1 | !SFX_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier |
---|
2 | !SFX_LIC This is part of the SURFEX software governed by the CeCILL-C licence |
---|
3 | !SFX_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt |
---|
4 | !SFX_LIC for details. version 1. |
---|
5 | ! ######### |
---|
6 | |
---|
7 | module coare30_flux_cnrm_mod |
---|
8 | IMPLICIT NONE |
---|
9 | PRIVATE |
---|
10 | public COARE30_FLUX_CNRM |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | |
---|
14 | |
---|
15 | SUBROUTINE COARE30_FLUX_CNRM(PZ0SEA, PTA, PSST, PQA, & |
---|
16 | PVMOD, PZREF, PUREF, PPS, PQSATA, PQSAT, PSFTH, PSFTQ, PUSTAR, PCD, PCDN, PCH, PCE, PRI, & |
---|
17 | PRESA, PRAIN, PPA, PZ0HSEA, LPRECIP, LPWG, coeffs) |
---|
18 | ! ####################################################################### |
---|
19 | |
---|
20 | |
---|
21 | !!**** *COARE25_FLUX* |
---|
22 | !! |
---|
23 | !! PURPOSE |
---|
24 | !! ------- |
---|
25 | ! Calculate the surface fluxes of heat, moisture, and momentum over |
---|
26 | ! sea surface with bulk algorithm COARE3.0. |
---|
27 | |
---|
28 | !!** METHOD |
---|
29 | !! ------ |
---|
30 | ! transfer coefficients were obtained using a dataset which combined COARE |
---|
31 | ! data with those from three other ETL field experiments, and reanalysis of |
---|
32 | ! the HEXMAX data (DeCosmos et al. 1996). |
---|
33 | ! ITERMAX=3 |
---|
34 | ! Take account of the surface gravity waves on the velocity roughness and |
---|
35 | ! hence the momentum transfer coefficient |
---|
36 | ! NGRVWAVES=0 no gravity waves action (Charnock) !default value |
---|
37 | ! NGRVWAVES=1 wave age parameterization of Oost et al. 2002 |
---|
38 | ! NGRVWAVES=2 model of Taylor and Yelland 2001 |
---|
39 | |
---|
40 | !! EXTERNAL |
---|
41 | !! -------- |
---|
42 | !! |
---|
43 | !! IMPLICIT ARGUMENTS |
---|
44 | !! ------------------ |
---|
45 | !! |
---|
46 | !! REFERENCE |
---|
47 | !! --------- |
---|
48 | !! Fairall et al (2003), J. of Climate, vol. 16, 571-591 |
---|
49 | !! Fairall et al (1996), JGR, 3747-3764 |
---|
50 | !! Gosnell et al (1995), JGR, 437-442 |
---|
51 | !! Fairall et al (1996), JGR, 1295-1308 |
---|
52 | !! |
---|
53 | !! AUTHOR |
---|
54 | !! ------ |
---|
55 | !! C. Lebeaupin *Météo-France* (adapted from C. Fairall's code) |
---|
56 | !! |
---|
57 | !! MODIFICATIONS |
---|
58 | !! ------------- |
---|
59 | !! Original 1/06/2006 |
---|
60 | !! B. Decharme 06/2009 limitation of Ri |
---|
61 | !! B. Decharme 09/2012 Bug in Ri calculation and limitation of Ri in surface_ri.F90 |
---|
62 | !! B. Decharme 06/2013 bug in z0 (output) computation |
---|
63 | !! J.Escobar 06/2013 for REAL4/8 add EPSILON management |
---|
64 | !! C. Lebeaupin 03/2014 bug if PTA=PSST and PEXNA=PEXNS: set a minimum value |
---|
65 | !! add abort if no convergence |
---|
66 | !------------------------------------------------------------------------------- |
---|
67 | |
---|
68 | !* 0. DECLARATIONS |
---|
69 | ! ------------ |
---|
70 | |
---|
71 | |
---|
72 | !USE MODD_SEAFLUX_n, ONLY: SEAFLUX_t |
---|
73 | |
---|
74 | !----------Rajout Olive --------- |
---|
75 | USE dimphy |
---|
76 | USE indice_sol_mod |
---|
