ! linearly reduced toward zero as the PBL top is approached. |
---|
| 426 | |
---|
| 427 | pblhgt = max(pblh(i), 1.0) |
---|
[5143] | 428 | IF (gz(i, kp1) / rg<=pblhgt .AND. dzcld(i)==0.0) THEN |
---|
| 429 | fac1 = max(0.0, 1.0 - gz(i, kp1) / rg / pblhgt) |
---|
| 430 | tprime = min(thtap(i), tpmax) * fac1 |
---|
| 431 | qsattp = shbs(i, kp1) + rcpd / rlvtt * gam(i, kp1) * tprime |
---|
| 432 | shprme = min(min(shp(i), shpmax) * fac1, max(qsattp - shb(i, kp1), 0.0)) |
---|
[1992] | 433 | qprime = max(qprime, shprme) |
---|
| 434 | ELSE |
---|
| 435 | tprime = 0.0 |
---|
| 436 | qprime = 0.0 |
---|
| 437 | END IF |
---|
| 438 | |
---|
| 439 | ! Specify "updraft" (in-cloud) thermodynamic properties |
---|
| 440 | |
---|
[5143] | 441 | sc(i) = sb(i, kp1) + rcpd * tprime |
---|
[1992] | 442 | shc(i) = shb(i, kp1) + qprime |
---|
[5143] | 443 | hc(i) = sc(i) + rlvtt * shc(i) |
---|
[1992] | 444 | flotab(i) = hc(i) - hbs(i, k) |
---|
[5143] | 445 | dz = dp(i, k) * rd * tb(i, k) / rg / p(i, k) |
---|
[1992] | 446 | IF (flotab(i)>0.0) THEN |
---|
| 447 | dzcld(i) = dzcld(i) + dz |
---|
| 448 | ELSE |
---|
| 449 | dzcld(i) = 0.0 |
---|
| 450 | END IF |
---|
| 451 | END DO |
---|
| 452 | |
---|
| 453 | ! Check on moist convective instability |
---|
| 454 | |
---|
| 455 | is = 0 |
---|
| 456 | DO i = 1, klon |
---|
| 457 | IF (flotab(i)>0.0) THEN |
---|
| 458 | ldcum(i) = .TRUE. |
---|
| 459 | is = is + 1 |
---|
| 460 | ELSE |
---|
| 461 | ldcum(i) = .FALSE. |
---|
| 462 | END IF |
---|
| 463 | END DO |
---|
| 464 | |
---|
| 465 | IF (is==0) THEN |
---|
[524] | 466 | DO i = 1, klon |
---|
[1992] | 467 | dzcld(i) = 0.0 |
---|
| 468 | END DO |
---|
| 469 | GO TO 70 |
---|
| 470 | END IF |
---|
| 471 | |
---|
| 472 | ! Current level just below top level => no overshoot |
---|
| 473 | |
---|
[5143] | 474 | IF (k<=limcnv + 1) THEN |
---|
[524] | 475 | DO i = 1, klon |
---|
[1992] | 476 | IF (ldcum(i)) THEN |
---|
[5143] | 477 | cldwtr(i) = sb(i, k) - sc(i) + flotab(i) / (1.0 + gam(i, k)) |
---|
[1992] | 478 | cldwtr(i) = max(0.0, cldwtr(i)) |
---|
| 479 | beta(i) = 0.0 |
---|
| 480 | END IF |
---|
| 481 | END DO |
---|
| 482 | GO TO 20 |
---|
| 483 | END IF |
---|
| 484 | |
---|
| 485 | ! First guess at overshoot parameter using crude buoyancy closure |
---|
| 486 | ! 10% overshoot assumed as a minimum and 1-c0*dz maximum to start |
---|
| 487 | ! If pre-existing supersaturation in detrainment layer, beta=0 |
---|
| 488 | ! cldwtr is temporarily equal to RLVTT*l (l=> liquid water) |
---|
| 489 | |
---|
| 490 | DO i = 1, klon |
---|
| 491 | IF (ldcum(i)) THEN |
---|
[5143] | 492 | cldwtr(i) = sb(i, k) - sc(i) + flotab(i) / (1.0 + gam(i, k)) |
---|
