| 1 | MODULE climb_wind_mod |
|---|
| 2 | |
|---|
| 3 | ! Module to solve the verctical diffusion of the wind components "u" and "v". |
|---|
| 4 | |
|---|
| 5 | USE dimphy |
|---|
| 6 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 7 | |
|---|
| 8 | IMPLICIT NONE |
|---|
| 9 | |
|---|
| 10 | SAVE |
|---|
| 11 | PRIVATE |
|---|
| 12 | |
|---|
| 13 | REAL, DIMENSION(:), ALLOCATABLE :: alf1, alf2 |
|---|
| 14 | !$OMP THREADPRIVATE(alf1,alf2) |
|---|
| 15 | REAL, DIMENSION(:, :), ALLOCATABLE :: Kcoefm |
|---|
| 16 | !$OMP THREADPRIVATE(Kcoefm) |
|---|
| 17 | REAL, DIMENSION(:, :), ALLOCATABLE :: Ccoef_U, Dcoef_U |
|---|
| 18 | !$OMP THREADPRIVATE(Ccoef_U, Dcoef_U) |
|---|
| 19 | REAL, DIMENSION(:, :), ALLOCATABLE :: Ccoef_V, Dcoef_V |
|---|
| 20 | !$OMP THREADPRIVATE(Ccoef_V, Dcoef_V) |
|---|
| 21 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_U, Bcoef_U |
|---|
| 22 | !$OMP THREADPRIVATE(Acoef_U, Bcoef_U) |
|---|
| 23 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_V, Bcoef_V |
|---|
| 24 | !$OMP THREADPRIVATE(Acoef_V, Bcoef_V) |
|---|
| 25 | LOGICAL :: firstcall = .TRUE. |
|---|
| 26 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 27 | |
|---|
| 28 | PUBLIC :: climb_wind_down, climb_wind_up |
|---|
| 29 | |
|---|
| 30 | CONTAINS |
|---|
| 31 | |
|---|
| 32 | !**************************************************************************************** |
|---|
| 33 | |
|---|
| 34 | SUBROUTINE climb_wind_init |
|---|
| 35 | |
|---|
| 36 | INTEGER :: ierr |
|---|
| 37 | CHARACTER(len = 20) :: modname = 'climb_wind_init' |
|---|
| 38 | |
|---|
| 39 | !**************************************************************************************** |
|---|
| 40 | ! Allocation of global module variables |
|---|
| 41 | |
|---|
| 42 | !**************************************************************************************** |
|---|
| 43 | |
|---|
| 44 | ALLOCATE(alf1(klon), stat = ierr) |
|---|
| 45 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocate alf1', 1) |
|---|
| 46 | |
|---|
| 47 | ALLOCATE(alf2(klon), stat = ierr) |
|---|
| 48 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocate alf2', 1) |
|---|
| 49 | |
|---|
| 50 | ALLOCATE(Kcoefm(klon, klev), stat = ierr) |
|---|
| 51 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocate Kcoefm', 1) |
|---|
| 52 | |
|---|
| 53 | ALLOCATE(Ccoef_U(klon, klev), stat = ierr) |
|---|
| 54 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocate Ccoef_U', 1) |
|---|
| 55 | |
|---|
| 56 | ALLOCATE(Dcoef_U(klon, klev), stat = ierr) |
|---|
| 57 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocation Dcoef_U', 1) |
|---|
| 58 | |
|---|
| 59 | ALLOCATE(Ccoef_V(klon, klev), stat = ierr) |
|---|
| 60 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocation Ccoef_V', 1) |
|---|
| 61 | |
|---|
| 62 | ALLOCATE(Dcoef_V(klon, klev), stat = ierr) |
|---|
| 63 | IF (ierr /= 0) CALL abort_physic(modname, 'Pb in allocation Dcoef_V', 1) |
|---|
| 64 | |
|---|
| 65 | ALLOCATE(Acoef_U(klon), Bcoef_U(klon), Acoef_V(klon), Bcoef_V(klon), STAT = ierr) |
