source: LMDZ6/branches/Amaury_dev/libf/phylmd/acama_gwd_rando_m.F90 @ 5151

Last change on this file since 5151 was 5144, checked in by abarral, 7 weeks ago

Put YOMCST.h into modules

  • Property svn:keywords set to Id
File size: 19.2 KB
Line 
1! $Id: acama_gwd_rando_m.F90 5144 2024-07-29 21:01:04Z abarral $
2
3module ACAMA_GWD_rando_m
4
5  IMPLICIT NONE
6
7CONTAINS
8
9  SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, &
10          zustr, zvstr, d_u, d_v, east_gwstress, west_gwstress)
11
12    ! Parametrization of the momentum flux deposition due to a discrete
13    ! number of gravity waves.
14    ! Author: F. Lott, A. de la Camara
15    ! July, 24th, 2014
16    ! Gaussian distribution of the source, source is vorticity squared
17    ! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 )
18    ! Lott et al (JAS, 2010, vol 67, page 157-170)
19    ! Lott et al (JAS, 2012, vol 69, page 2134-2151)
20
21    !  ONLINE:
22    USE dimphy, ONLY: klon, klev
23    USE lmdz_assert, ONLY: assert
24    USE lmdz_ioipsl_getin_p, ONLY: getin_p
25    USE lmdz_vertical_layers, ONLY: presnivs
26    USE lmdz_abort_physic, ONLY: abort_physic
27    USE lmdz_clesphys
28    USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, &
29            GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat
30    USE lmdz_yomcst
31
32    !  OFFLINE:
33    !   include "dimensions.h"
34    !   include "dimphy.h"
35    !END DIFFERENCE
36
37    ! 0. DECLARATIONS:
38
39    ! 0.1 INPUTS
40    REAL, INTENT(IN) :: DTIME ! Time step of the Physics
41    REAL, INTENT(IN) :: PP(:, :) ! (KLON, KLEV) Pressure at full levels
42    REAL, INTENT(IN) :: ROT(:, :) ! Relative vorticity
43    REAL, INTENT(IN) :: TT(:, :) ! (KLON, KLEV) Temp at full levels
44    REAL, INTENT(IN) :: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels
45    REAL, INTENT(IN) :: VV(:, :) ! (KLON, KLEV) Merid wind at full levels
46    REAL, INTENT(IN) :: PLAT(:) ! (KLON) LATITUDE
47
48    ! 0.2 OUTPUTS
49    REAL, INTENT(OUT) :: zustr(:), zvstr(:) ! (KLON) Surface Stresses
50
51    REAL, INTENT(INOUT) :: d_u(:, :), d_v(:, :)
52    REAL, INTENT(INOUT) :: east_gwstress(:, :) !  Profile of eastward stress
53    REAL, INTENT(INOUT) :: west_gwstress(:, :) !  Profile of westward stress
54    ! (KLON, KLEV) tendencies on winds
55
56    ! O.3 INTERNAL ARRAYS
57    REAL BVLOW(klon)  !  LOW LEVEL BV FREQUENCY
58    REAL ROTBA(KLON), CORIO(KLON)  !  BAROTROPIC REL. VORTICITY AND PLANETARY
59    REAL UZ(KLON, KLEV + 1)
60
61    INTEGER II, JJ, LL
62
63    ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED
64
65    REAL DELTAT
66
67    ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS
68
69    INTEGER, PARAMETER :: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO
70    INTEGER JK, JP, JO, JW
71    INTEGER, PARAMETER :: NA = 5  !number of realizations to get the phase speed
72    REAL KMIN, KMAX ! Min and Max horizontal wavenumbers
73    REAL CMIN, CMAX ! Min and Max absolute ph. vel.
74    REAL CPHA ! absolute PHASE VELOCITY frequency
75    REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude
76    REAL ZP(NW, KLON) ! Horizontal wavenumber angle
77    REAL ZO(NW, KLON) ! Absolute frequency !
78
79    ! Waves Intr. freq. at the 1/2 lev surrounding the full level
80    REAL ZOM(NW, KLON), ZOP(NW, KLON)
81
82    ! Wave EP-fluxes at the 2 semi levels surrounding the full level
83    REAL WWM(NW, KLON), WWP(NW, KLON)
84
85    REAL RUW0(NW, KLON) ! Fluxes at launching level
86
87    REAL RUWP(NW, KLON), RVWP(NW, KLON)
88    ! Fluxes X and Y for each waves at 1/2 Levels
89
