[4725] | 1 | !$Id: cdrag_mod.F90 5144 2024-07-29 21:01:04Z fhourdin $ |
---|
[5099] | 2 | |
---|
| 3 | |
---|
[3817] | 4 | MODULE cdrag_mod |
---|
[5099] | 5 | |
---|
[5144] | 6 | ! This module contains some procedures for calculation of the cdrag |
---|
| 7 | ! coefficients for turbulent diffusion at surface |
---|
[5099] | 8 | |
---|
[3817] | 9 | IMPLICIT NONE |
---|
| 10 | |
---|
| 11 | CONTAINS |
---|
[5099] | 12 | |
---|
[5144] | 13 | !**************************************************************************************** |
---|
[5099] | 14 | |
---|
[5144] | 15 | !r original routine svn3623 |
---|
[5099] | 16 | |
---|
[5144] | 17 | SUBROUTINE cdrag(knon, nsrf, & |
---|
| 18 | speed, t1, q1, zgeop1, & |
---|
| 19 | psol, pblh, tsurf, qsurf, z0m, z0h, & |
---|
| 20 | ri_in, iri_in, & |
---|
| 21 | cdm, cdh, zri, pref, prain, tsol, pat1) |
---|
[3817] | 22 | |
---|
[5144] | 23 | USE dimphy |
---|
| 24 | USE coare_cp_mod, ONLY: coare_cp |
---|
| 25 | USE coare30_flux_cnrm_mod, ONLY: coare30_flux_cnrm |
---|
| 26 | USE indice_sol_mod |
---|
| 27 | USE lmdz_print_control, ONLY: lunout, prt_level |
---|
| 28 | USE lmdz_ioipsl_getin_p, ONLY: getin_p |
---|
| 29 | USE lmdz_atke_turbulence_ini, ONLY: smmin, ric, cinf, cepsilon, pr_slope, pr_asym, pr_neut |
---|
| 30 | USE lmdz_clesphys |
---|
| 31 | USE lmdz_yoethf |
---|
| 32 | USE lmdz_yomcst |
---|
[3817] | 33 | |
---|
[5144] | 34 | IMPLICIT NONE |
---|
| 35 | ! ================================================================= c |
---|
[5099] | 36 | |
---|
[5144] | 37 | ! Objet : calcul des cdrags pour le moment (pcfm) et |
---|
| 38 | ! les flux de chaleur sensible et latente (pcfh) d'apr??s |
---|
| 39 | ! Louis 1982, Louis 1979, King et al 2001 |
---|
| 40 | ! ou Zilitinkevich et al 2002 pour les cas stables, Louis 1979 |
---|
| 41 | ! et 1982 pour les cas instables |
---|
[5099] | 42 | |
---|
[5144] | 43 | ! Modified history: |
---|
| 44 | ! writting on the 20/05/2016 |
---|
| 45 | ! modified on the 13/12/2016 to be adapted to LMDZ6 |
---|
[5099] | 46 | |
---|
[5144] | 47 | ! References: |
---|
| 48 | ! Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the |
---|
| 49 | ! atmosphere. Boundary-Layer Meteorology. 01/1979; 17(2):187-202. |
---|
| 50 | ! Louis, J. F., Tiedtke, M. and Geleyn, J. F., 1982: `A short history of the |
---|
| 51 | ! operational PBL parametrization at ECMWF'. Workshop on boundary layer |
---|
| 52 | ! parametrization, November 1981, ECMWF, Reading, England. |
---|
| 53 | ! Page: 19. Equations in Table 1. |
---|
| 54 | ! Mascart P, Noilhan J, Giordani H 1995.A MODIFIED PARAMETERIZATION OF FLUX-PROFILE RELATIONSHIPS |
---|
| 55 | ! IN THE SURFACE LAYER USING DIFFERENT ROUGHNESS LENGTH VALUES FOR HEAT AND MOMENTUM |
---|
| 56 | ! Boundary-Layer Meteorology 72: 331-344 |
---|
| 57 | ! Anton Beljaars. May 1992. The parametrization of the planetary boundary layer. |
---|
| 58 | ! European Centre for Medium-Range Weather Forecasts. |
---|
| 59 | ! Equations: 110-113. Page 40. |
---|
| 60 | ! Miller,M.J., A.C.M.Beljaars, T.N.Palmer. 1992. The sensitivity of the ECMWF |
---|
| 61 | ! model to the parameterization of evaporation from the tropical oceans. J. |
---|
| 62 | ! Climate, 5:418-434. |
---|
| 63 | ! King J.C, Connolley, W.M ad Derbyshire S.H. 2001, Sensitivity of Modelled Antarctic climate |
---|
| 64 | ! to surface and boundary-layer flux parametrizations |
---|
| 65 | ! QJRMS, 127, pp 779-794 |
---|
[5099] | 66 | |
---|
[5144] | 67 | ! ================================================================= c |
---|
| 68 | ! ================================================================= c |
---|
| 69 | ! On choisit le couple de fonctions de correction avec deux flags: |
---|
| 70 | ! Un pour les cas instables, un autre pour les cas stables |
---|
[5099] | 71 | |
---|
[5144] | 72 | ! iflag_corr_insta: |
---|
| 73 | ! 1: Louis 1979 avec les modifications de Mascart 1995 (z0/= z0h) |
---|
| 74 | ! 2: Louis 1982 |