[1992] | 493 | cldwtr(i) = max(0.0, cldwtr(i)) |
---|
[5143] | 494 | betamx = 1.0 - c0 * max(0.0, (dzcld(i) - dzmin)) |
---|
| 495 | b1 = (hc(i) - hbs(i, km1)) * dp(i, km1) |
---|
| 496 | b2 = (hc(i) - hbs(i, k)) * dp(i, k) |
---|
| 497 | beta(i) = max(betamn, min(betamx, 1.0 + b1 / b2)) |
---|
| 498 | IF (hbs(i, km1)<=hb(i, km1)) beta(i) = 0.0 |
---|
[1992] | 499 | END IF |
---|
| 500 | END DO |
---|
| 501 | |
---|
| 502 | ! Bound maximum beta to ensure physically realistic solutions |
---|
| 503 | |
---|
| 504 | ! First check constrains beta so that eta remains positive |
---|
| 505 | ! (assuming that eta is already positive for beta equal zero) |
---|
| 506 | ! La premiere contrainte de beta est que le flux eta doit etre positif. |
---|
| 507 | |
---|
| 508 | DO i = 1, klon |
---|
| 509 | IF (ldcum(i)) THEN |
---|
[5143] | 510 | tmp1 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - & |
---|
| 511 | (hbh(i, kp1) - hc(i)) * dp(i, k) / dp(i, kp1) |
---|
| 512 | tmp2 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, k)) |
---|
| 513 | IF ((beta(i) * tmp2 - tmp1)>0.0) THEN |
---|
| 514 | betamx = 0.99 * (tmp1 / tmp2) |
---|
| 515 | beta(i) = max(0.0, min(betamx, beta(i))) |
---|
[1992] | 516 | END IF |
---|
| 517 | |
---|
| 518 | ! Second check involves supersaturation of "detrainment layer" |
---|
| 519 | ! small amount of supersaturation acceptable (by ssfac factor) |
---|
| 520 | ! La 2e contrainte est que la convection ne doit pas sursaturer |
---|
| 521 | ! la "detrainment layer", Neanmoins, une petite sursaturation |
---|
| 522 | ! est acceptee (facteur ssfac). |
---|
| 523 | |
---|
[5143] | 524 | IF (hb(i, km1)<hbs(i, km1)) THEN |
---|
| 525 | tmp1 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - & |
---|
| 526 | (hbh(i, kp1) - hc(i)) * dp(i, k) / dp(i, kp1) |
---|
| 527 | tmp1 = tmp1 / dp(i, k) |
---|
| 528 | tmp2 = gam(i, km1) * (sbh(i, k) - sc(i) + cldwtr(i)) - hbh(i, k) + hc(i) - & |
---|
| 529 | sc(i) + sbh(i, k) |
---|
| 530 | tmp3 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, k)) / dp(i, k) |
---|
| 531 | tmp4 = (dt / cats) * (hc(i) - hbs(i, k)) * tmp2 / (dp(i, km1) * (hbs(i, km1) - hb(i, & |
---|
| 532 | km1))) + tmp3 |
---|
| 533 | IF ((beta(i) * tmp4 - tmp1)>0.0) THEN |
---|
| 534 | betamx = ssfac * (tmp1 / tmp4) |
---|
| 535 | beta(i) = max(0.0, min(betamx, beta(i))) |
---|
[1992] | 536 | END IF |
---|
| 537 | ELSE |
---|
| 538 | beta(i) = 0.0 |
---|
| 539 | END IF |
---|
| 540 | |
---|
| 541 | ! Third check to avoid introducing 2 delta x thermodynamic |
---|
| 542 | ! noise in the vertical ... constrain adjusted h (or theta e) |
---|
| 543 | ! so that the adjustment doesn't contribute to "kinks" in h |
