1 | |
---|
2 | MODULE climb_wind_mod |
---|
3 | |
---|
4 | ! Module to solve the verctical diffusion of the wind components "u" and "v". |
---|
5 | |
---|
6 | USE dimphy |
---|
7 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
8 | |
---|
9 | IMPLICIT NONE |
---|
10 | |
---|
11 | SAVE |
---|
12 | PRIVATE |
---|
13 | |
---|
14 | REAL, DIMENSION(:), ALLOCATABLE :: alf1, alf2 |
---|
15 | !$OMP THREADPRIVATE(alf1,alf2) |
---|
16 | REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefm |
---|
17 | !$OMP THREADPRIVATE(Kcoefm) |
---|
18 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_U, Dcoef_U |
---|
19 | !$OMP THREADPRIVATE(Ccoef_U, Dcoef_U) |
---|
20 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_V, Dcoef_V |
---|
21 | !$OMP THREADPRIVATE(Ccoef_V, Dcoef_V) |
---|
22 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_U, Bcoef_U |
---|
23 | !$OMP THREADPRIVATE(Acoef_U, Bcoef_U) |
---|
24 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_V, Bcoef_V |
---|
25 | !$OMP THREADPRIVATE(Acoef_V, Bcoef_V) |
---|
26 | LOGICAL :: firstcall=.TRUE. |
---|
27 | !$OMP THREADPRIVATE(firstcall) |
---|
28 | |
---|
29 | |
---|
30 | PUBLIC :: climb_wind_down, climb_wind_up |
---|
31 | |
---|
32 | CONTAINS |
---|
33 | |
---|
34 | !**************************************************************************************** |
---|
35 | |
---|
36 | SUBROUTINE climb_wind_init |
---|
37 | |
---|
38 | INTEGER :: ierr |
---|
39 | CHARACTER(len = 20) :: modname = 'climb_wind_init' |
---|
40 | |
---|
41 | !**************************************************************************************** |
---|
42 | ! Allocation of global module variables |
---|
43 | |
---|
44 | !**************************************************************************************** |
---|
45 | |
---|
46 | ALLOCATE(alf1(klon), stat=ierr) |
---|
47 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate alf1',1) |
---|
48 | |
---|
49 | ALLOCATE(alf2(klon), stat=ierr) |
---|
50 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate alf2',1) |
---|
51 | |
---|
52 | ALLOCATE(Kcoefm(klon,klev), stat=ierr) |
---|
53 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate Kcoefm',1) |
---|
54 | |
---|
55 | ALLOCATE(Ccoef_U(klon,klev), stat=ierr) |
---|
56 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate Ccoef_U',1) |
---|
57 | |
---|
58 | ALLOCATE(Dcoef_U(klon,klev), stat=ierr) |
---|
59 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocation Dcoef_U',1) |
---|
60 | |
---|
61 | ALLOCATE(Ccoef_V(klon,klev), stat=ierr) |
---|
62 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocation Ccoef_V',1) |
---|
63 | |
---|
64 | ALLOCATE(Dcoef_V(klon,klev), stat=ierr) |
---|
65 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocation Dcoef_V',1) |
---|
66 | |
---|
67 | ALLOCATE(Acoef_U(klon), Bcoef_U(klon), Acoef_V(klon), Bcoef_V(klon), STAT=ierr) |
---|
68 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Acoef_U and Bcoef_U, ierr=', ierr |
---|
69 | |
---|
70 | firstcall=.FALSE. |
---|
71 | |
---|
72 | END SUBROUTINE climb_wind_init |
---|
73 | |
---|
74 | !**************************************************************************************** |
---|
75 | |
---|
76 | SUBROUTINE climb_wind_down(knon, dtime, coef_in, pplay, paprs, temp, delp, u_old, v_old, & |
---|
77 | !!! nrlmd le 02/05/2011 |
---|
78 | Ccoef_U_out, Ccoef_V_out, Dcoef_U_out, Dcoef_V_out, & |
---|