---|
| 75 | ! 3: Laurent Li |
---|
[5099] | 76 | |
---|
[5144] | 77 | ! iflag_corr_sta: |
---|
| 78 | ! 1: Louis 1979 avec les modifications de Mascart 1995 (z0/= z0h) |
---|
| 79 | ! 2: Louis 1982 |
---|
| 80 | ! 3: Laurent Li |
---|
| 81 | ! 4: King 2001 (SHARP) |
---|
| 82 | ! 5: MO 1st order theory (allow collapse of turbulence) |
---|
[5099] | 83 | |
---|
| 84 | |
---|
[5144] | 85 | !***************************************************************** |
---|
| 86 | ! Parametres d'entree |
---|
| 87 | !***************************************************************** |
---|
[3817] | 88 | |
---|
[5144] | 89 | INTEGER, INTENT(IN) :: knon, nsrf ! nombre de points de grille sur l'horizontal + type de surface |
---|
| 90 | REAL, DIMENSION(klon), INTENT(IN) :: speed ! module du vent au 1er niveau du modele |
---|
| 91 | REAL, DIMENSION(klon), INTENT(IN) :: zgeop1 ! geopotentiel au 1er niveau du modele |
---|
| 92 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf ! Surface temperature (K) |
---|
| 93 | REAL, DIMENSION(klon), INTENT(IN) :: qsurf ! Surface humidity (Kg/Kg) |
---|
| 94 | REAL, DIMENSION(klon), INTENT(INOUT) :: z0m, z0h ! Rugosity at surface (m) |
---|
| 95 | REAL, DIMENSION(klon), INTENT(IN) :: ri_in ! Input Richardson 1st layer for first guess calculations of screen var. |
---|
| 96 | INTEGER, INTENT(IN) :: iri_in! iflag to activate cdrag calculation using ri1 |
---|
| 97 | REAL, DIMENSION(klon), INTENT(IN) :: t1 ! Temperature au premier niveau (K) |
---|
| 98 | REAL, DIMENSION(klon), INTENT(IN) :: q1 ! humidite specifique au premier niveau (kg/kg) |
---|
| 99 | REAL, DIMENSION(klon), INTENT(IN) :: psol ! pression au sol |
---|
[3817] | 100 | |
---|
[5144] | 101 | !------------------ Rajout pour COARE (OT2018) -------------------- |
---|
| 102 | REAL, DIMENSION(klon), INTENT(INOUT) :: pblh !hauteur de CL |
---|
| 103 | REAL, DIMENSION(klon), INTENT(IN) :: prain !rapport au precipitation |
---|
| 104 | REAL, DIMENSION(klon), INTENT(IN) :: tsol !SST imposé sur la surface oceanique |
---|
| 105 | REAL, DIMENSION(klon), INTENT(IN) :: pat1 !pression premier lev |
---|
[3817] | 106 | |
---|
[4722] | 107 | |
---|
[3817] | 108 | |
---|
[5144] | 109 | ! Parametres de sortie |
---|
| 110 | !****************************************************************** |
---|
| 111 | REAL, DIMENSION(klon), INTENT(OUT) :: cdm ! Drag coefficient for momentum |
---|
| 112 | REAL, DIMENSION(klon), INTENT(OUT) :: cdh ! Drag coefficient for heat flux |
---|
| 113 | REAL, DIMENSION(klon), INTENT(OUT) :: zri ! Richardson number |
---|
| 114 | REAL, DIMENSION(klon), INTENT(INOUT) :: pref ! Pression au niveau zgeop/RG |
---|
[3817] | 115 | |
---|
[5144] | 116 | ! Variables Locales |
---|
| 117 | !****************************************************************** |
---|
[3817] | 118 | |
---|
[5144] | 119 | REAL, PARAMETER :: CKAP = 0.40, CKAPT = 0.42 |
---|
| 120 | REAL CEPDU2 |
---|
| 121 | REAL ALPHA |
---|
| 122 | REAL CB, CC, CD, C2, C3 |
---|
| 123 | REAL MU, CM, CH, B, CMstar, CHstar |
---|
| 124 | REAL PM, PH, BPRIME |
---|
| 125 | INTEGER ng_q1 ! Number of grids that q1 < 0.0 |
---|
| 126 | INTEGER ng_qsurf ! Number of grids that qsurf < 0.0 |
---|
| 127 | INTEGER i, k |
---|
| 128 | REAL zdu2, ztsolv |
---|
| 129 | REAL ztvd, zscf |
---|
| 130 | REAL zucf, zcr |
---|
| 131 | REAL, DIMENSION(klon) :: FM, FH ! stability functions |
---|
| 132 | REAL, DIMENSION(klon) :: cdmn, cdhn ! Drag coefficient in neutral conditions |
---|
| 133 | REAL zzzcd |
---|
| 134 | REAL, DIMENSION(klon) :: sm, prandtl ! Stability function from atke turbulence scheme |
---|
| 135 | REAL ri0, ri1, cn ! to have dimensionless term in sm and prandtl |
---|
[3817] | 136 | |
---|
[5144] | 137 | !------------------ Rajout (OT2018) -------------------- |
---|
| 138 | !------------------ Rajout pour les appelles BULK (OT) -------------------- |
---|
| 139 | REAL, DIMENSION(klon, 2) :: rugos_itm |
---|
| 140 | REAL, DIMENSION(klon, 2) :: rugos_ith |