77 | USE coare_cp_mod, ONLY: PSIFCTT => psit_30, PSIFCTU => psiuo |
---|
78 | |
---|
79 | !-------------------------------- |
---|
80 | |
---|
81 | USE MODD_CSTS, ONLY: XKARMAN, XG, XSTEFAN, XRD, XRV, XPI, & |
---|
82 | XLVTT, XCL, XCPD, XCPV, XRHOLW, XTT, & |
---|
83 | XP00 |
---|
84 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
85 | USE lmdz_clesphys |
---|
86 | USE lmdz_yomcst |
---|
87 | |
---|
88 | !USE MODD_SURF_ATM, ONLY: XVZ0CM |
---|
89 | |
---|
90 | !USE MODD_SURF_PAR, ONLY: XUNDEF, XSURF_EPSILON |
---|
91 | !USE MODD_WATER_PAR |
---|
92 | |
---|
93 | !USE MODI_SURFACE_RI |
---|
94 | !USE MODI_WIND_THRESHOLD |
---|
95 | !USE MODE_COARE30_PSI |
---|
96 | |
---|
97 | !USE MODE_THERMOS |
---|
98 | |
---|
99 | !USE MODI_ABOR1_SFX |
---|
100 | |
---|
101 | !USE YOMHOOK ,ONLY: LHOOK, DR_HOOK |
---|
102 | !USE PARKIND1 ,ONLY: JPRB |
---|
103 | |
---|
104 | IMPLICIT NONE |
---|
105 | |
---|
106 | !* 0.1 declarations of arguments |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | !TYPE(SEAFLUX_t), INTENT(INOUT) :: S |
---|
111 | |
---|
112 | REAL, DIMENSION(klon), INTENT(IN) :: PTA ! air temperature at atm. level (K) |
---|
113 | REAL, DIMENSION(klon), INTENT(IN) :: PQA ! air humidity at atm. level (kg/kg) |
---|
114 | !REAL, DIMENSION(:), INTENT(IN) :: PEXNA ! Exner function at atm. level |
---|
115 | !REAL, DIMENSION(:), INTENT(IN) :: PRHOA ! air density at atm. level |
---|
116 | REAL, DIMENSION(klon), INTENT(IN) :: PVMOD ! module of wind at atm. wind level (m/s) |
---|
117 | REAL, DIMENSION(klon), INTENT(IN) :: PZREF ! atm. level for temp. and humidity (m) |
---|
118 | REAL, DIMENSION(klon), INTENT(IN) :: PUREF ! atm. level for wind (m) |
---|
119 | REAL, DIMENSION(klon), INTENT(IN) :: PSST ! Sea Surface Temperature (K) |
---|
120 | !REAL, DIMENSION(:), INTENT(IN) :: PEXNS ! Exner function at sea surface |
---|
121 | REAL, DIMENSION(klon), INTENT(IN) :: PPS ! air pressure at sea surface (Pa) |
---|
122 | REAL, DIMENSION(klon), INTENT(IN) :: PRAIN !precipitation rate (kg/s/m2) |
---|
123 | REAL, DIMENSION(klon), INTENT(IN) :: PPA ! air pressure at atm level (Pa) |
---|
124 | REAL, DIMENSION(klon), INTENT(IN) :: PQSATA ! air pressure at atm level (Pa) |
---|
125 | |
---|
126 | REAL, DIMENSION(klon), INTENT(INOUT) :: PZ0SEA! roughness length over the ocean |
---|
127 | |
---|
128 | ! surface fluxes : latent heat, sensible heat, friction fluxes |
---|
129 | REAL, DIMENSION(klon), INTENT(OUT) :: PSFTH ! heat flux (W/m2) |
---|
130 | REAL, DIMENSION(klon), INTENT(OUT) :: PSFTQ ! water flux (kg/m2/s) |
---|
131 | REAL, DIMENSION(klon), INTENT(OUT) :: PUSTAR! friction velocity (m/s) |
---|
132 | |
---|
133 | ! diagnostics |
---|
134 | REAL, DIMENSION(klon), INTENT(OUT) :: PQSAT ! humidity at saturation |
---|
135 | REAL, DIMENSION(klon), INTENT(OUT) :: PCD ! heat drag coefficient |
---|
136 | REAL, DIMENSION(klon), INTENT(OUT) :: PCDN ! momentum drag coefficient |
---|
137 | REAL, DIMENSION(klon), INTENT(OUT) :: PCH ! neutral momentum drag coefficient |
---|
138 | REAL, DIMENSION(klon), INTENT(OUT) :: PCE !transfer coef. for latent heat flux |
---|
139 | REAL, DIMENSION(klon), INTENT(OUT) :: PRI ! Richardson number |
---|
