1 | |
---|
2 | ! $Header$ |
---|
3 | |
---|
4 | |
---|
5 | ! ================================================================================ |
---|
6 | |
---|
7 | SUBROUTINE clouds_gno(klon, nd, r, rs, qsub, ptconv, ratqsc, cldf) |
---|
8 | IMPLICIT NONE |
---|
9 | |
---|
10 | ! -------------------------------------------------------------------------------- |
---|
11 | |
---|
12 | ! Inputs: |
---|
13 | |
---|
14 | ! ND----------: Number of vertical levels |
---|
15 | ! R--------ND-: Domain-averaged mixing ratio of total water |
---|
16 | ! RS-------ND-: Mean saturation humidity mixing ratio within the gridbox |
---|
17 | ! QSUB-----ND-: Mixing ratio of condensed water within clouds associated |
---|
18 | ! with SUBGRID-SCALE condensation processes (here, it is |
---|
19 | ! predicted by the convection scheme) |
---|
20 | ! Outputs: |
---|
21 | |
---|
22 | ! PTCONV-----ND-: Point convectif = TRUE |
---|
23 | ! RATQSC-----ND-: Largeur normalisee de la distribution |
---|
24 | ! CLDF-----ND-: Fraction nuageuse |
---|
25 | |
---|
26 | ! -------------------------------------------------------------------------------- |
---|
27 | |
---|
28 | |
---|
29 | INTEGER klon, nd |
---|
30 | REAL r(klon, nd), rs(klon, nd), qsub(klon, nd) |
---|
31 | LOGICAL ptconv(klon, nd) |
---|
32 | REAL ratqsc(klon, nd) |
---|
33 | REAL cldf(klon, nd) |
---|
34 | |
---|
35 | ! -- parameters controlling the iteration: |
---|
36 | ! -- nmax : maximum nb of iterations (hopefully never reached) |
---|
37 | ! -- epsilon : accuracy of the numerical resolution |
---|
38 | ! -- vmax : v-value above which we use an asymptotic expression for |
---|
39 | ! ERF(v) |
---|
40 | |
---|
41 | INTEGER nmax |
---|
42 | PARAMETER (nmax=10) |
---|
43 | REAL epsilon, vmax0, vmax(klon) |
---|
44 | PARAMETER (epsilon=0.02, vmax0=2.0) |
---|
45 | |
---|
46 | REAL min_mu, min_q |
---|
47 | PARAMETER (min_mu=1.E-12, min_q=1.E-12) |
---|
48 | |
---|
49 | INTEGER i, k, n, m |
---|
50 | REAL mu(klon), qsat, delta(klon), beta(klon) |
---|
51 | REAL zu2, zv2 |
---|
52 | REAL xx(klon), aux(klon), coeff, block |
---|
53 | REAL dist, fprime, det |
---|
54 | REAL pi, u, v, erfcu, erfcv |
---|
55 | REAL xx1, xx2 |
---|
56 | REAL erf, hsqrtlog_2, v2 |
---|
57 | REAL sqrtpi, sqrt2, zx1, zx2, exdel |
---|
58 | ! lconv = true si le calcul a converge (entre autre si qsub < min_q) |
---|
59 | LOGICAL lconv(klon) |
---|
60 | |
---|
61 | ! cdir arraycomb |
---|
62 | cldf(1:klon, 1:nd) = 0.0 ! cym |
---|
63 | ratqsc(1:klon, 1:nd) = 0.0 |
---|
64 | ptconv(1:klon, 1:nd) = .FALSE. |
---|
65 | ! cdir end arraycomb |
---|
66 | |
---|
67 | pi = acos(-1.) |
---|
68 | sqrtpi = sqrt(pi) |
---|
69 | sqrt2 = sqrt(2.) |
---|
70 | hsqrtlog_2 = 0.5*sqrt(log(2.)) |
---|
71 | |
---|
72 | DO k = 1, nd |
---|
73 | |
---|
74 | DO i = 1, klon ! vector |
---|
75 | mu(i) = r(i, k) |
---|
76 | mu(i) = max(mu(i), min_mu) |
---|
77 | qsat = rs(i, k) |
---|
78 | qsat = max(qsat, min_mu) |
---|
79 | delta(i) = log(mu(i)/qsat) |
---|
80 | ! enddo ! vector |
---|
81 | |
---|
82 | |
---|
83 | ! *** There is no subgrid-scale condensation; *** |
---|
84 | ! *** the scheme becomes equivalent to an "all-or-nothing" *** |
---|