---|
| 141 | REAL, PARAMETER :: tol_it_rugos = 1.e-4 |
---|
| 142 | REAL, DIMENSION(3) :: coeffs |
---|
| 143 | LOGICAL :: mixte |
---|
| 144 | REAL :: z_0m |
---|
| 145 | REAL :: z_0h |
---|
| 146 | REAL, DIMENSION(klon) :: cdmm |
---|
| 147 | REAL, DIMENSION(klon) :: cdhh |
---|
[3817] | 148 | |
---|
[5144] | 149 | !------------------RAJOUT POUR ECUME ------------------- |
---|
[4722] | 150 | |
---|
[5144] | 151 | REAL, DIMENSION(klon) :: PQSAT |
---|
| 152 | REAL, DIMENSION(klon) :: PSFTH |
---|
| 153 | REAL, DIMENSION(klon) :: PFSTQ |
---|
| 154 | REAL, DIMENSION(klon) :: PUSTAR |
---|
| 155 | REAL, DIMENSION(klon) :: PCD ! Drag coefficient for momentum |
---|
| 156 | REAL, DIMENSION(klon) :: PCDN ! Drag coefficient for momentum |
---|
| 157 | REAL, DIMENSION(klon) :: PCH ! Drag coefficient for momentum |
---|
| 158 | REAL, DIMENSION(klon) :: PCE ! Drag coefficient for momentum |
---|
| 159 | REAL, DIMENSION(klon) :: PRI |
---|
| 160 | REAL, DIMENSION(klon) :: PRESA |
---|
| 161 | REAL, DIMENSION(klon) :: PSSS |
---|
[4722] | 162 | |
---|
[5144] | 163 | LOGICAL :: OPRECIP |
---|
| 164 | LOGICAL :: OPWEBB |
---|
| 165 | LOGICAL :: OPERTFLUX |
---|
| 166 | LOGICAL :: LPRECIP |
---|
| 167 | LOGICAL :: LPWG |
---|
[4722] | 168 | |
---|
[5144] | 169 | LOGICAL, SAVE :: firstCALL = .TRUE. |
---|
| 170 | !$OMP THREADPRIVATE(firstcall) |
---|
| 171 | INTEGER, SAVE :: iflag_corr_sta |
---|
| 172 | !$OMP THREADPRIVATE(iflag_corr_sta) |
---|
| 173 | INTEGER, SAVE :: iflag_corr_insta |
---|
| 174 | !$OMP THREADPRIVATE(iflag_corr_insta) |
---|
| 175 | LOGICAL, SAVE :: ok_cdrag_iter |
---|
| 176 | !$OMP THREADPRIVATE(ok_cdrag_iter) |
---|
[4722] | 177 | |
---|
[5144] | 178 | !===================================================================c |
---|
| 179 | ! Valeurs numeriques des constantes |
---|
| 180 | !===================================================================c |
---|
[4722] | 181 | |
---|
| 182 | |
---|
[5144] | 183 | ! Minimum du carre du vent |
---|
[3817] | 184 | |
---|
[5144] | 185 | CEPDU2 = (0.1)**2 |
---|
[3817] | 186 | |
---|
[5144] | 187 | ! Louis 1982 |
---|
[3817] | 188 | |
---|
[5144] | 189 | CB = 5.0 |
---|
| 190 | CC = 5.0 |
---|
| 191 | CD = 5.0 |
---|
[3817] | 192 | |
---|
| 193 | |
---|
[5144] | 194 | ! King 2001 |
---|
[3817] | 195 | |
---|
[5144] | 196 | C2 = 0.25 |
---|
| 197 | C3 = 0.0625 |
---|
[3817] | 198 | |
---|
| 199 | |
---|
[5144] | 200 | ! Louis 1979 |
---|
[3817] | 201 | |
---|
[5144] | 202 | BPRIME = 4.7 |
---|
| 203 | B = 9.4 |
---|
[3817] | 204 | |
---|
| 205 | |
---|
[5144] | 206 | !MO |
---|
[3817] | 207 | |
---|
[5144] | 208 | ALPHA = 5.0 |
---|
[3817] | 209 | |
---|
[5144] | 210 | ! Consistent with atke scheme |
---|
| 211 | cn = (1. / sqrt(cepsilon))**(2. / 3.) |
---|
| 212 | ri0 = 2. / rpi * (cinf - cn) * ric / cn |
---|
| 213 | ri1 = -2. / rpi * (pr_asym - pr_neut) / pr_slope |
---|
[3817] | 214 | |
---|
[4478] | 215 | |
---|
[5144] | 216 | ! ================================================================= c |
---|
| 217 | ! Tests avant de commencer |
---|
| 218 | ! Fuxing WANG, 04/03/2015 |
---|
| 219 | ! To check if there are negative q1, qsurf values. |
---|
| 220 | !====================================================================c |
---|
| 221 | ng_q1 = 0 ! Initialization |
---|
| 222 | ng_qsurf = 0 ! Initialization |
---|
| 223 | DO i = 1, knon |
---|
| 224 | IF (q1(i)<0.0) ng_q1 = ng_q1 + 1 |
---|
| 225 | IF (qsurf(i)<0.0) ng_qsurf = ng_qsurf + 1 |
---|
| 226 | ENDDO |
---|
| 227 | IF (ng_q1>0 .AND. prt_level > 5) THEN |
---|
| 228 | WRITE(lunout, *)" *** Warning: Negative q1(humidity at 1st level) values in cdrag.F90 !" |
---|
| 229 | WRITE(lunout, *)" The total number of the grids is: ", ng_q1 |
---|
| 230 | WRITE(lunout, *)" The negative q1 is set to zero " |
---|
| 231 | ! abort_message="voir ci-dessus" |
---|
| 232 | ! CALL abort_physic(modname,abort_message,1) |
---|
| 233 | ENDIF |
---|