140 | REAL, DIMENSION(klon), INTENT(OUT) :: PRESA ! aerodynamical resistance |
---|
141 | REAL, DIMENSION(klon), INTENT(OUT) :: PZ0HSEA ! heat roughness length |
---|
142 | |
---|
143 | LOGICAL, INTENT(IN) :: LPRECIP ! |
---|
144 | LOGICAL, INTENT(IN) :: LPWG ! |
---|
145 | REAL, DIMENSION(3), INTENT(INOUT) :: coeffs |
---|
146 | |
---|
147 | |
---|
148 | !* 0.2 declarations of local variables |
---|
149 | |
---|
150 | REAL, DIMENSION(SIZE(PTA)) :: ZVMOD ! wind intensity |
---|
151 | REAL, DIMENSION(SIZE(PTA)) :: ZPA ! Pressure at atm. level |
---|
152 | REAL, DIMENSION(SIZE(PTA)) :: ZTA ! Temperature at atm. level |
---|
153 | REAL, DIMENSION(SIZE(PTA)) :: ZQASAT ! specific humidity at saturation at atm. level (kg/kg) |
---|
154 | |
---|
155 | !rajout |
---|
156 | REAL, DIMENSION(SIZE(PTA)) :: PEXNA ! Exner function at atm level |
---|
157 | REAL, DIMENSION(SIZE(PTA)) :: PEXNS ! Exner function at atm level |
---|
158 | |
---|
159 | REAL, DIMENSION(SIZE(PTA)) :: ZO ! rougness length ref |
---|
160 | REAL, DIMENSION(SIZE(PTA)) :: ZWG ! gustiness factor (m/s) |
---|
161 | |
---|
162 | REAL, DIMENSION(SIZE(PTA)) :: ZDU, ZDT, ZDQ, ZDUWG !differences |
---|
163 | |
---|
164 | REAL, DIMENSION(SIZE(PTA)) :: ZUSR !velocity scaling parameter "ustar" (m/s) = friction velocity |
---|
165 | REAL, DIMENSION(SIZE(PTA)) :: ZTSR !temperature sacling parameter "tstar" (degC) |
---|
166 | REAL, DIMENSION(SIZE(PTA)) :: ZQSR !humidity scaling parameter "qstar" (kg/kg) |
---|
167 | |
---|
168 | REAL, DIMENSION(SIZE(PTA)) :: ZU10, ZT10 !vertical profils (10-m height) |
---|
169 | REAL, DIMENSION(SIZE(PTA)) :: ZVISA !kinematic viscosity of dry air |
---|
170 | REAL, DIMENSION(SIZE(PTA)) :: ZO10, ZOT10 !roughness length at 10m |
---|
171 | REAL, DIMENSION(SIZE(PTA)) :: ZCD, ZCT, ZCC |
---|
172 | REAL, DIMENSION(SIZE(PTA)) :: ZCD10, ZCT10 !transfer coef. at 10m |
---|
173 | REAL, DIMENSION(SIZE(PTA)) :: ZRIBU, ZRIBCU |
---|
174 | REAL, DIMENSION(SIZE(PTA)) :: ZETU, ZL10 |
---|
175 | |
---|
176 | REAL, DIMENSION(SIZE(PTA)) :: ZCHARN !Charnock number depends on wind module |
---|
177 | REAL, DIMENSION(SIZE(PTA)) :: ZTWAVE, ZHWAVE, ZCWAVE, ZLWAVE !to compute gravity waves' impact |
---|
178 | |
---|
179 | REAL, DIMENSION(SIZE(PTA)) :: ZZL, ZZTL!,ZZQL !Obukhovs stability |
---|
180 | !param. z/l for u,T,q |
---|
181 | REAL, DIMENSION(SIZE(PTA)) :: ZRR |
---|
182 | REAL, DIMENSION(SIZE(PTA)) :: ZOT, ZOQ !rougness length ref |
---|
183 | REAL, DIMENSION(SIZE(PTA)) :: ZPUZ, ZPTZ, ZPQZ !PHI funct. for u,T,q |
---|
184 | |
---|
185 | REAL, DIMENSION(SIZE(PTA)) :: ZBF !constants to compute gustiness factor |
---|
186 | |
---|
187 | REAL, DIMENSION(SIZE(PTA)) :: ZTAU !momentum flux (W/m2) |
---|
188 | REAL, DIMENSION(SIZE(PTA)) :: ZHF !sensible heat flux (W/m2) |
---|
189 | REAL, DIMENSION(SIZE(PTA)) :: ZEF !latent heat flux (W/m2) |
---|
190 | REAL, DIMENSION(SIZE(PTA)) :: ZWBAR !diag for webb correction but not used here after |
---|
191 | REAL, DIMENSION(SIZE(PTA)) :: ZTAUR !momentum flux due to rain (W/m2) |
---|
192 | REAL, DIMENSION(SIZE(PTA)) :: ZRF !sensible heat flux due to rain (W/m2) |
---|
193 | REAL, DIMENSION(SIZE(PTA)) :: ZCHN, ZCEN !neutral coef. for heat and vapor |