79 | Kcoef_m_out, alf_1_out, alf_2_out, & |
---|
80 | !!! |
---|
81 | Acoef_U_out, Acoef_V_out, Bcoef_U_out, Bcoef_V_out) |
---|
82 | |
---|
83 | ! This routine calculates for the wind components u and v, |
---|
84 | ! recursivly the coefficients C and D in equation |
---|
85 | ! X(k) = C(k) + D(k)*X(k-1), X=[u,v], k=[1,klev] is the vertical layer. |
---|
86 | |
---|
87 | |
---|
88 | ! Input arguments |
---|
89 | !**************************************************************************************** |
---|
90 | INTEGER, INTENT(IN) :: knon |
---|
91 | REAL, INTENT(IN) :: dtime |
---|
92 | REAL, DIMENSION(klon,klev), INTENT(IN) :: coef_in |
---|
93 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! pres au milieu de couche (Pa) |
---|
94 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! pression a inter-couche (Pa) |
---|
95 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature |
---|
96 | REAL, DIMENSION(klon,klev), INTENT(IN) :: delp |
---|
97 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_old |
---|
98 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_old |
---|
99 | |
---|
100 | ! Output arguments |
---|
101 | !**************************************************************************************** |
---|
102 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_U_out |
---|
103 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_V_out |
---|
104 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_U_out |
---|
105 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_V_out |
---|
106 | |
---|
107 | !!! nrlmd le 02/05/2011 |
---|
108 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef_U_out |
---|
109 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef_V_out |
---|
110 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef_U_out |
---|
111 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef_V_out |
---|
112 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Kcoef_m_out |
---|
113 | REAL, DIMENSION(klon), INTENT(OUT) :: alf_1_out |
---|
114 | REAL, DIMENSION(klon), INTENT(OUT) :: alf_2_out |
---|
115 | !!! |
---|
116 | |
---|
117 | ! Local variables |
---|
118 | !**************************************************************************************** |
---|
119 | REAL, DIMENSION(klon) :: u1lay, v1lay |
---|
120 | INTEGER :: k, i |
---|
121 | |
---|
122 | ! Include |
---|
123 | !**************************************************************************************** |
---|
124 | INCLUDE "YOMCST.h" |
---|
125 | INCLUDE "compbl.h" |
---|
126 | |
---|
127 | !**************************************************************************************** |
---|
128 | ! Initialize module |
---|
129 | IF (firstcall) CALL climb_wind_init |
---|
130 | |
---|
131 | !**************************************************************************************** |
---|
132 | ! Calculate the coefficients C and D in : u(k) = C(k) + D(k)*u(k-1) |
---|
133 | |
---|
134 | !**************************************************************************************** |
---|
135 | ! - Define alpha (alf1 and alf2) |
---|
136 | alf1(:) = 1.0 |
---|
137 | alf2(:) = 1.0 - alf1(:) |
---|
138 | |
---|
139 | ! - Calculate the coefficients K |
---|
140 | Kcoefm(:,:) = 0.0 |
---|
141 | DO k = 2, klev |
---|
142 | DO i=1,knon |
---|
143 | Kcoefm(i,k) = coef_in(i,k)*RG*RG*dtime/(pplay(i,k-1)-pplay(i,k)) & |
---|