---|
| 544 | |
---|
[5143] | 545 | g = min(0.0, hb(i, k) - hb(i, km1)) |
---|
| 546 | tmp3 = (hb(i, k) - hb(i, km1) - g) * (cats / dt) / (hc(i) - hbs(i, k)) |
---|
| 547 | tmp1 = (1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - & |
---|
| 548 | (hbh(i, kp1) - hc(i)) * dp(i, k) / dp(i, kp1) |
---|
| 549 | tmp1 = tmp1 / dp(i, k) |
---|
| 550 | tmp1 = tmp3 * tmp1 + (hc(i) - hbh(i, kp1)) / dp(i, k) |
---|
| 551 | tmp2 = tmp3 * (1.0 + gam(i, k)) * (sc(i) - sbh(i, k)) / dp(i, k) + & |
---|
| 552 | (hc(i) - hbh(i, k) - cldwtr(i)) * (1.0 / dp(i, k) + 1.0 / dp(i, kp1)) |
---|
| 553 | IF ((beta(i) * tmp2 - tmp1)>0.0) THEN |
---|
[1992] | 554 | betamx = 0.0 |
---|
[5143] | 555 | IF (tmp2/=0.0) betamx = tmp1 / tmp2 |
---|
| 556 | beta(i) = max(0.0, min(betamx, beta(i))) |
---|
[1992] | 557 | END IF |
---|
| 558 | END IF |
---|
| 559 | END DO |
---|
| 560 | |
---|
| 561 | ! Calculate mass flux required for stabilization. |
---|
| 562 | |
---|
| 563 | ! Ensure that the convective mass flux, eta, is positive by |
---|
| 564 | ! setting negative values of eta to zero.. |
---|
| 565 | ! Ensure that estimated mass flux cannot move more than the |
---|
| 566 | ! minimum of total mass contained in either layer k or layer k+1. |
---|
| 567 | ! Also test for other pathological cases that result in non- |
---|
| 568 | ! physical states and adjust eta accordingly. |
---|
| 569 | |
---|
[5143] | 570 | 20 CONTINUE |
---|
[1992] | 571 | DO i = 1, klon |
---|
| 572 | IF (ldcum(i)) THEN |
---|
| 573 | beta(i) = max(0.0, beta(i)) |
---|
| 574 | tmp1 = hc(i) - hbs(i, k) |
---|
[5143] | 575 | tmp2 = ((1.0 + gam(i, k)) * (sc(i) - sbh(i, kp1) + cldwtr(i)) - beta(i) * (1.0 + gam(& |
---|
| 576 | i, k)) * (sc(i) - sbh(i, k))) / dp(i, k) - (hbh(i, kp1) - hc(i)) / dp(i, kp1) |
---|
| 577 | eta(i) = tmp1 / (tmp2 * rg * cats) |
---|
| 578 | tmass = min(dp(i, k), dp(i, kp1)) / rg |
---|
| 579 | IF (eta(i)>tmass * rdt .OR. eta(i)<=0.0) eta(i) = 0.0 |
---|
[1992] | 580 | |
---|
| 581 | ! Check on negative q in top layer (bound beta) |
---|
| 582 | |
---|
[5143] | 583 | IF (shc(i) - shbh(i, k)<0.0 .AND. beta(i) * eta(i)/=0.0) THEN |
---|
| 584 | denom = eta(i) * rg * dt * (shc(i) - shbh(i, k)) / dp(i, km1) |
---|
| 585 | beta(i) = max(0.0, min(-0.999 * shb(i, km1) / denom, beta(i))) |
---|
[1992] | 586 | END IF |
---|
| 587 | |
---|
| 588 | ! Check on negative q in middle layer (zero eta) |
---|
| 589 | |
---|
[5143] | 590 | qtest1 = shb(i, k) + eta(i) * rg * dt * ((shc(i) - shbh(i, & |
---|
| 591 | kp1)) - (1.0 - beta(i)) * cldwtr(i) / rlvtt - beta(i) * (shc(i) - shbh(i, & |
---|
| 592 | k))) / dp(i, k) |
---|
[1992] | 593 | IF (qtest1<=0.0) eta(i) = 0.0 |
---|