---|
194 | |
---|
195 | REAL, DIMENSION(SIZE(PTA)) :: ZLV !latent heat constant |
---|
196 | |
---|
197 | REAL, DIMENSION(SIZE(PTA)) :: ZTAC, ZDQSDT, ZDTMP, ZDWAT, ZALFAC ! for precipitation impact |
---|
198 | REAL, DIMENSION(SIZE(PTA)) :: ZXLR ! vaporisation heat at a given temperature |
---|
199 | REAL, DIMENSION(SIZE(PTA)) :: ZCPLW ! specific heat for water at a given temperature |
---|
200 | |
---|
201 | REAL, DIMENSION(SIZE(PTA)) :: ZUSTAR2 ! square of friction velocity |
---|
202 | |
---|
203 | REAL, DIMENSION(SIZE(PTA)) :: ZDIRCOSZW! orography slope cosine (=1 on water!) |
---|
204 | REAL, DIMENSION(SIZE(PTA)) :: ZAC ! Aerodynamical conductance |
---|
205 | |
---|
206 | INTEGER, DIMENSION(SIZE(PTA)) :: ITERMAX ! maximum number of iterations |
---|
207 | |
---|
208 | REAL :: ZRVSRDM1, ZRDSRV, ZR2 ! thermodynamic constants |
---|
209 | REAL :: ZBETAGUST !gustiness factor |
---|
210 | REAL :: ZZBL !atm. boundary layer depth (m) |
---|
211 | REAL :: ZVISW !m2/s kinematic viscosity of water |
---|
212 | REAL :: ZS !height of rougness length ref |
---|
213 | REAL :: ZCH10 !transfer coef. at 10m |
---|
214 | |
---|
215 | REAL :: QSAT_SEAWATER |
---|
216 | REAL :: QSATSEAW_1D |
---|
217 | |
---|
218 | INTEGER :: J, JLOOP !loop indice |
---|
219 | !REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
220 | |
---|
221 | !--------- Modif Olive ----------------- |
---|
222 | REAL, DIMENSION(SIZE(PTA)) :: PRHOA |
---|
223 | REAL, PARAMETER :: XUNDEF = 1.E+20 |
---|
224 | |
---|
225 | REAL :: XVCHRNK = 0.021 |
---|
226 | REAL :: XVZ0CM = 1.0E-5 |
---|
227 | !REAL :: XRIMAX |
---|
228 | |
---|
229 | INTEGER :: PREF ! reference pressure for exner function |
---|
230 | INTEGER :: NGRVWAVES ! Pour le choix du z0 |
---|
231 | |
---|
232 | !-------------------------------------- |
---|
233 | |
---|
234 | PRHOA(:) = PPS(:) / (287.1 * PTA(:) * (1. + .61 * PQA(:))) |
---|
235 | |
---|
236 | PREF = 100000. ! = 1000 hPa |
---|
237 | NGRVWAVES = 1 |
---|
238 | |
---|
239 | PEXNA = (PPA / PREF)**(RD / RCPD) |
---|
240 | PEXNS = (PPS / PREF)**(RD / RCPD) |
---|
241 | |
---|
242 | !------------------------------------------------------------------------------- |
---|
243 | |
---|
244 | ! 1. Initializations |
---|
245 | ! --------------- |
---|
246 | |
---|
247 | ! 1.1 Constants and parameters |
---|
248 | |
---|
249 | !IF (LHOOK) CALL DR_HOOK('COARE30_FLUX',0,ZHOOK_HANDLE) |
---|
250 | |
---|
251 | ZRVSRDM1 = XRV / XRD - 1. ! 0.607766 |
---|
252 | ZRDSRV = XRD / XRV ! 0.62198 |
---|
253 | ZR2 = 1. - ZRDSRV ! pas utilisé dans cette routine |
---|
254 | ZBETAGUST = 1.2 ! value based on TOGA-COARE experiment |
---|
255 | ZZBL = 600. ! Set a default value for boundary layer depth |
---|
256 | ZS = 10. ! Standard heigth =10m |
---|
257 | ZCH10 = 0.00115 |
---|
258 | |
---|
259 | ZVISW = 1.E-6 |
---|
260 | |
---|
261 | ! 1.2 Array initialization by undefined values |
---|
262 | |
---|
263 | PSFTH (:) = XUNDEF |
---|
264 | PSFTQ (:) = XUNDEF |
---|
265 | PUSTAR(:) = XUNDEF |
---|
266 | |
---|
267 | PCD(:) = XUNDEF |
---|
268 | PCDN(:) = XUNDEF |
---|
269 | PCH(:) = XUNDEF |
---|
270 | PCE(:) = XUNDEF |
---|