|---|
| 66 | IF (ierr /= 0) PRINT*, ' pb in allloc Acoef_U and Bcoef_U, ierr=', ierr |
|---|
| 67 | |
|---|
| 68 | firstcall = .FALSE. |
|---|
| 69 | |
|---|
| 70 | END SUBROUTINE climb_wind_init |
|---|
| 71 | |
|---|
| 72 | !**************************************************************************************** |
|---|
| 73 | |
|---|
| 74 | SUBROUTINE climb_wind_down(knon, dtime, coef_in, pplay, paprs, temp, delp, u_old, v_old, & |
|---|
| 75 | !!! nrlmd le 02/05/2011 |
|---|
| 76 | Ccoef_U_out, Ccoef_V_out, Dcoef_U_out, Dcoef_V_out, & |
|---|
| 77 | Kcoef_m_out, alf_1_out, alf_2_out, & |
|---|
| 78 | !!! |
|---|
| 79 | Acoef_U_out, Acoef_V_out, Bcoef_U_out, Bcoef_V_out) |
|---|
| 80 | |
|---|
| 81 | ! This routine calculates for the wind components u and v, |
|---|
| 82 | ! recursivly the coefficients C and D in equation |
|---|
| 83 | ! X(k) = C(k) + D(k)*X(k-1), X=[u,v], k=[1,klev] is the vertical layer. |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | ! Input arguments |
|---|
| 87 | !**************************************************************************************** |
|---|
| 88 | USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree |
|---|
| 89 | USE lmdz_yomcst |
|---|
| 90 | |
|---|
| 91 | IMPLICIT NONE |
|---|
| 92 | INTEGER, INTENT(IN) :: knon |
|---|
| 93 | REAL, INTENT(IN) :: dtime |
|---|
| 94 | REAL, DIMENSION(klon, klev), INTENT(IN) :: coef_in |
|---|
| 95 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay ! pres au milieu de couche (Pa) |
|---|
| 96 | REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs ! pression a inter-couche (Pa) |
|---|
| 97 | REAL, DIMENSION(klon, klev), INTENT(IN) :: temp ! temperature |
|---|
| 98 | REAL, DIMENSION(klon, klev), INTENT(IN) :: delp |
|---|
| 99 | REAL, DIMENSION(klon, klev), INTENT(IN) :: u_old |
|---|
| 100 | REAL, DIMENSION(klon, klev), INTENT(IN) :: v_old |
|---|
| 101 | |
|---|
| 102 | ! Output arguments |
|---|
| 103 | !**************************************************************************************** |
|---|
| 104 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_U_out |
|---|
| 105 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_V_out |
|---|
| 106 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_U_out |
|---|
| 107 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_V_out |
|---|
| 108 | |
|---|
| 109 | !!! nrlmd le 02/05/2011 |
|---|
| 110 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef_U_out |
|---|
| 111 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef_V_out |
|---|
| 112 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Dcoef_U_out |
|---|
| 113 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Dcoef_V_out |
|---|
| 114 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Kcoef_m_out |
|---|
| 115 | REAL, DIMENSION(klon), INTENT(OUT) :: alf_1_out |
|---|
| 116 | REAL, DIMENSION(klon), INTENT(OUT) :: alf_2_out |
|---|
| 117 | !!! |
|---|
| 118 | |
|---|
| 119 | ! Local variables |
|---|