| 234 | IF (ng_qsurf>0 .AND. prt_level > 5) THEN |
---|
| 235 | WRITE(lunout, *)" *** Warning: Negative qsurf(humidity at surface) values in cdrag.F90 !" |
---|
| 236 | WRITE(lunout, *)" The total number of the grids is: ", ng_qsurf |
---|
| 237 | WRITE(lunout, *)" The negative qsurf is set to zero " |
---|
| 238 | ! abort_message="voir ci-dessus" |
---|
| 239 | ! CALL abort_physic(modname,abort_message,1) |
---|
| 240 | ENDIF |
---|
[4481] | 241 | |
---|
[3817] | 242 | |
---|
| 243 | |
---|
[5144] | 244 | !=============================================================================c |
---|
| 245 | ! Calcul du cdrag |
---|
| 246 | !=============================================================================c |
---|
[3817] | 247 | |
---|
[5144] | 248 | ! On choisit les fonctions de stabilite utilisees au premier appel |
---|
| 249 | !************************************************************************** |
---|
| 250 | IF (firstcall) THEN |
---|
| 251 | iflag_corr_sta = 2 |
---|
| 252 | iflag_corr_insta = 2 |
---|
| 253 | ok_cdrag_iter = .FALSE. |
---|
[3817] | 254 | |
---|
[5144] | 255 | CALL getin_p('iflag_corr_sta', iflag_corr_sta) |
---|
| 256 | CALL getin_p('iflag_corr_insta', iflag_corr_insta) |
---|
| 257 | CALL getin_p('ok_cdrag_iter', ok_cdrag_iter) |
---|
[3817] | 258 | |
---|
[5144] | 259 | firstCALL = .FALSE. |
---|
| 260 | ENDIF |
---|
[3817] | 261 | |
---|
[5144] | 262 | !------------------ Rajout (OT2018) -------------------- |
---|
| 263 | !--------- Rajout pour itération sur rugosité ---------------- |
---|
| 264 | rugos_itm(:, 2) = z0m |
---|
| 265 | rugos_itm(:, 1) = 3. * tol_it_rugos * z0m |
---|
[4722] | 266 | |
---|
[5144] | 267 | rugos_ith(:, 2) = z0h !cp nouveau rugos_it |
---|
| 268 | rugos_ith(:, 1) = 3. * tol_it_rugos * z0h |
---|
| 269 | !-------------------------------------------------------------------- |
---|
[4722] | 270 | |
---|
[5144] | 271 | !xxxxxxxxxxxxxxxxxxxxxxx |
---|
| 272 | DO i = 1, knon ! Boucle sur l'horizontal |
---|
| 273 | !xxxxxxxxxxxxxxxxxxxxxxx |
---|
[3817] | 274 | |
---|
| 275 | |
---|
[5144] | 276 | ! calculs preliminaires: |
---|
| 277 | !*********************** |
---|
[3817] | 278 | |
---|
[5144] | 279 | zdu2 = MAX(CEPDU2, speed(i)**2) |
---|
| 280 | pref(i) = EXP(LOG(psol(i)) - zgeop1(i) / (RD * t1(i) * & |
---|
| 281 | (1. + RETV * max(q1(i), 0.0)))) ! negative q1 set to zero |
---|
| 282 | ztsolv = tsurf(i) * (1.0 + RETV * max(qsurf(i), 0.0)) ! negative qsurf set to zero |
---|
| 283 | ztvd = (t1(i) + zgeop1(i) / RCPD / (1. + RVTMP2 * q1(i))) & |
---|
| 284 | * (1. + RETV * max(q1(i), 0.0)) ! negative q1 set to zero |
---|
| 285 | |
---|
| 286 | !------------------ Rajout (OT2018) -------------------- |
---|
| 287 | !-------------- ON DUPLIQUE POUR METTRE ITERATION SUR OCEAN ------------------------ |
---|
| 288 | IF (iri_in==1) THEN |
---|
| 289 | zri(i) = ri_in(i) |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | IF (nsrf == is_oce) THEN |
---|
| 293 | |
---|
| 294 | !------------------ Pour Core 2 choix Core Pur ou Core Mixte -------------------- |
---|
| 295 | IF ((choix_bulk > 1 .AND. choix_bulk < 4) .AND. (nsrf == is_oce)) THEN |
---|
| 296 | IF(choix_bulk == 2) THEN |
---|
| 297 | mixte = .FALSE. |
---|
| 298 | ELSE |
---|
[5103] | 299 | mixte = .TRUE. |
---|
[5144] | 300 | ENDIF |
---|
| 301 | CALL clc_core_cp (sqrt(zdu2), t1(i) - tsurf(i), q1(i) - qsurf(i), t1(i), q1(i), & |
---|
| 302 | zgeop1(i) / RG, zgeop1(i) / RG, zgeop1(i) / RG, & |
---|
| 303 | psol(i), nit_bulk, mixte, & |
---|
| 304 | coeffs, z_0m, z_0h) |
---|
| 305 | cdmm(i) = coeffs(1) |
---|
| 306 | cdhh(i) = coeffs(2) |
---|
| 307 | cdm(i) = cdmm(i) |
---|
| 308 | cdh(i) = cdhh(i) |
---|
| 309 | WRITE(*, *) "clc_core cd ch", cdmm(i), cdhh(i) |
---|
[3817] | 310 | |
---|
[5144] | 311 | !------------------ Pour ECUME -------------------- |
---|
| 312 | ELSE IF ((choix_bulk == 4) .AND. (nsrf == is_oce)) THEN |
---|
| 313 | OPRECIP = .FALSE. |
---|