271 | PRI(:) = XUNDEF |
---|
272 | |
---|
273 | PRESA(:) = XUNDEF |
---|
274 | |
---|
275 | !------------------------------------------------------------------------------- |
---|
276 | ! 2. INITIAL GUESS FOR THE ITERATIVE METHOD |
---|
277 | ! ------------------------------------- |
---|
278 | |
---|
279 | ! 2.0 Temperature |
---|
280 | |
---|
281 | ! Set a non-zero value for the temperature gradient |
---|
282 | |
---|
283 | WHERE((PTA(:) * PEXNS(:) / PEXNA(:) - PSST(:))==0.) |
---|
284 | ZTA(:) = PTA(:) - 1E-3 |
---|
285 | ELSEWHERE |
---|
286 | ZTA(:) = PTA(:) |
---|
287 | ENDWHERE |
---|
288 | |
---|
289 | ! 2.1 Wind and humidity |
---|
290 | |
---|
291 | ! Sea surface specific humidity |
---|
292 | |
---|
293 | !PQSAT(:)=QSAT_SEAWATER(PSST(:),PPS(:)) |
---|
294 | PQSAT(:) = QSATSEAW_1D(PSST(:), PPS(:)) |
---|
295 | |
---|
296 | ! Set a minimum value to wind |
---|
297 | |
---|
298 | !ZVMOD(:) = WIND_THRESHOLD(PVMOD(:),PUREF(:)) |
---|
299 | |
---|
300 | ZVMOD = MAX(PVMOD, 0.1 * MIN(10., PUREF)) !set a minimum value to wind |
---|
301 | !ZVMOD = PVMOD !set a minimum value to wind |
---|
302 | |
---|
303 | ! Specific humidity at saturation at the atm. level |
---|
304 | |
---|
305 | ZPA(:) = XP00 * (PEXNA(:)**(XCPD / XRD)) |
---|
306 | !ZQASAT(:) = QSAT_SEAWATER(ZTA(:),ZPA(:)) |
---|
307 | ZQASAT = QSATSEAW_1D(ZTA(:), ZPA(:)) |
---|
308 | |
---|
309 | ZO(:) = 0.0001 |
---|
310 | ZWG(:) = 0. |
---|
311 | IF (LPWG) ZWG(:) = 0.5 |
---|
312 | |
---|
313 | ZCHARN(:) = 0.011 |
---|
314 | |
---|
315 | DO J = 1, SIZE(PTA) |
---|
316 | |
---|
317 | ! 2.2 initial guess |
---|
318 | |
---|
319 | ZDU(J) = ZVMOD(J) !wind speed difference with surface current(=0) (m/s) |
---|
320 | !initial guess for gustiness factor |
---|
321 | ZDT(J) = -(ZTA(J) / PEXNA(J)) + (PSST(J) / PEXNS(J)) !potential temperature difference |
---|
322 | ZDQ(J) = PQSAT(J) - PQA(J) !specific humidity difference |
---|
323 | |
---|
324 | ZDUWG(J) = SQRT(ZDU(J)**2 + ZWG(J)**2) !wind speed difference including gustiness ZWG |
---|
325 | |
---|
326 | ! 2.3 initialization of neutral coefficients |
---|
327 | |
---|
328 | ZU10(J) = ZDUWG(J) * LOG(ZS / ZO(J)) / LOG(PUREF(J) / ZO(J)) |
---|
329 | ZUSR(J) = 0.035 * ZU10(J) |
---|
330 | ZVISA(J) = 1.326E-5 * (1. + 6.542E-3 * (ZTA(J) - XTT) + & |
---|
331 | 8.301E-6 * (ZTA(J) - XTT)**2 - 4.84E-9 * (ZTA(J) - XTT)**3) !Andrea (1989) CRREL Rep. 89-11 |
---|
332 | |
---|
333 | ZO10(J) = ZCHARN(J) * ZUSR(J) * ZUSR(J) / XG + 0.11 * ZVISA(J) / ZUSR(J) |
---|
334 | ZCD(J) = (XKARMAN / LOG(PUREF(J) / ZO10(J)))**2 !drag coefficient |
---|
335 | ZCD10(J) = (XKARMAN / LOG(ZS / ZO10(J)))**2 |
---|
336 | ZCT10(J) = ZCH10 / SQRT(ZCD10(J)) |
---|
337 | ZOT10(J) = ZS / EXP(XKARMAN / ZCT10(J)) |
---|
338 | |
---|
339 | !------------------------------------------------------------------------------- |
---|
340 | ! Grachev and Fairall (JAM, 1997) |
---|
341 | ZCT(J) = XKARMAN / LOG(PZREF(J) / ZOT10(J)) !temperature transfer coefficient |
---|
342 | ZCC(J) = XKARMAN * ZCT(J) / ZCD(J) !z/L vs Rib linear coef. |
---|
343 | |
---|
344 | ZRIBCU(J) = -PUREF(J) / (ZZBL * 0.004 * ZBETAGUST**3) !saturation or plateau Rib |
---|