| 594 | |
---|
| 595 | ! Check on negative q in lower layer (bound eta) |
---|
| 596 | |
---|
[5143] | 597 | fac1 = -(shbh(i, kp1) - shc(i)) / dp(i, kp1) |
---|
| 598 | qtest2 = shb(i, kp1) - eta(i) * rg * dt * fac1 |
---|
[1992] | 599 | IF (qtest2<0.0) THEN |
---|
[5143] | 600 | eta(i) = 0.99 * shb(i, kp1) / (rg * dt * fac1) |
---|
[1992] | 601 | END IF |
---|
| 602 | END IF |
---|
| 603 | END DO |
---|
| 604 | |
---|
| 605 | |
---|
| 606 | ! Calculate cloud water, rain water, and thermodynamic changes |
---|
| 607 | |
---|
| 608 | DO i = 1, klon |
---|
| 609 | IF (ldcum(i)) THEN |
---|
[5143] | 610 | etagdt = eta(i) * rg * dt |
---|
| 611 | cldwtr(i) = etagdt * cldwtr(i) / rlvtt / rg |
---|
| 612 | rnwtr(i) = (1.0 - beta(i)) * cldwtr(i) |
---|
| 613 | ds1(i) = etagdt * (sbh(i, kp1) - sc(i)) / dp(i, kp1) |
---|
| 614 | dq1(i) = etagdt * (shbh(i, kp1) - shc(i)) / dp(i, kp1) |
---|
| 615 | ds2(i) = (etagdt * (sc(i) - sbh(i, kp1)) + rlvtt * rg * cldwtr(i) - beta(i) * etagdt & |
---|
| 616 | * (sc(i) - sbh(i, k))) / dp(i, k) |
---|
| 617 | dq2(i) = (etagdt * (shc(i) - shbh(i, kp1)) - rg * rnwtr(i) - beta(i) * etagdt * (shc & |
---|
| 618 | (i) - shbh(i, k))) / dp(i, k) |
---|
| 619 | ds3(i) = beta(i) * (etagdt * (sc(i) - sbh(i, k)) - rlvtt * rg * cldwtr(i)) / dp(i, & |
---|
| 620 | km1) |
---|
| 621 | dq3(i) = beta(i) * etagdt * (shc(i) - shbh(i, k)) / dp(i, km1) |
---|
[1992] | 622 | |
---|
| 623 | ! Isolate convective fluxes for later diagnostics |
---|
| 624 | |
---|
[5143] | 625 | fslkp = eta(i) * (sc(i) - sbh(i, kp1)) |
---|
| 626 | fslkm = beta(i) * (eta(i) * (sc(i) - sbh(i, k)) - rlvtt * cldwtr(i) * rdt) |
---|
| 627 | fqlkp = eta(i) * (shc(i) - shbh(i, kp1)) |
---|
| 628 | fqlkm = beta(i) * eta(i) * (shc(i) - shbh(i, k)) |
---|
[1992] | 629 | |
---|
| 630 | |
---|
| 631 | ! Update thermodynamic profile (update sb, hb, & hbs later) |
---|
| 632 | |
---|
[5143] | 633 | tb(i, kp1) = tb(i, kp1) + ds1(i) / rcpd |
---|
| 634 | tb(i, k) = tb(i, k) + ds2(i) / rcpd |
---|
| 635 | tb(i, km1) = tb(i, km1) + ds3(i) / rcpd |
---|
[1992] | 636 | shb(i, kp1) = shb(i, kp1) + dq1(i) |
---|
| 637 | shb(i, k) = shb(i, k) + dq2(i) |
---|
| 638 | shb(i, km1) = shb(i, km1) + dq3(i) |
---|
[5143] | 639 | prec(i) = prec(i) + rnwtr(i) / rhoh2o |
---|
[1992] | 640 | |
---|
| 641 | ! Update diagnostic information for final budget |
---|
| 642 | ! Tracking temperature & specific humidity tendencies, |
---|
| 643 | ! rainout term, convective mass flux, convective liquid |
---|
| 644 | ! water static energy flux, and convective total water flux |
---|
| 645 | |
---|
[5143] | 646 | cmfdt(i, kp1) = cmfdt(i, kp1) + ds1(i) / rcpd * rdt |
---|