| 314 | OPWEBB = .FALSE. |
---|
| 315 | OPERTFLUX = .FALSE. |
---|
| 316 | IF (nsrf == is_oce) THEN |
---|
| 317 | PSSS = 0.0 |
---|
| 318 | ENDIF |
---|
| 319 | CALL ini_csts |
---|
| 320 | CALL ecumev6_flux(z_0m, t1(i), tsurf(i), & |
---|
| 321 | q1(i), qsurf(i), sqrt(zdu2), zgeop1(i) / RG, PSSS, zgeop1(i) / RG, & |
---|
| 322 | psol(i), pat1(i), OPRECIP, OPWEBB, & |
---|
| 323 | PSFTH, PFSTQ, PUSTAR, PCD, PCDN, & |
---|
| 324 | PCH, PCE, PRI, PRESA, prain, & |
---|
| 325 | z_0h, OPERTFLUX, coeffs) |
---|
[3817] | 326 | |
---|
[5144] | 327 | cdmm(i) = coeffs(1) |
---|
| 328 | cdhh(i) = coeffs(2) |
---|
| 329 | cdm(i) = cdmm(i) |
---|
| 330 | cdh(i) = cdhh(i) |
---|
[3817] | 331 | |
---|
[5144] | 332 | WRITE(*, *) "ecume cd ch", cdmm(i), cdhh(i) |
---|
[5060] | 333 | |
---|
[5144] | 334 | !------------------ Pour COARE CNRM -------------------- |
---|
| 335 | ELSE IF ((choix_bulk == 5) .AND. (nsrf == is_oce)) THEN |
---|
| 336 | LPRECIP = .FALSE. |
---|
| 337 | LPWG = .FALSE. |
---|
| 338 | CALL ini_csts |
---|
| 339 | block |
---|
| 340 | REAL, DIMENSION(1) :: z0m_1d, z_0h_1d, sqrt_zdu2_1d, zgeop1_rg_1d ! convert scalar to 1D for call |
---|
| 341 | z0m_1d = z0m |
---|
| 342 | z_0h_1d = z0h |
---|
| 343 | sqrt_zdu2_1d = sqrt(zdu2) |
---|
| 344 | zgeop1_rg_1d = zgeop1(i) / RG |
---|
| 345 | CALL coare30_flux_cnrm(z0m_1d, t1(i), tsurf(i), q1(i), & |
---|
| 346 | sqrt_zdu2_1d, zgeop1_rg_1d, zgeop1_rg_1d, psol(i), qsurf(i), PQSAT, & |
---|
| 347 | PSFTH, PFSTQ, PUSTAR, PCD, PCDN, PCH, PCE, PRI, & |
---|
| 348 | PRESA, prain, pat1(i), z_0h_1d, LPRECIP, LPWG, coeffs) |
---|
[3817] | 349 | |
---|
[5144] | 350 | end block |
---|
| 351 | cdmm(i) = coeffs(1) |
---|
| 352 | cdhh(i) = coeffs(2) |
---|
| 353 | cdm(i) = cdmm(i) |
---|
| 354 | cdh(i) = cdhh(i) |
---|
| 355 | WRITE(*, *) "coare CNRM cd ch", cdmm(i), cdhh(i) |
---|
[3817] | 356 | |
---|
[5144] | 357 | !------------------ Pour COARE Maison -------------------- |
---|
| 358 | ELSE IF ((choix_bulk == 1) .AND. (nsrf == is_oce)) THEN |
---|
| 359 | IF (pblh(i) == 0.) THEN |
---|
| 360 | pblh(i) = 1500. |
---|
| 361 | ENDIF |
---|
| 362 | WRITE(*, *) "debug size", size(coeffs) |
---|
| 363 | CALL coare_cp(sqrt(zdu2), t1(i) - tsurf(i), q1(i) - qsurf(i), & |
---|
| 364 | t1(i), q1(i), & |
---|
| 365 | zgeop1(i) / RG, zgeop1(i) / RG, zgeop1(i) / RG, & |
---|
| 366 | psol(i), pblh(i), & |
---|
| 367 | nit_bulk, & |
---|
| 368 | coeffs, z_0m, z_0h) |
---|
| 369 | cdmm(i) = coeffs(1) |
---|
| 370 | cdhh(i) = coeffs(3) |
---|
| 371 | cdm(i) = cdmm(i) |
---|
| 372 | cdh(i) = cdhh(i) |
---|
| 373 | WRITE(*, *) "coare cd ch", cdmm(i), cdhh(i) |
---|
| 374 | ELSE |
---|
| 375 | !------------------ Pour La param LMDZ (ocean) -------------------- |
---|
| 376 | zri(i) = zgeop1(i) * (ztvd - ztsolv) / (zdu2 * ztvd) |
---|
| 377 | IF (iri_in==1) THEN |
---|
| 378 | zri(i) = ri_in(i) |
---|
| 379 | ENDIF |
---|
| 380 | ENDIF |
---|
[4481] | 381 | |
---|
| 382 | |
---|
[5144] | 383 | !----------------------- Rajout des itérations -------------- |
---|
| 384 | DO k = 1, nit_bulk |
---|
[3817] | 385 | |
---|
[5144] | 386 | ! Coefficients CD neutres : k^2/ln(z/z0) et k^2/(ln(z/z0)*ln(z/z0h)): |
---|
| 387 | !******************************************************************** |
---|
| 388 | zzzcd = CKAP / LOG(1. + zgeop1(i) / (RG * rugos_itm(i, 2))) |
---|
| 389 | cdmn(i) = zzzcd * zzzcd |
---|
| 390 | cdhn(i) = zzzcd * (CKAP / LOG(1. + zgeop1(i) / (RG * rugos_ith(i, 2)))) |
---|
[3817] | 391 | |
---|
[5144] | 392 | ! Calcul des fonctions de stabilite FMs, FHs, FMi, FHi : |
---|
| 393 | !******************************************************* |
---|
| 394 | IF (zri(i) < 0.) THEN |
---|
| 395 | SELECT CASE (iflag_corr_insta) |
---|
| 396 | CASE (1) ! Louis 1979 + Mascart 1995 |
---|
| 397 | MU = LOG(MAX(z0m(i) / z0h(i), 0.01)) |
---|
| 398 | CMstar = 6.8741 + 2.6933 * MU - 0.3601 * (MU**2) + 0.0154 * (MU**3) |
---|
| 399 | PM = 0.5233 - 0.0815 * MU + 0.0135 * (MU**2) - 0.001 * (MU**3) |