345 | !ZRIBU(J) =-XG*PUREF(J)*(ZDT(J)+ZRVSRDM1*(ZTA(J)-XTT)*ZDQ)/& |
---|
346 | ! &((ZTA(J)-XTT)*ZDUWG(J)**2) |
---|
347 | ZRIBU(J) = -XG * PUREF(J) * (ZDT(J) + ZRVSRDM1 * ZTA(J) * ZDQ(J)) / & |
---|
348 | (ZTA(J) * ZDUWG(J)**2) |
---|
349 | |
---|
350 | IF (ZRIBU(J)<0.) THEN |
---|
351 | ZETU(J) = ZCC(J) * ZRIBU(J) / (1. + ZRIBU(J) / ZRIBCU(J)) !Unstable G and F |
---|
352 | ELSE |
---|
353 | ZETU(J) = ZCC(J) * ZRIBU(J) / (1. + 27. / 9. * ZRIBU(J) / ZCC(J))!Stable |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ZL10(J) = PUREF(J) / ZETU(J) !MO length |
---|
357 | |
---|
358 | ENDDO |
---|
359 | |
---|
360 | ! First guess M-O stability dependent scaling params. (u*,T*,q*) to estimate ZO and z/L (ZZL) |
---|
361 | ZUSR(:) = ZDUWG(:) * XKARMAN / (LOG(PUREF(:) / ZO10(:)) - PSIFCTU(PUREF(1) / ZL10(1))) |
---|
362 | ZTSR(:) = -ZDT(:) * XKARMAN / (LOG(PZREF(:) / ZOT10(:)) - PSIFCTT(PZREF(1) / ZL10(1))) |
---|
363 | ZQSR(:) = -ZDQ(:) * XKARMAN / (LOG(PZREF(:) / ZOT10(:)) - PSIFCTT(PZREF(1) / ZL10(1))) |
---|
364 | |
---|
365 | ZZL(:) = 0.0 |
---|
366 | |
---|
367 | DO J = 1, SIZE(PTA) |
---|
368 | |
---|
369 | IF (ZETU(J)>50.) THEN |
---|
370 | ITERMAX(J) = 1 |
---|
371 | ELSE |
---|
372 | ITERMAX(J) = 3 !number of iterations |
---|
373 | ENDIF |
---|
374 | |
---|
375 | !then modify Charnork for high wind speeds Chris Fairall's data |
---|
376 | IF (ZDUWG(J)>10.) ZCHARN(J) = 0.011 + (0.018 - 0.011) * (ZDUWG(J) - 10.) / (18. - 10.) |
---|
377 | IF (ZDUWG(J)>18.) ZCHARN(J) = 0.018 |
---|
378 | |
---|
379 | ! 3. ITERATIVE LOOP TO COMPUTE USR, TSR, QSR |
---|
380 | ! ------------------------------------------- |
---|
381 | |
---|
382 | ZHWAVE(J) = 0.018 * ZVMOD(J) * ZVMOD(J) * (1. + 0.015 * ZVMOD(J)) |
---|
383 | ZTWAVE(J) = 0.729 * ZVMOD(J) |
---|
384 | ZCWAVE(J) = XG * ZTWAVE(J) / (2. * XPI) |
---|
385 | ZLWAVE(J) = ZTWAVE(J) * ZCWAVE(J) |
---|
386 | |
---|
387 | ENDDO |
---|
388 | |
---|
389 | DO JLOOP = 1, MAXVAL(ITERMAX) ! begin of iterative loop |
---|
390 | |
---|
391 | DO J = 1, SIZE(PTA) |
---|
392 | |
---|
393 | IF (JLOOP>ITERMAX(J)) CYCLE |
---|
394 | |
---|
395 | IF (NGRVWAVES==0) THEN |
---|
396 | ZO(J) = ZCHARN(J) * ZUSR(J) * ZUSR(J) / XG + 0.11 * ZVISA(J) / ZUSR(J) !Smith 1988 |
---|
397 | ELSE IF (NGRVWAVES==1) THEN |
---|
398 | ZO(J) = (50. / (2. * XPI)) * ZLWAVE(J) * (ZUSR(J) / ZCWAVE(J))**4.5 & |
---|
399 | + 0.11 * ZVISA(J) / ZUSR(J) !Oost et al. 2002 |
---|
400 | ELSE IF (NGRVWAVES==2) THEN |
---|
401 | ZO(J) = 1200. * ZHWAVE(J) * (ZHWAVE(J) / ZLWAVE(J))**4.5 & |
---|
402 | + 0.11 * ZVISA(J) / ZUSR(J) !Taulor and Yelland 2001 |
---|
403 | ENDIF |
---|
404 | |
---|
405 | ZRR(J) = ZO(J) * ZUSR(J) / ZVISA(J) |
---|
406 | ZOQ(J) = MIN(1.15E-4, 5.5E-5 / ZRR(J)**0.6) |
---|
407 | ZOT(J) = ZOQ(J) |
---|
408 | |
---|
409 | ZZL(J) = XKARMAN * XG * PUREF(J) * & |
---|
410 | (ZTSR(J) * (1. + ZRVSRDM1 * PQA(J)) + ZRVSRDM1 * ZTA(J) * ZQSR(J)) / & |
---|
411 | (ZTA(J) * ZUSR(J) * ZUSR(J) * (1. + ZRVSRDM1 * PQA(J))) |
---|
412 | ZZTL(J) = ZZL(J) * PZREF(J) / PUREF(J) ! for T |
---|
413 | ! ZZQL(J)=ZZL(J)*PZREF(J)/PUREF(J) ! for Q |
---|
414 | ENDDO |
---|
415 | |
---|
416 | ZPUZ(:) = PSIFCTU(ZZL(1)) |
---|
417 | ZPTZ(:) = PSIFCTT(ZZTL(1)) |
---|
418 | |