144 | *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 |
---|
145 | END DO |
---|
146 | END DO |
---|
147 | |
---|
148 | ! - Calculate the coefficients C and D, component "u" |
---|
149 | CALL calc_coef(knon, Kcoefm(:,:), delp(:,:), & |
---|
150 | u_old(:,:), alf1(:), alf2(:), & |
---|
151 | Ccoef_U(:,:), Dcoef_U(:,:), Acoef_U(:), Bcoef_U(:)) |
---|
152 | |
---|
153 | ! - Calculate the coefficients C and D, component "v" |
---|
154 | CALL calc_coef(knon, Kcoefm(:,:), delp(:,:), & |
---|
155 | v_old(:,:), alf1(:), alf2(:), & |
---|
156 | Ccoef_V(:,:), Dcoef_V(:,:), Acoef_V(:), Bcoef_V(:)) |
---|
157 | |
---|
158 | !**************************************************************************************** |
---|
159 | ! 6) |
---|
160 | ! Return the first layer in output variables |
---|
161 | |
---|
162 | !**************************************************************************************** |
---|
163 | Acoef_U_out = Acoef_U |
---|
164 | Bcoef_U_out = Bcoef_U |
---|
165 | Acoef_V_out = Acoef_V |
---|
166 | Bcoef_V_out = Bcoef_V |
---|
167 | |
---|
168 | !**************************************************************************************** |
---|
169 | ! 7) |
---|
170 | ! If Pbl is split, return also the other layers in output variables |
---|
171 | |
---|
172 | !**************************************************************************************** |
---|
173 | !!! jyg le 07/02/2012 |
---|
174 | !!jyg IF (mod(iflag_pbl_split,2) .EQ.1) THEN |
---|
175 | IF (mod(iflag_pbl_split,10) >=1) THEN |
---|
176 | !!! nrlmd le 02/05/2011 |
---|
177 | DO k= 1, klev |
---|
178 | DO i= 1, klon |
---|
179 | Ccoef_U_out(i,k) = Ccoef_U(i,k) |
---|
180 | Ccoef_V_out(i,k) = Ccoef_V(i,k) |
---|
181 | Dcoef_U_out(i,k) = Dcoef_U(i,k) |
---|
182 | Dcoef_V_out(i,k) = Dcoef_V(i,k) |
---|
183 | Kcoef_m_out(i,k) = Kcoefm(i,k) |
---|
184 | ENDDO |
---|
185 | ENDDO |
---|
186 | DO i= 1, klon |
---|
187 | alf_1_out(i) = alf1(i) |
---|
188 | alf_2_out(i) = alf2(i) |
---|
189 | ENDDO |
---|
190 | !!! |
---|
191 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
---|
192 | !!! |
---|
193 | |
---|
194 | END SUBROUTINE climb_wind_down |
---|
195 | |
---|
196 | !**************************************************************************************** |
---|
197 | |
---|
198 | SUBROUTINE calc_coef(knon, Kcoef, delp, X, alfa1, alfa2, Ccoef, Dcoef, Acoef, Bcoef) |
---|
199 | |
---|
200 | ! Find the coefficients C and D in fonction of alfa, K and delp |
---|
201 | |
---|
202 | ! Input arguments |
---|
203 | !**************************************************************************************** |
---|
204 | INTEGER, INTENT(IN) :: knon |
---|
205 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef, delp |
---|
206 | REAL, DIMENSION(klon,klev), INTENT(IN) :: X |
---|
207 | REAL, DIMENSION(klon), INTENT(IN) :: alfa1, alfa2 |
---|
208 | |
---|
209 | ! Output arguments |
---|
210 | !**************************************************************************************** |
---|
211 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef |
---|
212 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef, Dcoef |
---|
213 | |
---|
214 | ! local variables |
---|
215 | !**************************************************************************************** |
---|
216 | INTEGER :: k, i |
---|
217 | REAL :: buf |
---|
218 | |
---|
219 | INCLUDE "YOMCST.h" |
---|