---|
| 400 | CHstar = 3.2165 + 4.3431 * MU + 0.536 * (MU**2) - 0.0781 * (MU**3) |
---|
| 401 | PH = 0.5802 - 0.1571 * MU + 0.0327 * (MU**2) - 0.0026 * (MU**3) |
---|
| 402 | CH = CHstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & |
---|
| 403 | * CKAPT / LOG(z0h(i) + zgeop1(i) / (RG * z0h(i))) & |
---|
| 404 | * ((zgeop1(i) / (RG * z0h(i)))**PH) |
---|
| 405 | CM = CMstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & |
---|
| 406 | * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & |
---|
| 407 | * ((zgeop1(i) / (RG * z0m(i)))**PM) |
---|
| 408 | FM(i) = 1. - B * zri(i) / (1. + CM * SQRT(ABS(zri(i)))) |
---|
| 409 | FH(i) = 1. - B * zri(i) / (1. + CH * SQRT(ABS(zri(i)))) |
---|
| 410 | CASE (2) ! Louis 1982 |
---|
| 411 | zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & |
---|
| 412 | * (1.0 + zgeop1(i) / (RG * z0m(i))))) |
---|
| 413 | FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 414 | FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 415 | CASE (3) ! Laurent Li |
---|
| 416 | FM(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) |
---|
| 417 | FH(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) |
---|
| 418 | CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) |
---|
| 419 | sm(i) = 2. / rpi * (cinf - cn) * atan(-zri(i) / ri0) + cn |
---|
| 420 | prandtl(i) = -2. / rpi * (pr_asym - pr_neut) * atan(zri(i) / ri1) + pr_neut |
---|
| 421 | FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) |
---|
| 422 | FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) |
---|
| 423 | CASE default ! Louis 1982 |
---|
| 424 | zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & |
---|
| 425 | * (1.0 + zgeop1(i) / (RG * z0m(i))))) |
---|
| 426 | FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 427 | FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 428 | END SELECT |
---|
| 429 | ! Calcul des drags |
---|
| 430 | cdmm(i) = cdmn(i) * FM(i) |
---|
| 431 | cdhh(i) = f_cdrag_ter * cdhn(i) * FH(i) |
---|
| 432 | ! Traitement particulier des cas oceaniques |
---|
| 433 | ! on applique Miller et al 1992 en l'absence de gustiness |
---|
| 434 | IF (nsrf == is_oce) THEN |
---|
| 435 | ! cdh(i)=f_cdrag_oce*cdhn(i)*FH(i) |
---|
| 436 | IF (iflag_gusts==0) THEN |
---|
| 437 | zcr = (0.0016 / (cdmn(i) * SQRT(zdu2))) * ABS(ztvd - ztsolv)**(1. / 3.) |
---|
| 438 | cdhh(i) = f_cdrag_oce * cdhn(i) * (1.0 + zcr**1.25)**(1. / 1.25) |
---|
| 439 | ENDIF |
---|
| 440 | cdmm(i) = MIN(cdmm(i), cdmmax) |
---|
| 441 | cdhh(i) = MIN(cdhh(i), cdhmax) |
---|
| 442 | ! WRITE(*,*) "LMDZ cd ch",cdmm(i),cdhh(i) |
---|
| 443 | END IF |
---|
| 444 | ELSE |
---|
[3817] | 445 | |
---|
[5144] | 446 | !''''''''''''''' |
---|
| 447 | ! Cas stables : |
---|
| 448 | !''''''''''''''' |
---|
| 449 | zri(i) = MIN(20., zri(i)) |
---|
| 450 | SELECT CASE (iflag_corr_sta) |
---|
| 451 | CASE (1) ! Louis 1979 + Mascart 1995 |
---|
| 452 | FM(i) = MAX(1. / ((1 + BPRIME * zri(i))**2), f_ri_cd_min) |
---|
| 453 | FH(i) = FM(i) |
---|
| 454 | CASE (2) ! Louis 1982 |
---|
| 455 | zscf = SQRT(1. + CD * ABS(zri(i))) |
---|
| 456 | FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) |
---|
| 457 | FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) |
---|
| 458 | CASE (3) ! Laurent Li |
---|
| 459 | FM(i) = MAX(1.0 / (1.0 + 10.0 * zri(i) * (1 + 8.0 * zri(i))), f_ri_cd_min) |
---|
| 460 | FH(i) = FM(i) |
---|
| 461 | CASE (4) ! King 2001 |
---|
| 462 | IF (zri(i) < C2 / 2.) THEN |
---|
| 463 | FM(i) = MAX((1. - zri(i) / C2)**2, f_ri_cd_min) |
---|
| 464 | FH(i) = FM(i) |
---|
| 465 | ELSE |
---|
| 466 | FM(i) = MAX(C3 * ((C2 / zri(i))**2), f_ri_cd_min) |
---|
| 467 | FH(i) = FM(i) |
---|
| 468 | ENDIF |
---|
| 469 | CASE (5) ! MO |
---|
| 470 | IF (zri(i) < 1. / alpha) THEN |
---|
| 471 | FM(i) = MAX((1. - alpha * zri(i))**2, f_ri_cd_min) |
---|
| 472 | FH(i) = FM(i) |
---|
| 473 | else |
---|
| 474 | FM(i) = MAX(1E-7, f_ri_cd_min) |
---|
| 475 | FH(i) = FM(i) |
