1 | SUBROUTINE coefcdrag(klon, knon, nsrf, zxli, & |
---|
2 | speed, t, q, zgeop, psol, & |
---|
3 | ts, qsurf, rugos, okri, ri1, & |
---|
4 | cdram, cdrah, cdran, zri1, pref) |
---|
5 | |
---|
6 | USE indice_sol_mod |
---|
7 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
8 | USE lmdz_clesphys |
---|
9 | USE lmdz_yoethf |
---|
10 | USE lmdz_yomcst |
---|
11 | |
---|
12 | IMPLICIT NONE |
---|
13 | !------------------------------------------------------------------------- |
---|
14 | ! Objet : calcul des cdrags pour le moment (cdram) et les flux de chaleur |
---|
15 | ! sensible et latente (cdrah), du cdrag neutre (cdran), |
---|
16 | ! du nombre de Richardson entre la surface et le niveau de reference |
---|
17 | ! (zri1) et de la pression au niveau de reference (pref). |
---|
18 | |
---|
19 | ! I. Musat, 01.07.2002 |
---|
20 | !------------------------------------------------------------------------- |
---|
21 | |
---|
22 | ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
---|
23 | ! knon----input-I- nombre de points pour un type de surface |
---|
24 | ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
---|
25 | ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
---|
26 | ! speed---input-R- module du vent au 1er niveau du modele |
---|
27 | ! t-------input-R- temperature de l'air au 1er niveau du modele |
---|
28 | ! q-------input-R- humidite de l'air au 1er niveau du modele |
---|
29 | ! zgeop---input-R- geopotentiel au 1er niveau du modele |
---|
30 | ! psol----input-R- pression au sol |
---|
31 | ! ts------input-R- temperature de l'air a la surface |
---|
32 | ! qsurf---input-R- humidite de l'air a la surface |
---|
33 | ! rugos---input-R- rugosite |
---|
34 | ! okri----input-L- TRUE si on veut tester le nb. Richardson entre la sfce |
---|
35 | ! et zref par rapport au Ri entre la sfce et la 1ere couche |
---|
36 | ! ri1-----input-R- nb. Richardson entre la surface et la 1ere couche |
---|
37 | |
---|
38 | ! cdram--output-R- cdrag pour le moment |
---|
39 | ! cdrah--output-R- cdrag pour les flux de chaleur latente et sensible |
---|
40 | ! cdran--output-R- cdrag neutre |
---|
41 | ! zri1---output-R- nb. Richardson entre la surface et la couche zgeop/RG |
---|
42 | ! pref---output-R- pression au niveau zgeop/RG |
---|
43 | |
---|
44 | INTEGER, INTENT(IN) :: klon, knon, nsrf |
---|
45 | LOGICAL, INTENT(IN) :: zxli |
---|
46 | REAL, DIMENSION(klon), INTENT(IN) :: speed, t, q, zgeop, psol |
---|
47 | REAL, DIMENSION(klon), INTENT(IN) :: ts, qsurf, rugos, ri1 |
---|
48 | LOGICAL, INTENT(IN) :: okri |
---|
49 | |
---|
50 | REAL, DIMENSION(klon), INTENT(OUT) :: cdram, cdrah, cdran, zri1, pref |
---|
51 | !------------------------------------------------------------------------- |
---|
52 | |
---|
53 | ! Quelques constantes : |
---|
54 | REAL, parameter :: RKAR = 0.40, CB = 5.0, CC = 5.0, CD = 5.0, cepdu2 = (0.1)**2 |
---|
55 | |
---|
56 | ! Variables locales : |
---|
57 | INTEGER :: i |
---|
58 | REAL, DIMENSION(klon) :: zdu2, zdphi, ztsolv, ztvd |
---|
59 | REAL, DIMENSION(klon) :: zscf, friv, frih, zucf, zcr |
---|
60 | REAL, DIMENSION(klon) :: zcfm1, zcfh1 |
---|
61 | REAL, DIMENSION(klon) :: zcfm2, zcfh2 |
---|
62 | REAL, DIMENSION(klon) :: trm0, trm1 |
---|
63 | |
---|
64 | CHARACTER (LEN = 80) :: abort_message |
---|
65 | CHARACTER (LEN = 20) :: modname = 'coefcdra' |
---|
66 | |
---|
67 | !------------------------------------------------------------------------- |
---|
68 | REAL :: fsta, fins, x |
---|
69 | fsta(x) = 1.0 / (1.0 + 10.0 * x * (1 + 8.0 * x)) |
---|
70 | fins(x) = SQRT(1.0 - 18.0 * x) |
---|
71 | !------------------------------------------------------------------------- |