| 120 | !**************************************************************************************** |
|---|
| 121 | REAL, DIMENSION(klon) :: u1lay, v1lay |
|---|
| 122 | INTEGER :: k, i |
|---|
| 123 | |
|---|
| 124 | !**************************************************************************************** |
|---|
| 125 | ! Initialize module |
|---|
| 126 | IF (firstcall) CALL climb_wind_init |
|---|
| 127 | |
|---|
| 128 | !**************************************************************************************** |
|---|
| 129 | ! Calculate the coefficients C and D in : u(k) = C(k) + D(k)*u(k-1) |
|---|
| 130 | |
|---|
| 131 | !**************************************************************************************** |
|---|
| 132 | ! - Define alpha (alf1 and alf2) |
|---|
| 133 | alf1(:) = 1.0 |
|---|
| 134 | alf2(:) = 1.0 - alf1(:) |
|---|
| 135 | |
|---|
| 136 | ! - Calculate the coefficients K |
|---|
| 137 | Kcoefm(:, :) = 0.0 |
|---|
| 138 | DO k = 2, klev |
|---|
| 139 | DO i = 1, knon |
|---|
| 140 | Kcoefm(i, k) = coef_in(i, k) * RG * RG * dtime / (pplay(i, k - 1) - pplay(i, k)) & |
|---|
| 141 | * (paprs(i, k) * 2 / (temp(i, k) + temp(i, k - 1)) / RD)**2 |
|---|
| 142 | END DO |
|---|
| 143 | END DO |
|---|
| 144 | |
|---|
| 145 | ! - Calculate the coefficients C and D, component "u" |
|---|
| 146 | CALL calc_coef(knon, Kcoefm(:, :), delp(:, :), & |
|---|
| 147 | u_old(:, :), alf1(:), alf2(:), & |
|---|
| 148 | Ccoef_U(:, :), Dcoef_U(:, :), Acoef_U(:), Bcoef_U(:)) |
|---|
| 149 | |
|---|
| 150 | ! - Calculate the coefficients C and D, component "v" |
|---|
| 151 | CALL calc_coef(knon, Kcoefm(:, :), delp(:, :), & |
|---|
| 152 | v_old(:, :), alf1(:), alf2(:), & |
|---|
| 153 | Ccoef_V(:, :), Dcoef_V(:, :), Acoef_V(:), Bcoef_V(:)) |
|---|
| 154 | |
|---|
| 155 | !**************************************************************************************** |
|---|
| 156 | ! 6) |
|---|
| 157 | ! Return the first layer in output variables |
|---|
| 158 | |
|---|
| 159 | !**************************************************************************************** |
|---|
| 160 | Acoef_U_out = Acoef_U |
|---|
| 161 | Bcoef_U_out = Bcoef_U |
|---|
| 162 | Acoef_V_out = Acoef_V |
|---|
| 163 | Bcoef_V_out = Bcoef_V |
|---|
| 164 | |
|---|
| 165 | !**************************************************************************************** |
|---|
| 166 | ! 7) |
|---|
| 167 | ! If Pbl is split, return also the other layers in output variables |
|---|
| 168 | |
|---|
| 169 | !**************************************************************************************** |
|---|
| 170 | !!! jyg le 07/02/2012 |
|---|
| 171 | !!jyg IF (mod(iflag_pbl_split,2) .EQ.1) THEN |
|---|
| 172 | IF (mod(iflag_pbl_split, 10) >=1) THEN |
|---|
| 173 | !!! nrlmd le 02/05/2011 |
|---|
| 174 | DO k = 1, klev |
|---|
| 175 | DO i = 1, klon |
|---|
| 176 | Ccoef_U_out(i, k) = Ccoef_U(i, k) |
|---|
| 177 | Ccoef_V_out(i, k) = Ccoef_V(i, k) |
|---|
| 178 | Dcoef_U_out(i, k) = Dcoef_U(i, k) |
|---|
| 179 | Dcoef_V_out(i, k) = Dcoef_V(i, k) |
|---|