85 | ! *** large-scale condensation scheme. *** |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | ! *** Some condensation is produced at the subgrid-scale *** |
---|
90 | ! *** *** |
---|
91 | ! *** PDF = generalized log-normal distribution (GNO) *** |
---|
92 | ! *** (k<0 because a lower bound is considered for the PDF) *** |
---|
93 | ! *** *** |
---|
94 | ! *** -> Determine x (the parameter k of the GNO PDF) such *** |
---|
95 | ! *** that the contribution of subgrid-scale processes to *** |
---|
96 | ! *** the in-cloud water content is equal to QSUB(K) *** |
---|
97 | ! *** (equations (13), (14), (15) + Appendix B of the paper) *** |
---|
98 | ! *** *** |
---|
99 | ! *** Here, an iterative method is used for this purpose *** |
---|
100 | ! *** (other numerical methods might be more efficient) *** |
---|
101 | ! *** *** |
---|
102 | ! *** NB: the "error function" is called ERF *** |
---|
103 | ! *** (ERF in double precision) *** |
---|
104 | |
---|
105 | |
---|
106 | ! On commence par eliminer les cas pour lesquels on n'a pas |
---|
107 | ! suffisamment d'eau nuageuse. |
---|
108 | |
---|
109 | ! do i=1,klon ! vector |
---|
110 | |
---|
111 | IF (qsub(i,k)<min_q) THEN |
---|
112 | ptconv(i, k) = .FALSE. |
---|
113 | ratqsc(i, k) = 0. |
---|
114 | lconv(i) = .TRUE. |
---|
115 | |
---|
116 | ! Rien on a deja initialise |
---|
117 | |
---|
118 | ELSE |
---|
119 | |
---|
120 | lconv(i) = .FALSE. |
---|
121 | vmax(i) = vmax0 |
---|
122 | |
---|
123 | beta(i) = qsub(i, k)/mu(i) + exp(-min(0.0,delta(i))) |
---|
124 | |
---|
125 | ! -- roots of equation v > vmax: |
---|
126 | |
---|
127 | det = delta(i) + vmax(i)*vmax(i) |
---|
128 | IF (det<=0.0) vmax(i) = vmax0 + 1.0 |
---|
129 | det = delta(i) + vmax(i)*vmax(i) |
---|
130 | |
---|
131 | IF (det<=0.) THEN |
---|
132 | xx(i) = -0.0001 |
---|
133 | ELSE |
---|
134 | zx1 = -sqrt2*vmax(i) |
---|
135 | zx2 = sqrt(1.0+delta(i)/(vmax(i)*vmax(i))) |
---|
136 | xx1 = zx1*(1.0-zx2) |
---|
137 | xx2 = zx1*(1.0+zx2) |
---|
138 | xx(i) = 1.01*xx1 |
---|
139 | IF (xx1>=0.0) xx(i) = 0.5*xx2 |
---|
140 | END IF |
---|
141 | IF (delta(i)<0.) xx(i) = -hsqrtlog_2 |
---|
142 | |
---|
143 | END IF |
---|
144 | |
---|
145 | END DO ! vector |
---|
146 | |
---|
147 | ! ---------------------------------------------------------------------- |
---|
148 | ! Debut des nmax iterations pour trouver la solution. |
---|
149 | ! ---------------------------------------------------------------------- |
---|
150 | |
---|
151 | DO n = 1, nmax |
---|
152 | |
---|
153 | DO i = 1, klon ! vector |
---|
154 | IF (.NOT. lconv(i)) THEN |
---|
155 | |
---|
156 | u = delta(i)/(xx(i)*sqrt2) + xx(i)/(2.*sqrt2) |
---|
157 | v = delta(i)/(xx(i)*sqrt2) - xx(i)/(2.*sqrt2) |
---|
158 | v2 = v*v |
---|
159 | |
---|
160 | IF (v>vmax(i)) THEN |
---|
161 | |
---|
162 | IF (abs(u)>vmax(i) .AND. delta(i)<0.) THEN |
---|
163 | |
---|
164 | ! -- use asymptotic expression of erf for u and v large: |
---|
165 | ! ( -> analytic solution for xx ) |
---|
166 | exdel = beta(i)*exp(delta(i)) |
---|
167 | aux(i) = 2.0*delta(i)*(1.-exdel)/(1.+exdel) |
---|
168 | IF (aux(i)<0.) THEN |
---|
169 | ! PRINT*,'AUX(',i,',',k,')<0',aux(i),delta(i),beta(i) |