---|
| 476 | endif |
---|
| 477 | CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) |
---|
| 478 | sm(i) = MAX(smmin, cn * (1. - zri(i) / ric)) |
---|
| 479 | ! prandlt expression from venayagamoorthy and stretch 2010, Li et al 2019 |
---|
| 480 | prandtl(i) = pr_neut * exp(-pr_slope / pr_neut * zri(i) + zri(i) / pr_neut) & |
---|
| 481 | + zri(i) * pr_slope |
---|
| 482 | FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) |
---|
| 483 | FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) |
---|
| 484 | CASE default ! Louis 1982 |
---|
| 485 | zscf = SQRT(1. + CD * ABS(zri(i))) |
---|
| 486 | FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) |
---|
| 487 | FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) |
---|
| 488 | END SELECT |
---|
[3817] | 489 | |
---|
[5144] | 490 | ! Calcul des drags |
---|
[3817] | 491 | |
---|
[5144] | 492 | cdmm(i) = cdmn(i) * FM(i) |
---|
| 493 | cdhh(i) = f_cdrag_ter * cdhn(i) * FH(i) |
---|
[3817] | 494 | |
---|
[5144] | 495 | IF (choix_bulk == 0) THEN |
---|
| 496 | cdm(i) = cdmn(i) * FM(i) |
---|
| 497 | cdh(i) = f_cdrag_ter * cdhn(i) * FH(i) |
---|
| 498 | ENDIF |
---|
[3817] | 499 | |
---|
[5144] | 500 | IF (nsrf==is_oce) THEN |
---|
| 501 | cdhh(i) = f_cdrag_oce * cdhn(i) * FH(i) |
---|
| 502 | cdmm(i) = MIN(cdmm(i), cdmmax) |
---|
| 503 | cdhh(i) = MIN(cdhh(i), cdhmax) |
---|
| 504 | ENDIF |
---|
| 505 | IF (ok_cdrag_iter) THEN |
---|
| 506 | rugos_itm(i, 1) = rugos_itm(i, 2) |
---|
| 507 | rugos_ith(i, 1) = rugos_ith(i, 2) |
---|
| 508 | rugos_itm(i, 2) = 0.018 * cdmm(i) * (speed(i)) / RG & |
---|
| 509 | + 0.11 * 14e-6 / SQRT(cdmm(i) * zdu2) |
---|
[4725] | 510 | |
---|
[5144] | 511 | !---------- Version SEPARATION DES Z0 ---------------------- |
---|
| 512 | IF (iflag_z0_oce==0) THEN |
---|
| 513 | rugos_ith(i, 2) = rugos_itm(i, 2) |
---|
| 514 | ELSE IF (iflag_z0_oce==1) THEN |
---|
| 515 | rugos_ith(i, 2) = 0.40 * 14e-6 / SQRT(cdmm(i) * zdu2) |
---|
| 516 | ENDIF |
---|
| 517 | ENDIF |
---|
| 518 | ENDIF |
---|
| 519 | IF (ok_cdrag_iter) THEN |
---|
| 520 | rugos_itm(i, 2) = MAX(1.5e-05, rugos_itm(i, 2)) |
---|
| 521 | rugos_ith(i, 2) = MAX(1.5e-05, rugos_ith(i, 2)) |
---|
| 522 | ENDIF |
---|
| 523 | ENDDO |
---|
| 524 | IF (nsrf==is_oce) THEN |
---|
| 525 | cdm(i) = MIN(cdmm(i), cdmmax) |
---|
| 526 | cdh(i) = MIN(cdhh(i), cdhmax) |
---|
| 527 | ENDIF |
---|
| 528 | z0m = rugos_itm(:, 2) |
---|
| 529 | z0h = rugos_ith(:, 2) |
---|
| 530 | ELSE ! (nsrf == is_oce) |
---|
| 531 | zri(i) = zgeop1(i) * (ztvd - ztsolv) / (zdu2 * ztvd) |
---|
| 532 | IF (iri_in==1) THEN |
---|
| 533 | zri(i) = ri_in(i) |
---|
| 534 | ENDIF |
---|
[3817] | 535 | |
---|
[5144] | 536 | ! Coefficients CD neutres : k^2/ln(z/z0) et k^2/(ln(z/z0)*ln(z/z0h)): |
---|
| 537 | !******************************************************************** |
---|
| 538 | zzzcd = CKAP / LOG(1. + zgeop1(i) / (RG * z0m(i))) |
---|
| 539 | cdmn(i) = zzzcd * zzzcd |
---|
| 540 | cdhn(i) = zzzcd * (CKAP / LOG(1. + zgeop1(i) / (RG * z0h(i)))) |
---|
| 541 | |
---|
| 542 | |
---|
| 543 | ! Calcul des fonctions de stabilit?? FMs, FHs, FMi, FHi : |
---|
| 544 | !******************************************************* |
---|
| 545 | !'''''''''''''' |
---|
| 546 | ! Cas instables |
---|
| 547 | !'''''''''''''' |
---|
| 548 | IF (zri(i) < 0.) THEN |
---|
| 549 | SELECT CASE (iflag_corr_insta) |
---|
| 550 | CASE (1) ! Louis 1979 + Mascart 1995 |
---|
| 551 | MU = LOG(MAX(z0m(i) / z0h(i), 0.01)) |
---|
| 552 | CMstar = 6.8741 + 2.6933 * MU - 0.3601 * (MU**2) + 0.0154 * (MU**3) |
---|
| 553 | PM = 0.5233 - 0.0815 * MU + 0.0135 * (MU**2) - 0.001 * (MU**3) |
---|
| 554 | CHstar = 3.2165 + 4.3431 * MU + 0.536 * (MU**2) - 0.0781 * (MU**3) |
---|
| 555 | PH = 0.5802 - 0.1571 * MU + 0.0327 * (MU**2) - 0.0026 * (MU**3) |
---|
| 556 | CH = CHstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & |
---|
| 557 | * CKAPT / LOG(z0h(i) + zgeop1(i) / (RG * z0h(i))) & |
---|