220 | !**************************************************************************************** |
---|
221 | |
---|
222 | ! Calculate coefficients C and D at top level, k=klev |
---|
223 | |
---|
224 | Ccoef(:,:) = 0.0 |
---|
225 | Dcoef(:,:) = 0.0 |
---|
226 | |
---|
227 | DO i = 1, knon |
---|
228 | buf = delp(i,klev) + Kcoef(i,klev) |
---|
229 | |
---|
230 | Ccoef(i,klev) = X(i,klev)*delp(i,klev)/buf |
---|
231 | Dcoef(i,klev) = Kcoef(i,klev)/buf |
---|
232 | END DO |
---|
233 | |
---|
234 | ! Calculate coefficients C and D at top level (klev-1) <= k <= 2 |
---|
235 | |
---|
236 | DO k=(klev-1),2,-1 |
---|
237 | DO i = 1, knon |
---|
238 | buf = delp(i,k) + Kcoef(i,k) + Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) |
---|
239 | |
---|
240 | Ccoef(i,k) = (X(i,k)*delp(i,k) + Kcoef(i,k+1)*Ccoef(i,k+1))/buf |
---|
241 | Dcoef(i,k) = Kcoef(i,k)/buf |
---|
242 | END DO |
---|
243 | END DO |
---|
244 | |
---|
245 | ! Calculate coeffiecent A and B at surface |
---|
246 | |
---|
247 | DO i = 1, knon |
---|
248 | buf = delp(i,1) + Kcoef(i,2)*(1-Dcoef(i,2)) |
---|
249 | Acoef(i) = (X(i,1)*delp(i,1) + Kcoef(i,2)*Ccoef(i,2))/buf |
---|
250 | Bcoef(i) = -RG/buf |
---|
251 | END DO |
---|
252 | |
---|
253 | END SUBROUTINE calc_coef |
---|
254 | |
---|
255 | !**************************************************************************************** |
---|
256 | |
---|
257 | SUBROUTINE climb_wind_up(knon, dtime, u_old, v_old, flx_u1, flx_v1, & |
---|
258 | !!! nrlmd le 02/05/2011 |
---|
259 | Acoef_U_in, Acoef_V_in, Bcoef_U_in, Bcoef_V_in, & |
---|
260 | Ccoef_U_in, Ccoef_V_in, Dcoef_U_in, Dcoef_V_in, & |
---|
261 | Kcoef_m_in, & |
---|
262 | !!! |
---|
263 | flx_u_new, flx_v_new, d_u_new, d_v_new) |
---|
264 | |
---|
265 | ! Diffuse the wind components from the surface layer and up to the top layer. |
---|
266 | ! Coefficents A, B, C and D are known from before. Start values for the diffusion are the |
---|
267 | ! momentum fluxes at surface. |
---|
268 | |
---|
269 | ! u(k=1) = A + B*flx*dtime |
---|
270 | ! u(k) = C(k) + D(k)*u(k-1) [2 <= k <= klev] |
---|
271 | |
---|
272 | !**************************************************************************************** |
---|
273 | |
---|
274 | ! Input arguments |
---|
275 | !**************************************************************************************** |
---|
276 | INTEGER, INTENT(IN) :: knon |
---|
277 | REAL, INTENT(IN) :: dtime |
---|
278 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_old |
---|
279 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_old |
---|
280 | REAL, DIMENSION(klon), INTENT(IN) :: flx_u1, flx_v1 ! momentum flux |
---|
281 | |
---|
282 | !!! nrlmd le 02/05/2011 |
---|
283 | REAL, DIMENSION(klon), INTENT(IN) :: Acoef_U_in,Acoef_V_in, Bcoef_U_in, Bcoef_V_in |
---|
284 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Ccoef_U_in, Ccoef_V_in, Dcoef_U_in, Dcoef_V_in |
---|
285 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef_m_in |
---|
286 | !!! |
---|
287 | |
---|
288 | ! Output arguments |
---|
289 | !**************************************************************************************** |
---|
290 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: flx_u_new, flx_v_new |
---|
291 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_u_new, d_v_new |
---|
292 | |
---|
293 | ! Local variables |
---|
294 | !**************************************************************************************** |