---|
419 | DO J = 1, SIZE(PTA) |
---|
420 | |
---|
421 | ! ZPQZ(J)=PSIFCTT(ZZQL(J)) |
---|
422 | ZPQZ(J) = ZPTZ(J) |
---|
423 | |
---|
424 | ! 3.1 scale parameters |
---|
425 | |
---|
426 | ZUSR(J) = ZDUWG(J) * XKARMAN / (LOG(PUREF(J) / ZO(J)) - ZPUZ(J)) |
---|
427 | ZTSR(J) = -ZDT(J) * XKARMAN / (LOG(PZREF(J) / ZOT(J)) - ZPTZ(J)) |
---|
428 | ZQSR(J) = -ZDQ(J) * XKARMAN / (LOG(PZREF(J) / ZOQ(J)) - ZPQZ(J)) |
---|
429 | |
---|
430 | ! 3.2 Gustiness factor (ZWG) |
---|
431 | |
---|
432 | IF(LPWG) THEN |
---|
433 | ZBF(J) = -XG / ZTA(J) * ZUSR(J) * (ZTSR(J) + ZRVSRDM1 * ZTA(J) * ZQSR(J)) |
---|
434 | IF (ZBF(J)>0.) THEN |
---|
435 | ZWG(J) = ZBETAGUST * (ZBF(J) * ZZBL)**(1. / 3.) |
---|
436 | ELSE |
---|
437 | ZWG(J) = 0.2 |
---|
438 | ENDIF |
---|
439 | ENDIF |
---|
440 | ZDUWG(J) = SQRT(ZVMOD(J)**2 + ZWG(J)**2) |
---|
441 | |
---|
442 | ENDDO |
---|
443 | |
---|
444 | ENDDO |
---|
445 | !------------------------------------------------------------------------------- |
---|
446 | |
---|
447 | ! 4. COMPUTE transfer coefficients PCD, PCH, ZCE and SURFACE FLUXES |
---|
448 | ! -------------------------------------------------------------- |
---|
449 | |
---|
450 | ZTAU(:) = XUNDEF |
---|
451 | ZHF(:) = XUNDEF |
---|
452 | ZEF(:) = XUNDEF |
---|
453 | |
---|
454 | ZWBAR(:) = 0. |
---|
455 | ZTAUR(:) = 0. |
---|
456 | ZRF(:) = 0. |
---|
457 | |
---|
458 | DO J = 1, SIZE(PTA) |
---|
459 | |
---|
460 | |
---|
461 | ! 4. transfert coefficients PCD, PCH and PCE |
---|
462 | ! and neutral PCDN, ZCHN, ZCEN |
---|
463 | |
---|
464 | PCD(J) = (ZUSR(J) / ZDUWG(J))**2. |
---|
465 | PCH(J) = ZUSR(J) * ZTSR(J) / (ZDUWG(J) * (ZTA(J) * PEXNS(J) / PEXNA(J) - PSST(J))) |
---|
466 | PCE(J) = ZUSR(J) * ZQSR(J) / (ZDUWG(J) * (PQA(J) - PQSAT(J))) |
---|
467 | |
---|
468 | PCDN(J) = (XKARMAN / LOG(ZS / ZO(J)))**2. |
---|
469 | ZCHN(J) = (XKARMAN / LOG(ZS / ZO(J))) * (XKARMAN / LOG(ZS / ZOT(J))) |
---|
470 | ZCEN(J) = (XKARMAN / LOG(ZS / ZO(J))) * (XKARMAN / LOG(ZS / ZOQ(J))) |
---|
471 | |
---|
472 | ZLV(J) = XLVTT + (XCPV - XCL) * (PSST(J) - XTT) |
---|
473 | |
---|
474 | ! 4. 2 surface fluxes |
---|
475 | |
---|
476 | IF (ABS(PCDN(J))>1.E-2) THEN !!!! secure COARE3.0 CODE |
---|
477 | WRITE(*, *) 'pb PCDN in COARE30: ', PCDN(J) |
---|
478 | WRITE(*, *) 'point: ', J, "/", SIZE(PTA) |
---|
479 | WRITE(*, *) 'roughness: ', ZO(J) |
---|
480 | WRITE(*, *) 'ustar: ', ZUSR(J) |
---|
481 | WRITE(*, *) 'wind: ', ZDUWG(J) |
---|
482 | CALL abort_physic('COARE30', ': PCDN too large -> no convergence', 1) |
---|
483 | ELSE |
---|
484 | ZTSR(J) = -ZTSR(J) |
---|
485 | ZQSR(J) = -ZQSR(J) |
---|
486 | ZTAU(J) = -PRHOA(J) * ZUSR(J) * ZUSR(J) * ZVMOD(J) / ZDUWG(J) |
---|
487 | ZHF(J) = PRHOA(J) * XCPD * ZUSR(J) * ZTSR(J) |
---|
488 | ZEF(J) = PRHOA(J) * ZLV(J) * ZUSR(J) * ZQSR(J) |
---|
489 | |
---|
490 | ! 4.3 Contributions to surface fluxes due to rainfall |
---|
491 | |
---|
492 | ! SB: a priori, le facteur ZRDSRV=XRD/XRV est introduit pour |
---|
493 | ! adapter la formule de Clausius-Clapeyron (pour l'air |
---|
494 | ! sec) au cas humide. |
---|
495 | IF (LPRECIP) THEN |
---|
496 | |
---|
497 | ! heat surface fluxes |
---|
498 | |
---|
499 | ZTAC(J) = ZTA(J) - XTT |