---|
170 | aux(i) = 0. |
---|
171 | END IF |
---|
172 | xx(i) = -sqrt(aux(i)) |
---|
173 | block = exp(-v*v)/v/sqrtpi |
---|
174 | dist = 0.0 |
---|
175 | fprime = 1.0 |
---|
176 | |
---|
177 | ELSE |
---|
178 | |
---|
179 | ! -- erfv -> 1.0, use an asymptotic expression of erfv for v |
---|
180 | ! large: |
---|
181 | |
---|
182 | erfcu = 1.0 - erf(u) |
---|
183 | ! !!! ATTENTION : rajout d'un seuil pour l'exponentiel |
---|
184 | aux(i) = sqrtpi*erfcu*exp(min(v2,100.)) |
---|
185 | coeff = 1.0 - 0.5/(v2) + 0.75/(v2*v2) |
---|
186 | block = coeff*exp(-v2)/v/sqrtpi |
---|
187 | dist = v*aux(i)/coeff - beta(i) |
---|
188 | fprime = 2.0/xx(i)*(v2)*(exp(-delta(i))-u*aux(i)/coeff)/coeff |
---|
189 | |
---|
190 | END IF ! ABS(u) |
---|
191 | |
---|
192 | ELSE |
---|
193 | |
---|
194 | ! -- general case: |
---|
195 | |
---|
196 | erfcu = 1.0 - erf(u) |
---|
197 | erfcv = 1.0 - erf(v) |
---|
198 | block = erfcv |
---|
199 | dist = erfcu/erfcv - beta(i) |
---|
200 | zu2 = u*u |
---|
201 | zv2 = v2 |
---|
202 | IF (zu2>20. .OR. zv2>20.) THEN |
---|
203 | ! PRINT*,'ATTENTION !!! xx(',i,') =', xx(i) |
---|
204 | ! PRINT*,'ATTENTION !!! klon,ND,R,RS,QSUB,PTCONV,RATQSC,CLDF', |
---|
205 | ! .klon,ND,R(i,k),RS(i,k),QSUB(i,k),PTCONV(i,k),RATQSC(i,k), |
---|
206 | ! .CLDF(i,k) |
---|
207 | ! PRINT*,'ATTENTION !!! zu2 zv2 =',zu2(i),zv2(i) |
---|
208 | zu2 = 20. |
---|
209 | zv2 = 20. |
---|
210 | fprime = 0. |
---|
211 | ELSE |
---|
212 | fprime = 2./sqrtpi/xx(i)/(erfcv*erfcv)* & |
---|
213 | (erfcv*v*exp(-zu2)-erfcu*u*exp(-zv2)) |
---|
214 | END IF |
---|
215 | END IF ! x |
---|
216 | |
---|
217 | ! -- test numerical convergence: |
---|
218 | |
---|
219 | ! if (beta(i).lt.1.e-10) THEN |
---|
220 | ! PRINT*,'avant test ',i,k,lconv(i),u(i),v(i),beta(i) |
---|
221 | ! stop |
---|
222 | ! END IF |
---|
223 | IF (abs(fprime)<1.E-11) THEN |
---|
224 | ! PRINT*,'avant test fprime<.e-11 ' |
---|
225 | ! s ,i,k,lconv(i),u(i),v(i),beta(i),fprime(i) |
---|
226 | ! PRINT*,'klon,ND,R,RS,QSUB', |
---|
227 | ! s klon,ND,R(i,k),rs(i,k),qsub(i,k) |
---|
228 | fprime = sign(1.E-11, fprime) |
---|
229 | END IF |
---|
230 | |
---|
231 | |
---|
232 | IF (abs(dist/beta(i))<epsilon) THEN |
---|
233 | ! PRINT*,'v-u **2',(v(i)-u(i))**2 |
---|
234 | ! PRINT*,'exp v-u **2',exp((v(i)-u(i))**2) |
---|
235 | ptconv(i, k) = .TRUE. |
---|
236 | lconv(i) = .TRUE. |
---|
237 | ! borne pour l'exponentielle |
---|
238 | ratqsc(i, k) = min(2.*(v-u)*(v-u), 20.) |
---|
239 | ratqsc(i, k) = sqrt(exp(ratqsc(i,k))-1.) |
---|
240 | cldf(i, k) = 0.5*block |
---|
241 | ELSE |
---|
242 | xx(i) = xx(i) - dist/fprime |
---|
243 | END IF |
---|
244 | ! PRINT*,'apres test ',i,k,lconv(i) |
---|
245 | |
---|
246 | END IF ! lconv |
---|
247 | END DO ! vector |
---|
248 | |
---|
249 | ! ---------------------------------------------------------------------- |
---|
250 | ! Fin des nmax iterations pour trouver la solution. |
---|
251 | END DO ! n |
---|
252 | ! ---------------------------------------------------------------------- |
---|
253 | |
---|
254 | |
---|
255 | END DO |
---|
256 | ! K |
---|
257 | |
---|
258 | END SUBROUTINE clouds_gno |
---|
259 | |
---|
260 | |
---|
261 | |
---|