| 180 | Kcoef_m_out(i, k) = Kcoefm(i, k) |
|---|
| 181 | ENDDO |
|---|
| 182 | ENDDO |
|---|
| 183 | DO i = 1, klon |
|---|
| 184 | alf_1_out(i) = alf1(i) |
|---|
| 185 | alf_2_out(i) = alf2(i) |
|---|
| 186 | ENDDO |
|---|
| 187 | !!! |
|---|
| 188 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
|---|
| 189 | !!! |
|---|
| 190 | |
|---|
| 191 | END SUBROUTINE climb_wind_down |
|---|
| 192 | |
|---|
| 193 | !**************************************************************************************** |
|---|
| 194 | |
|---|
| 195 | SUBROUTINE calc_coef(knon, Kcoef, delp, X, alfa1, alfa2, Ccoef, Dcoef, Acoef, Bcoef) |
|---|
| 196 | USE lmdz_yomcst |
|---|
| 197 | |
|---|
| 198 | IMPLICIT NONE |
|---|
| 199 | |
|---|
| 200 | ! Find the coefficients C and D in fonction of alfa, K and delp |
|---|
| 201 | |
|---|
| 202 | ! Input arguments |
|---|
| 203 | !**************************************************************************************** |
|---|
| 204 | INTEGER, INTENT(IN) :: knon |
|---|
| 205 | REAL, DIMENSION(klon, klev), INTENT(IN) :: Kcoef, delp |
|---|
| 206 | REAL, DIMENSION(klon, klev), INTENT(IN) :: X |
|---|
| 207 | REAL, DIMENSION(klon), INTENT(IN) :: alfa1, alfa2 |
|---|
| 208 | |
|---|
| 209 | ! Output arguments |
|---|
| 210 | !**************************************************************************************** |
|---|
| 211 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef |
|---|
| 212 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef, Dcoef |
|---|
| 213 | |
|---|
| 214 | ! local variables |
|---|
| 215 | !**************************************************************************************** |
|---|
| 216 | INTEGER :: k, i |
|---|
| 217 | REAL :: buf |
|---|
| 218 | |
|---|
| 219 | !**************************************************************************************** |
|---|
| 220 | |
|---|
| 221 | ! Calculate coefficients C and D at top level, k=klev |
|---|
| 222 | |
|---|
| 223 | Ccoef(:, :) = 0.0 |
|---|
| 224 | Dcoef(:, :) = 0.0 |
|---|
| 225 | |
|---|
| 226 | DO i = 1, knon |
|---|
| 227 | buf = delp(i, klev) + Kcoef(i, klev) |
|---|
| 228 | |
|---|
| 229 | Ccoef(i, klev) = X(i, klev) * delp(i, klev) / buf |
|---|
| 230 | Dcoef(i, klev) = Kcoef(i, klev) / buf |
|---|
| 231 | END DO |
|---|
| 232 | |
|---|
| 233 | ! Calculate coefficients C and D at top level (klev-1) <= k <= 2 |
|---|
| 234 | |
|---|
| 235 | DO k = (klev - 1), 2, -1 |
|---|
| 236 | DO i = 1, knon |
|---|
| 237 | buf = delp(i, k) + Kcoef(i, k) + Kcoef(i, k + 1) * (1. - Dcoef(i, k + 1)) |
|---|
| 238 | |
|---|
| 239 | Ccoef(i, k) = (X(i, k) * delp(i, k) + Kcoef(i, k + 1) * Ccoef(i, k + 1)) / buf |
|---|
| 240 | Dcoef(i, k) = Kcoef(i, k) / buf |
|---|
| 241 | END DO |
|---|
| 242 | END DO |
|---|
| 243 | |
|---|
| 244 | ! Calculate coeffiecent A and B at surface |
|---|
| 245 | |
|---|
| 246 | DO i = 1, knon |
|---|
| 247 | buf = delp(i, 1) + Kcoef(i, 2) * (1 - Dcoef(i, 2)) |
|---|
| 248 | Acoef(i) = (X(i, 1) * delp(i, 1) + Kcoef(i, 2) * Ccoef(i, 2)) / buf |
|---|
| 249 | Bcoef(i) = -RG / buf |