| 647 | cmfdt(i, k) = cmfdt(i, k) + ds2(i) / rcpd * rdt |
---|
| 648 | cmfdt(i, km1) = cmfdt(i, km1) + ds3(i) / rcpd * rdt |
---|
| 649 | cmfdq(i, kp1) = cmfdq(i, kp1) + dq1(i) * rdt |
---|
| 650 | cmfdq(i, k) = cmfdq(i, k) + dq2(i) * rdt |
---|
| 651 | cmfdq(i, km1) = cmfdq(i, km1) + dq3(i) * rdt |
---|
| 652 | cmfdqr(i, k) = cmfdqr(i, k) + (rg * rnwtr(i) / dp(i, k)) * rdt |
---|
[1992] | 653 | cmfmc(i, kp1) = cmfmc(i, kp1) + eta(i) |
---|
[5143] | 654 | cmfmc(i, k) = cmfmc(i, k) + beta(i) * eta(i) |
---|
[1992] | 655 | cmfsl(i, kp1) = cmfsl(i, kp1) + fslkp |
---|
| 656 | cmfsl(i, k) = cmfsl(i, k) + fslkm |
---|
[5143] | 657 | cmflq(i, kp1) = cmflq(i, kp1) + rlvtt * fqlkp |
---|
| 658 | cmflq(i, k) = cmflq(i, k) + rlvtt * fqlkm |
---|
| 659 | qc(i, k) = (rg * rnwtr(i) / dp(i, k)) * rdt |
---|
[1992] | 660 | END IF |
---|
| 661 | END DO |
---|
| 662 | |
---|
| 663 | ! Next, convectively modify passive constituents |
---|
| 664 | |
---|
| 665 | DO m = 1, pcnst |
---|
[524] | 666 | DO i = 1, klon |
---|
[1992] | 667 | IF (ldcum(i)) THEN |
---|
[524] | 668 | |
---|
[1992] | 669 | ! If any of the reported values of the constituent is negative in |
---|
| 670 | ! the three adjacent levels, nothing will be done to the profile |
---|
| 671 | |
---|
[5143] | 672 | IF ((cmrb(i, kp1, m)<0.0) .OR. (cmrb(i, k, m)<0.0) .OR. (cmrb(i, km1, & |
---|
| 673 | m)<0.0)) GO TO 40 |
---|
[1992] | 674 | |
---|
| 675 | ! Specify constituent interface values (linear interpolation) |
---|
| 676 | |
---|
[5143] | 677 | cmrh(i, k) = 0.5 * (cmrb(i, km1, m) + cmrb(i, k, m)) |
---|
| 678 | cmrh(i, kp1) = 0.5 * (cmrb(i, k, m) + cmrb(i, kp1, m)) |
---|
[1992] | 679 | |
---|
| 680 | ! Specify perturbation properties of constituents in PBL |
---|
| 681 | |
---|
| 682 | pblhgt = max(pblh(i), 1.0) |
---|
[5143] | 683 | IF (gz(i, kp1) / rg<=pblhgt .AND. dzcld(i)==0.) THEN |
---|
| 684 | fac1 = max(0.0, 1.0 - gz(i, kp1) / rg / pblhgt) |
---|
| 685 | cmrc(i) = cmrb(i, kp1, m) + cmrp(i, m) * fac1 |
---|
[1992] | 686 | ELSE |
---|
| 687 | cmrc(i) = cmrb(i, kp1, m) |
---|
| 688 | END IF |
---|
| 689 | |
---|
| 690 | ! Determine fluxes, flux divergence => changes due to convection |
---|
| 691 | ! Logic must be included to avoid producing negative values. A bit |
---|
| 692 | ! messy since there are no a priori assumptions about profiles. |
---|
| 693 | ! Tendency is modified (reduced) when pending disaster detected. |
---|
| 694 | |
---|
[5143] | 695 | etagdt = eta(i) * rg * dt |
---|
| 696 | botflx = etagdt * (cmrc(i) - cmrh(i, kp1)) |
---|
| 697 | topflx = beta(i) * etagdt * (cmrc(i) - cmrh(i, k)) |
---|
| 698 | dcmr1(i) = -botflx / dp(i, kp1) |
---|
[1992] | 699 | efac1 = 1.0 |
---|
| 700 | efac2 = 1.0 |