---|
295 | REAL, DIMENSION(klon,klev) :: u_new, v_new |
---|
296 | INTEGER :: k, i |
---|
297 | |
---|
298 | ! Include |
---|
299 | !**************************************************************************************** |
---|
300 | INCLUDE "YOMCST.h" |
---|
301 | INCLUDE "compbl.h" |
---|
302 | |
---|
303 | !**************************************************************************************** |
---|
304 | |
---|
305 | !!! jyg le 07/02/2012 |
---|
306 | !!jyg IF (mod(iflag_pbl_split,2) .EQ.1) THEN |
---|
307 | IF (mod(iflag_pbl_split,10) >=1) THEN |
---|
308 | !!! nrlmd le 02/05/2011 |
---|
309 | DO i = 1, knon |
---|
310 | Acoef_U(i)=Acoef_U_in(i) |
---|
311 | Acoef_V(i)=Acoef_V_in(i) |
---|
312 | Bcoef_U(i)=Bcoef_U_in(i) |
---|
313 | Bcoef_V(i)=Bcoef_V_in(i) |
---|
314 | ENDDO |
---|
315 | DO k = 1, klev |
---|
316 | DO i = 1, knon |
---|
317 | Ccoef_U(i,k)=Ccoef_U_in(i,k) |
---|
318 | Ccoef_V(i,k)=Ccoef_V_in(i,k) |
---|
319 | Dcoef_U(i,k)=Dcoef_U_in(i,k) |
---|
320 | Dcoef_V(i,k)=Dcoef_V_in(i,k) |
---|
321 | Kcoefm(i,k)=Kcoef_m_in(i,k) |
---|
322 | ENDDO |
---|
323 | ENDDO |
---|
324 | !!! |
---|
325 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
---|
326 | !!! |
---|
327 | |
---|
328 | ! Niveau 1 |
---|
329 | DO i = 1, knon |
---|
330 | u_new(i,1) = Acoef_U(i) + Bcoef_U(i)*flx_u1(i)*dtime |
---|
331 | v_new(i,1) = Acoef_V(i) + Bcoef_V(i)*flx_v1(i)*dtime |
---|
332 | END DO |
---|
333 | |
---|
334 | ! Niveau 2 jusqu'au sommet klev |
---|
335 | DO k = 2, klev |
---|
336 | DO i=1, knon |
---|
337 | u_new(i,k) = Ccoef_U(i,k) + Dcoef_U(i,k) * u_new(i,k-1) |
---|
338 | v_new(i,k) = Ccoef_V(i,k) + Dcoef_V(i,k) * v_new(i,k-1) |
---|
339 | END DO |
---|
340 | END DO |
---|
341 | |
---|
342 | !**************************************************************************************** |
---|
343 | ! Calcul flux |
---|
344 | |
---|
345 | !== flux_u/v est le flux de moment angulaire (positif vers bas) |
---|
346 | !== dont l'unite est: (kg m/s)/(m**2 s) |
---|
347 | |
---|
348 | !**************************************************************************************** |
---|
349 | |
---|
350 | flx_u_new(:,:) = 0.0 |
---|
351 | flx_v_new(:,:) = 0.0 |
---|
352 | |
---|
353 | flx_u_new(1:knon,1)=flx_u1(1:knon) |
---|
354 | flx_v_new(1:knon,1)=flx_v1(1:knon) |
---|
355 | |
---|
356 | ! Niveau 2->klev |
---|
357 | DO k = 2, klev |
---|
358 | DO i = 1, knon |
---|
359 | flx_u_new(i,k) = Kcoefm(i,k)/RG/dtime * & |
---|
360 | (u_new(i,k)-u_new(i,k-1)) |
---|
361 | |
---|
362 | flx_v_new(i,k) = Kcoefm(i,k)/RG/dtime * & |
---|
363 | (v_new(i,k)-v_new(i,k-1)) |
---|
364 | END DO |
---|
365 | END DO |
---|
366 | |
---|
367 | !**************************************************************************************** |
---|
368 | ! Calcul tendances |
---|
369 | |
---|
370 | !**************************************************************************************** |
---|
371 | d_u_new(:,:) = 0.0 |
---|
372 | d_v_new(:,:) = 0.0 |
---|
373 | DO k = 1, klev |
---|
374 | DO i = 1, knon |
---|
375 | d_u_new(i,k) = u_new(i,k) - u_old(i,k) |
---|
376 | d_v_new(i,k) = v_new(i,k) - v_old(i,k) |
---|
377 | END DO |
---|
378 | END DO |
---|
379 | |
---|
380 | END SUBROUTINE climb_wind_up |
---|
381 | |
---|
382 | !**************************************************************************************** |
---|
383 | |
---|
384 | END MODULE climb_wind_mod |
---|