|---|
| 250 | END DO |
|---|
| 251 | |
|---|
| 252 | END SUBROUTINE calc_coef |
|---|
| 253 | |
|---|
| 254 | !**************************************************************************************** |
|---|
| 255 | |
|---|
| 256 | SUBROUTINE climb_wind_up(knon, dtime, u_old, v_old, flx_u1, flx_v1, & |
|---|
| 257 | !!! nrlmd le 02/05/2011 |
|---|
| 258 | Acoef_U_in, Acoef_V_in, Bcoef_U_in, Bcoef_V_in, & |
|---|
| 259 | Ccoef_U_in, Ccoef_V_in, Dcoef_U_in, Dcoef_V_in, & |
|---|
| 260 | Kcoef_m_in, & |
|---|
| 261 | !!! |
|---|
| 262 | flx_u_new, flx_v_new, d_u_new, d_v_new) |
|---|
| 263 | |
|---|
| 264 | ! Diffuse the wind components from the surface layer and up to the top layer. |
|---|
| 265 | ! Coefficents A, B, C and D are known from before. Start values for the diffusion are the |
|---|
| 266 | ! momentum fluxes at surface. |
|---|
| 267 | |
|---|
| 268 | ! u(k=1) = A + B*flx*dtime |
|---|
| 269 | ! u(k) = C(k) + D(k)*u(k-1) [2 <= k <= klev] |
|---|
| 270 | |
|---|
| 271 | !**************************************************************************************** |
|---|
| 272 | |
|---|
| 273 | ! Input arguments |
|---|
| 274 | !**************************************************************************************** |
|---|
| 275 | USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree |
|---|
| 276 | USE lmdz_yomcst |
|---|
| 277 | |
|---|
| 278 | IMPLICIT NONE |
|---|
| 279 | |
|---|
| 280 | INTEGER, INTENT(IN) :: knon |
|---|
| 281 | REAL, INTENT(IN) :: dtime |
|---|
| 282 | REAL, DIMENSION(klon, klev), INTENT(IN) :: u_old |
|---|
| 283 | REAL, DIMENSION(klon, klev), INTENT(IN) :: v_old |
|---|
| 284 | REAL, DIMENSION(klon), INTENT(IN) :: flx_u1, flx_v1 ! momentum flux |
|---|
| 285 | |
|---|
| 286 | !!! nrlmd le 02/05/2011 |
|---|
| 287 | REAL, DIMENSION(klon), INTENT(IN) :: Acoef_U_in, Acoef_V_in, Bcoef_U_in, Bcoef_V_in |
|---|
| 288 | REAL, DIMENSION(klon, klev), INTENT(IN) :: Ccoef_U_in, Ccoef_V_in, Dcoef_U_in, Dcoef_V_in |
|---|
| 289 | REAL, DIMENSION(klon, klev), INTENT(IN) :: Kcoef_m_in |
|---|
| 290 | !!! |
|---|
| 291 | |
|---|
| 292 | ! Output arguments |
|---|
| 293 | !**************************************************************************************** |
|---|
| 294 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: flx_u_new, flx_v_new |
|---|
| 295 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_u_new, d_v_new |
|---|
| 296 | |
|---|
| 297 | ! Local variables |
|---|
| 298 | !**************************************************************************************** |
|---|
| 299 | REAL, DIMENSION(klon, klev) :: u_new, v_new |
|---|
| 300 | INTEGER :: k, i |
|---|
| 301 | !**************************************************************************************** |
|---|
| 302 | |
|---|
| 303 | !!! jyg le 07/02/2012 |
|---|
| 304 | !!jyg IF (mod(iflag_pbl_split,2) .EQ.1) THEN |
|---|
| 305 | IF (mod(iflag_pbl_split, 10) >=1) THEN |
|---|
| 306 | !!! nrlmd le 02/05/2011 |
|---|
| 307 | DO i = 1, knon |
|---|
| 308 | Acoef_U(i) = Acoef_U_in(i) |