---|
| 701 | efac3 = 1.0 |
---|
| 702 | |
---|
[5143] | 703 | IF (cmrb(i, kp1, m) + dcmr1(i)<0.0) THEN |
---|
| 704 | efac1 = max(tiny, abs(cmrb(i, kp1, m) / dcmr1(i)) - eps) |
---|
[1992] | 705 | END IF |
---|
| 706 | |
---|
| 707 | IF (efac1==tiny .OR. efac1>1.0) efac1 = 0.0 |
---|
[5143] | 708 | dcmr1(i) = -efac1 * botflx / dp(i, kp1) |
---|
| 709 | dcmr2(i) = (efac1 * botflx - topflx) / dp(i, k) |
---|
[1992] | 710 | |
---|
[5143] | 711 | IF (cmrb(i, k, m) + dcmr2(i)<0.0) THEN |
---|
| 712 | efac2 = max(tiny, abs(cmrb(i, k, m) / dcmr2(i)) - eps) |
---|
[1992] | 713 | END IF |
---|
| 714 | |
---|
| 715 | IF (efac2==tiny .OR. efac2>1.0) efac2 = 0.0 |
---|
[5143] | 716 | dcmr2(i) = (efac1 * botflx - efac2 * topflx) / dp(i, k) |
---|
| 717 | dcmr3(i) = efac2 * topflx / dp(i, km1) |
---|
[1992] | 718 | |
---|
[5143] | 719 | IF (cmrb(i, km1, m) + dcmr3(i)<0.0) THEN |
---|
| 720 | efac3 = max(tiny, abs(cmrb(i, km1, m) / dcmr3(i)) - eps) |
---|
[1992] | 721 | END IF |
---|
| 722 | |
---|
| 723 | IF (efac3==tiny .OR. efac3>1.0) efac3 = 0.0 |
---|
| 724 | efac3 = min(efac2, efac3) |
---|
[5143] | 725 | dcmr2(i) = (efac1 * botflx - efac3 * topflx) / dp(i, k) |
---|
| 726 | dcmr3(i) = efac3 * topflx / dp(i, km1) |
---|
[1992] | 727 | |
---|
| 728 | cmrb(i, kp1, m) = cmrb(i, kp1, m) + dcmr1(i) |
---|
| 729 | cmrb(i, k, m) = cmrb(i, k, m) + dcmr2(i) |
---|
| 730 | cmrb(i, km1, m) = cmrb(i, km1, m) + dcmr3(i) |
---|
| 731 | END IF |
---|
[5143] | 732 | 40 END DO |
---|
[1992] | 733 | END DO ! end of m=1,pcnst loop |
---|
| 734 | |
---|
[5143] | 735 | IF (k==limcnv + 1) GO TO 60 ! on ne pourra plus glisser |
---|
[1992] | 736 | |
---|
| 737 | ! Dans la procedure de glissage ascendant, les variables thermo- |
---|
| 738 | ! dynamiques des couches k et km1 servent au calcul des couches |
---|
| 739 | ! superieures. Elles ont donc besoin d'une mise-a-jour. |
---|
| 740 | |
---|
| 741 | DO i = 1, klon |
---|
| 742 | IF (ldcum(i)) THEN |
---|
| 743 | zx_t = tb(i, k) |
---|
| 744 | zx_p = p(i, k) |
---|
| 745 | zx_q = shb(i, k) |
---|
[5143] | 746 | zdelta = max(0., sign(1., rtt - zx_t)) |
---|
| 747 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
| 748 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zx_q) |
---|
| 749 | zx_qs = r2es * foeew(zx_t, zdelta) / zx_p |
---|
[1992] | 750 | zx_qs = min(0.5, zx_qs) |
---|
[5143] | 751 | zcor = 1. / (1. - retv * zx_qs) |
---|
| 752 | zx_qs = zx_qs * zcor |
---|
[1992] | 753 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
| 754 | shbs(i, k) = zx_qs |
---|
| 755 | gam(i, k) = zx_gam |
---|
| 756 | |
---|
| 757 | zx_t = tb(i, km1) |
---|
| 758 | zx_p = p(i, km1) |
---|
| 759 | zx_q = shb(i, km1) |