---|
500 | |
---|
501 | ZXLR(J) = XLVTT + (XCPV - XCL) * ZTAC(J) ! latent heat of rain vaporization |
---|
502 | ZDQSDT(J) = ZQASAT(J) * ZXLR(J) / (XRD * ZTA(J)**2) ! Clausius-Clapeyron relation |
---|
503 | ZDTMP(J) = (1.0 + 3.309e-3 * ZTAC(J) - 1.44e-6 * ZTAC(J) * ZTAC(J)) * & !heat diffusivity |
---|
504 | 0.02411 / (PRHOA(J) * XCPD) |
---|
505 | |
---|
506 | ZDWAT(J) = 2.11e-5 * (XP00 / ZPA(J)) * (ZTA(J) / XTT)**1.94 ! water vapour diffusivity from eq (13.3) |
---|
507 | ! ! of Pruppacher and Klett (1978) |
---|
508 | ZALFAC(J) = 1.0 / (1.0 + & ! Eq.11 in GoF95 |
---|
509 | ZRDSRV * ZDQSDT(J) * ZXLR(J) * ZDWAT(J) / (ZDTMP(J) * XCPD)) ! ZALFAC=wet-bulb factor (sans dim) |
---|
510 | ZCPLW(J) = 4224.8482 + ZTAC(J) * & |
---|
511 | (-4.707 + ZTAC(J) * & |
---|
512 | (0.08499 + ZTAC(J) * & |
---|
513 | (1.2826e-3 + ZTAC(J) * & |
---|
514 | (4.7884e-5 - 2.0027e-6 * ZTAC(J))))) ! specific heat |
---|
515 | |
---|
516 | ZRF(J) = PRAIN(J) * ZCPLW(J) * ZALFAC(J) * & !Eq.12 in GoF95 !SIGNE? |
---|
517 | (PSST(J) - ZTA(J) + (PQSAT(J) - PQA(J)) * ZXLR(J) / XCPD) |
---|
518 | |
---|
519 | ! Momentum flux due to rainfall |
---|
520 | |
---|
521 | ZTAUR(J) = -0.85 * (PRAIN(J) * ZVMOD(J)) !pp3752 in FBR96 |
---|
522 | |
---|
523 | ENDIF |
---|
524 | |
---|
525 | ! 4.4 Webb correction to latent heat flux |
---|
526 | |
---|
527 | ZWBAR(J) = - (1. / ZRDSRV) * ZUSR(J) * ZQSR(J) / (1.0 + (1. / ZRDSRV) * PQA(J)) & |
---|
528 | - ZUSR(J) * ZTSR(J) / ZTA(J) ! Eq.21*rhoa in FBR96 |
---|
529 | |
---|
530 | ! 4.5 friction velocity which contains correction du to rain |
---|
531 | |
---|
532 | ZUSTAR2(J) = - (ZTAU(J) + ZTAUR(J)) / PRHOA(J) |
---|
533 | PUSTAR(J) = SQRT(ZUSTAR2(J)) |
---|
534 | |
---|
535 | ! 4.6 Total surface fluxes |
---|
536 | |
---|
537 | PSFTH (J) = ZHF(J) + ZRF(J) |
---|
538 | PSFTQ (J) = ZEF(J) / ZLV(J) |
---|
539 | |
---|
540 | ENDIF |
---|
541 | ENDDO |
---|
542 | |
---|
543 | coeffs = [PCD, & |
---|
544 | PCE, & |
---|
545 | PCH] |
---|
546 | |
---|
547 | !------------------------------------------------------------------------------- |
---|
548 | |
---|
549 | ! 5. FINAL STEP : TOTAL SURFACE FLUXES AND DERIVED DIAGNOSTICS |
---|
550 | ! ----------- |
---|
551 | ! 5.1 Richardson number |
---|
552 | |
---|
553 | |
---|
554 | !------------STOP LA -------------------- |
---|
555 | !ZDIRCOSZW(:) = 1. |
---|
556 | ! CALL SURFACE_RI(PSST,PQSAT,PEXNS,PEXNA,ZTA,ZQASAT,& |
---|
557 | ! PZREF,PUREF,ZDIRCOSZW,PVMOD,PRI ) |
---|
558 | !! |
---|
559 | !! 5.2 Aerodynamical conductance and resistance |
---|
560 | !! |
---|
561 | !ZAC(:) = PCH(:)*ZVMOD(:) |
---|
562 | !PRESA(:) = 1. / MAX(ZAC(:),XSURF_EPSILON) |
---|
563 | |
---|
564 | !! 5.3 Z0 and Z0H over sea |
---|
565 | !! |
---|
566 | !PZ0SEA(:) = ZCHARN(:) * ZUSTAR2(:) / XG + XVZ0CM * PCD(:) / PCDN(:) |
---|
567 | !! |
---|
568 | !!PZ0HSEA(:) = PZ0SEA(:) |
---|
569 | !! |
---|
570 | !IF (LHOOK) CALL DR_HOOK('COARE30_FLUX',1,ZHOOK_HANDLE) |
---|
571 | |
---|
572 | !------------------------------------------------------------------------------- |
---|
573 | |
---|
574 | END SUBROUTINE COARE30_FLUX_CNRM |
---|
575 | |
---|
576 | END MODULE coare30_flux_cnrm_mod |
---|