|---|
| 309 | Acoef_V(i) = Acoef_V_in(i) |
|---|
| 310 | Bcoef_U(i) = Bcoef_U_in(i) |
|---|
| 311 | Bcoef_V(i) = Bcoef_V_in(i) |
|---|
| 312 | ENDDO |
|---|
| 313 | DO k = 1, klev |
|---|
| 314 | DO i = 1, knon |
|---|
| 315 | Ccoef_U(i, k) = Ccoef_U_in(i, k) |
|---|
| 316 | Ccoef_V(i, k) = Ccoef_V_in(i, k) |
|---|
| 317 | Dcoef_U(i, k) = Dcoef_U_in(i, k) |
|---|
| 318 | Dcoef_V(i, k) = Dcoef_V_in(i, k) |
|---|
| 319 | Kcoefm(i, k) = Kcoef_m_in(i, k) |
|---|
| 320 | ENDDO |
|---|
| 321 | ENDDO |
|---|
| 322 | !!! |
|---|
| 323 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
|---|
| 324 | !!! |
|---|
| 325 | |
|---|
| 326 | ! Niveau 1 |
|---|
| 327 | DO i = 1, knon |
|---|
| 328 | u_new(i, 1) = Acoef_U(i) + Bcoef_U(i) * flx_u1(i) * dtime |
|---|
| 329 | v_new(i, 1) = Acoef_V(i) + Bcoef_V(i) * flx_v1(i) * dtime |
|---|
| 330 | END DO |
|---|
| 331 | |
|---|
| 332 | ! Niveau 2 jusqu'au sommet klev |
|---|
| 333 | DO k = 2, klev |
|---|
| 334 | DO i = 1, knon |
|---|
| 335 | u_new(i, k) = Ccoef_U(i, k) + Dcoef_U(i, k) * u_new(i, k - 1) |
|---|
| 336 | v_new(i, k) = Ccoef_V(i, k) + Dcoef_V(i, k) * v_new(i, k - 1) |
|---|
| 337 | END DO |
|---|
| 338 | END DO |
|---|
| 339 | |
|---|
| 340 | !**************************************************************************************** |
|---|
| 341 | ! Calcul flux |
|---|
| 342 | |
|---|
| 343 | !== flux_u/v est le flux de moment angulaire (positif vers bas) |
|---|
| 344 | !== dont l'unite est: (kg m/s)/(m**2 s) |
|---|
| 345 | |
|---|
| 346 | !**************************************************************************************** |
|---|
| 347 | |
|---|
| 348 | flx_u_new(:, :) = 0.0 |
|---|
| 349 | flx_v_new(:, :) = 0.0 |
|---|
| 350 | |
|---|
| 351 | flx_u_new(1:knon, 1) = flx_u1(1:knon) |
|---|
| 352 | flx_v_new(1:knon, 1) = flx_v1(1:knon) |
|---|
| 353 | |
|---|
| 354 | ! Niveau 2->klev |
|---|
| 355 | DO k = 2, klev |
|---|
| 356 | DO i = 1, knon |
|---|
| 357 | flx_u_new(i, k) = Kcoefm(i, k) / RG / dtime * & |
|---|
| 358 | (u_new(i, k) - u_new(i, k - 1)) |
|---|
| 359 | |
|---|
| 360 | flx_v_new(i, k) = Kcoefm(i, k) / RG / dtime * & |
|---|
| 361 | (v_new(i, k) - v_new(i, k - 1)) |
|---|
| 362 | END DO |
|---|
| 363 | END DO |
|---|
| 364 | |
|---|
| 365 | !**************************************************************************************** |
|---|
| 366 | ! Calcul tendances |
|---|
| 367 | |
|---|
| 368 | !**************************************************************************************** |
|---|
| 369 | d_u_new(:, :) = 0.0 |
|---|
| 370 | d_v_new(:, :) = 0.0 |
|---|
| 371 | DO k = 1, klev |
|---|
| 372 | DO i = 1, knon |
|---|
| 373 | d_u_new(i, k) = u_new(i, k) - u_old(i, k) |
|---|
| 374 | d_v_new(i, k) = v_new(i, k) - v_old(i, k) |
|---|
| 375 | END DO |
|---|
| 376 | END DO |
|---|
| 377 | |
|---|
| 378 | END SUBROUTINE climb_wind_up |
|---|
| 379 | |
|---|
| 380 | !**************************************************************************************** |
|---|
| 381 | |
|---|
| 382 | END MODULE climb_wind_mod |
|---|