---|
[5143] | 760 | zdelta = max(0., sign(1., rtt - zx_t)) |
---|
| 761 | zcvm5 = r5les * rlvtt * (1. - zdelta) + r5ies * rlstt * zdelta |
---|
| 762 | zcvm5 = zcvm5 / rcpd / (1.0 + rvtmp2 * zx_q) |
---|
| 763 | zx_qs = r2es * foeew(zx_t, zdelta) / zx_p |
---|
[1992] | 764 | zx_qs = min(0.5, zx_qs) |
---|
[5143] | 765 | zcor = 1. / (1. - retv * zx_qs) |
---|
| 766 | zx_qs = zx_qs * zcor |
---|
[1992] | 767 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
| 768 | shbs(i, km1) = zx_qs |
---|
| 769 | gam(i, km1) = zx_gam |
---|
| 770 | |
---|
| 771 | sb(i, k) = sb(i, k) + ds2(i) |
---|
| 772 | sb(i, km1) = sb(i, km1) + ds3(i) |
---|
[5143] | 773 | hb(i, k) = sb(i, k) + rlvtt * shb(i, k) |
---|
| 774 | hb(i, km1) = sb(i, km1) + rlvtt * shb(i, km1) |
---|
| 775 | hbs(i, k) = sb(i, k) + rlvtt * shbs(i, k) |
---|
| 776 | hbs(i, km1) = sb(i, km1) + rlvtt * shbs(i, km1) |
---|
[1992] | 777 | |
---|
[5143] | 778 | sbh(i, k) = 0.5 * (sb(i, k) + sb(i, km1)) |
---|
| 779 | shbh(i, k) = qhalf(shb(i, km1), shb(i, k), shbs(i, km1), shbs(i, k)) |
---|
| 780 | hbh(i, k) = sbh(i, k) + rlvtt * shbh(i, k) |
---|
| 781 | sbh(i, km1) = 0.5 * (sb(i, km1) + sb(i, k - 2)) |
---|
| 782 | shbh(i, km1) = qhalf(shb(i, k - 2), shb(i, km1), shbs(i, k - 2), & |
---|
| 783 | shbs(i, km1)) |
---|
| 784 | hbh(i, km1) = sbh(i, km1) + rlvtt * shbh(i, km1) |
---|
[1992] | 785 | END IF |
---|
| 786 | END DO |
---|
| 787 | |
---|
| 788 | ! Ensure that dzcld is reset if convective mass flux zero |
---|
| 789 | ! specify the current vertical extent of the convective activity |
---|
| 790 | ! top of convective layer determined by size of overshoot param. |
---|
| 791 | |
---|
[5143] | 792 | 60 CONTINUE |
---|
[1992] | 793 | DO i = 1, klon |
---|
| 794 | etagt0 = eta(i) > 0.0 |
---|
| 795 | IF (.NOT. etagt0) dzcld(i) = 0.0 |
---|
| 796 | IF (etagt0 .AND. beta(i)>betamn) THEN |
---|
| 797 | ktp = km1 |
---|
| 798 | ELSE |
---|
| 799 | ktp = k |
---|
| 800 | END IF |
---|
| 801 | IF (etagt0) THEN |
---|
| 802 | cnt(i) = min(cnt(i), ktp) |
---|
| 803 | cnb(i) = max(cnb(i), k) |
---|
| 804 | END IF |
---|
| 805 | END DO |
---|
[5143] | 806 | 70 END DO ! end of k loop |
---|
[1992] | 807 | |
---|
| 808 | ! determine whether precipitation, prec, is frozen (snow) or not |
---|
| 809 | |
---|
| 810 | DO i = 1, klon |
---|
[5143] | 811 | IF (tb(i, klev)<tmelt .AND. tb(i, klev - 1)<tmelt) THEN |
---|
| 812 | cmfprs(i) = prec(i) * rdt |
---|
[1992] | 813 | ELSE |
---|
[5143] | 814 | cmfprt(i) = prec(i) * rdt |
---|
[1992] | 815 | END IF |
---|
| 816 | END DO |
---|
| 817 | |
---|
| 818 | RETURN ! we're all done ... return to calling procedure |
---|
| 819 | END SUBROUTINE cmfmca |
---|