---|
72 | |
---|
73 | abort_message = 'obsolete, remplace par cdrag, use at you own risk' |
---|
74 | CALL abort_physic(modname, abort_message, 1) |
---|
75 | |
---|
76 | DO i = 1, knon |
---|
77 | |
---|
78 | zdphi(i) = zgeop(i) |
---|
79 | zdu2(i) = max(cepdu2, speed(i)**2) |
---|
80 | pref(i) = exp(log(psol(i)) - zdphi(i) / (RD * t(i) * & |
---|
81 | (1. + RETV * max(q(i), 0.0)))) |
---|
82 | ztsolv(i) = ts(i) |
---|
83 | ! ztvd(i) = t(i) * (psol(i)/pref(i))**RKAPPA |
---|
84 | ! ztvd(i) = (t(i)+zdphi(i)/RCPD/(1.+RVTMP2*q(i))) & |
---|
85 | ! *(1.+RETV*q(i)) |
---|
86 | ztvd(i) = (t(i) + zdphi(i) / RCPD / (1. + RVTMP2 * q(i))) |
---|
87 | trm0(i) = 1. + RETV * max(qsurf(i), 0.0) |
---|
88 | trm1(i) = 1. + RETV * max(q(i), 0.0) |
---|
89 | ztsolv(i) = ztsolv(i) * trm0(i) |
---|
90 | ztvd(i) = ztvd(i) * trm1(i) |
---|
91 | zri1(i) = zdphi(i) * (ztvd(i) - ztsolv(i)) / (zdu2(i) * ztvd(i)) |
---|
92 | |
---|
93 | ! on teste zri1 par rapport au Richardson de la 1ere couche ri1 |
---|
94 | |
---|
95 | !IM +++ |
---|
96 | IF(1==0) THEN |
---|
97 | IF (okri) THEN |
---|
98 | IF (ri1(i)>=0.0.AND.zri1(i)<0.0) THEN |
---|
99 | zri1(i) = ri1(i) |
---|
100 | ELSE IF(ri1(i)<0.0.AND.zri1(i)>=0.0) THEN |
---|
101 | zri1(i) = ri1(i) |
---|
102 | ENDIF |
---|
103 | ENDIF |
---|
104 | ENDIF |
---|
105 | !IM --- |
---|
106 | |
---|
107 | cdran(i) = (RKAR / log(1. + zdphi(i) / (RG * rugos(i))))**2 |
---|
108 | |
---|
109 | IF (zri1(i) >= 0.) THEN |
---|
110 | |
---|
111 | ! situation stable : pour eviter les inconsistances dans les cas |
---|
112 | ! tres stables on limite zri1 a 20. cf Hess et al. (1995) |
---|
113 | |
---|
114 | zri1(i) = min(20., zri1(i)) |
---|
115 | |
---|
116 | IF (.NOT.zxli) THEN |
---|
117 | zscf(i) = SQRT(1. + CD * ABS(zri1(i))) |
---|
118 | friv(i) = max(1. / (1. + 2. * CB * zri1(i) / zscf(i)), f_ri_cd_min) |
---|
119 | zcfm1(i) = cdran(i) * friv(i) |
---|
120 | frih(i) = max(1. / (1. + 3. * CB * zri1(i) * zscf(i)), f_ri_cd_min) |
---|
121 | ! zcfh1(i) = cdran(i) * frih(i) |
---|
122 | zcfh1(i) = f_cdrag_ter * cdran(i) * frih(i) |
---|
123 | IF(nsrf==is_oce) zcfh1(i) = f_cdrag_oce * cdran(i) * frih(i) |
---|
124 | cdram(i) = zcfm1(i) |
---|
125 | cdrah(i) = zcfh1(i) |
---|
126 | ELSE |
---|
127 | cdram(i) = cdran(i) * fsta(zri1(i)) |
---|
128 | cdrah(i) = cdran(i) * fsta(zri1(i)) |
---|
129 | ENDIF |
---|
130 | |
---|
131 | ELSE |
---|
132 | |
---|
133 | ! situation instable |
---|
134 | |
---|
135 | IF (.NOT.zxli) THEN |
---|
136 | zucf(i) = 1. / (1. + 3.0 * CB * CC * cdran(i) * SQRT(ABS(zri1(i)) & |
---|
137 | * (1.0 + zdphi(i) / (RG * rugos(i))))) |
---|
138 | zcfm2(i) = cdran(i) * max((1. - 2.0 * CB * zri1(i) * zucf(i)), f_ri_cd_min) |
---|
139 | ! zcfh2(i) = cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
---|
140 | zcfh2(i) = f_cdrag_ter * cdran(i) * max((1. - 3.0 * CB * zri1(i) * zucf(i)), f_ri_cd_min) |
---|
141 | cdram(i) = zcfm2(i) |
---|
142 | cdrah(i) = zcfh2(i) |
---|
143 | ELSE |
---|
144 | cdram(i) = cdran(i) * fins(zri1(i)) |
---|
145 | cdrah(i) = cdran(i) * fins(zri1(i)) |
---|
146 | ENDIF |
---|
147 | |
---|
148 | ! cdrah sur l'ocean cf. Miller et al. (1992) |
---|
149 | |
---|
150 | zcr(i) = (0.0016 / (cdran(i) * SQRT(zdu2(i)))) * ABS(ztvd(i) - ztsolv(i)) & |
---|
151 | **(1. / 3.) |
---|
152 | ! IF (nsrf.EQ.is_oce) cdrah(i) = cdran(i)*(1.0+zcr(i)**1.25) & |
---|
153 | ! **(1./1.25) |
---|
154 | IF (nsrf==is_oce) cdrah(i) = f_cdrag_oce * cdran(i) * (1.0 + zcr(i)**1.25) & |
---|
155 | **(1. / 1.25) |
---|
156 | ENDIF |
---|
157 | |
---|
158 | END DO |
---|
159 | |
---|
160 | END SUBROUTINE coefcdrag |
---|