| 558 | * ((zgeop1(i) / (RG * z0h(i)))**PH) |
---|
| 559 | CM = CMstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & |
---|
| 560 | * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & |
---|
| 561 | * ((zgeop1(i) / (RG * z0m(i)))**PM) |
---|
| 562 | FM(i) = 1. - B * zri(i) / (1. + CM * SQRT(ABS(zri(i)))) |
---|
| 563 | FH(i) = 1. - B * zri(i) / (1. + CH * SQRT(ABS(zri(i)))) |
---|
| 564 | CASE (2) ! Louis 1982 |
---|
| 565 | zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & |
---|
| 566 | * (1.0 + zgeop1(i) / (RG * z0m(i))))) |
---|
| 567 | FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 568 | FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 569 | CASE (3) ! Laurent Li |
---|
| 570 | FM(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) |
---|
| 571 | FH(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) |
---|
| 572 | CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) |
---|
| 573 | sm(i) = 2. / rpi * (cinf - cn) * atan(-zri(i) / ri0) + cn |
---|
| 574 | prandtl(i) = -2. / rpi * (pr_asym - pr_neut) * atan(zri(i) / ri1) + pr_neut |
---|
| 575 | FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) |
---|
| 576 | FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) |
---|
| 577 | CASE default ! Louis 1982 |
---|
| 578 | zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & |
---|
| 579 | * (1.0 + zgeop1(i) / (RG * z0m(i))))) |
---|
| 580 | FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 581 | FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) |
---|
| 582 | END SELECT |
---|
| 583 | ! Calcul des drags |
---|
| 584 | cdm(i) = cdmn(i) * FM(i) |
---|
| 585 | cdh(i) = f_cdrag_ter * cdhn(i) * FH(i) |
---|
| 586 | ELSE |
---|
| 587 | !''''''''''''''' |
---|
| 588 | ! Cas stables : |
---|
| 589 | !''''''''''''''' |
---|
| 590 | zri(i) = MIN(20., zri(i)) |
---|
| 591 | SELECT CASE (iflag_corr_sta) |
---|
| 592 | CASE (1) ! Louis 1979 + Mascart 1995 |
---|
| 593 | FM(i) = MAX(1. / ((1 + BPRIME * zri(i))**2), f_ri_cd_min) |
---|
| 594 | FH(i) = FM(i) |
---|
| 595 | CASE (2) ! Louis 1982 |
---|
| 596 | zscf = SQRT(1. + CD * ABS(zri(i))) |
---|
| 597 | FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) |
---|
| 598 | FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) |
---|
| 599 | CASE (3) ! Laurent Li |
---|
| 600 | FM(i) = MAX(1.0 / (1.0 + 10.0 * zri(i) * (1 + 8.0 * zri(i))), f_ri_cd_min) |
---|
| 601 | FH(i) = FM(i) |
---|
| 602 | CASE (4) ! King 2001 |
---|
| 603 | IF (zri(i) < C2 / 2.) THEN |
---|
| 604 | FM(i) = MAX((1. - zri(i) / C2)**2, f_ri_cd_min) |
---|
| 605 | FH(i) = FM(i) |
---|
| 606 | else |
---|
| 607 | FM(i) = MAX(C3 * ((C2 / zri(i))**2), f_ri_cd_min) |
---|
| 608 | FH(i) = FM(i) |
---|
| 609 | endif |
---|
| 610 | CASE (5) ! MO |
---|
| 611 | IF (zri(i) < 1. / alpha) THEN |
---|
| 612 | FM(i) = MAX((1. - alpha * zri(i))**2, f_ri_cd_min) |
---|
| 613 | FH(i) = FM(i) |
---|
| 614 | else |
---|
| 615 | FM(i) = MAX(1E-7, f_ri_cd_min) |
---|
| 616 | FH(i) = FM(i) |
---|
| 617 | endif |
---|
| 618 | CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) |
---|
| 619 | sm(i) = MAX(0., cn * (1. - zri(i) / ric)) |
---|
| 620 | prandtl(i) = pr_neut + zri(i) * pr_slope |
---|
| 621 | FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) |
---|
| 622 | FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) |
---|
| 623 | CASE default ! Louis 1982 |
---|
| 624 | zscf = SQRT(1. + CD * ABS(zri(i))) |
---|
| 625 | FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) |
---|
| 626 | FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) |
---|
| 627 | END SELECT |
---|
| 628 | ! Calcul des drags |
---|
| 629 | cdm(i) = cdmn(i) * FM(i) |
---|
| 630 | cdh(i) = f_cdrag_ter * cdhn(i) * FH(i) |
---|
| 631 | ENDIF |
---|
| 632 | ENDIF ! fin du if (nsrf == is_oce) |
---|
| 633 | END DO ! Fin de la boucle sur l'horizontal |
---|
| 634 | |
---|
| 635 | END SUBROUTINE cdrag |
---|
| 636 | |
---|
[3817] | 637 | END MODULE cdrag_mod |
---|