90    INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude
91
92    REAL XLAUNCH ! Controle the launching altitude
93    REAL XTROP ! SORT of Tropopause altitude
94    REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels
95    REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels
96
97    REAL PRMAX ! Maximum value of PREC, and for which our linear formula
98    ! for GWs parameterisation apply
99
100    ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS
101
102    REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ
103    REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS
104    REAL RUWFRT, SATFRT
105
106    ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE
107
108    REAL H0 ! Characteristic Height of the atmosphere
109    REAL DZ ! Characteristic depth of the source!
110    REAL PR, TR ! Reference Pressure and Temperature
111
112    REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude
113
114    REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels
115    REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels
116    REAL PSEC ! Security to avoid division by 0 pressure
117    REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels
118    REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels
119    REAL BVSEC ! Security to avoid negative BVF
120
121    REAL, DIMENSION(klev + 1) :: HREF
122    LOGICAL, SAVE :: gwd_reproductibilite_mpiomp = .TRUE.
123    LOGICAL, SAVE :: firstCALL = .TRUE.
124    !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp)
125
126    CHARACTER (LEN = 20) :: modname = 'acama_gwd_rando_m'
127    CHARACTER (LEN = 80) :: abort_message
128
129    IF (firstcall) THEN
130      ! Cle introduite pour resoudre un probleme de non reproductibilite
131      ! Le but est de pouvoir tester de revenir a la version precedenete
132      ! A eliminer rapidement
133      CALL getin_p('gwd_reproductibilite_mpiomp', gwd_reproductibilite_mpiomp)
134      IF (NW + 4 * (NA - 1) + NA>=KLEV) THEN
135        abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes'
136        CALL abort_physic (modname, abort_message, 1)
137      ENDIF
138      firstcall = .FALSE.
139      !    CALL iophys_ini(dtime)
140    ENDIF
141
142    !-----------------------------------------------------------------
143
144    ! 1. INITIALISATIONS
145
146    ! 1.1 Basic parameter
147
148    ! Are provided from elsewhere (latent heat of vaporization, dry
149    ! gaz constant for air, gravity constant, heat capacity of dry air
150    ! at constant pressure, earth rotation rate, pi).
151
152    ! 1.2 Tuning parameters of V14
153
154    ! Values for linear in rot (recommended):
155    !   RUWFRT=0.005 ! As RUWMAX but for frontal waves
156    !   SATFRT=1.00  ! As SAT    but for frontal waves
157    ! Values when rot^2 is used
158    !    RUWFRT=0.02  ! As RUWMAX but for frontal waves
159    !    SATFRT=1.00  ! As SAT    but for frontal waves
160    !    CMAX = 30.   ! Characteristic phase speed
161    ! Values when rot^2*EXP(-pi*sqrt(J)) is used
162    !   RUWFRT=2.5   ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ
163    !   SATFRT=0.60   ! As SAT    but for frontal waves
164    RUWFRT = gwd_front_ruwmax
165    SATFRT = gwd_front_sat
166    CMAX = 50.    ! Characteristic phase speed
167    ! Phase speed test
168    !   RUWFRT=0.01
169    !   CMAX = 50.   ! Characteristic phase speed (TEST)
170    ! Values when rot^2 and exp(-m^2*dz^2) are used
171    !   RUWFRT=0.03  ! As RUWMAX but for frontal waves
172    !   SATFRT=1.00  ! As SAT    but for frontal waves
173    ! CRUCIAL PARAMETERS FOR THE WIND FILTERING
174    XLAUNCH = 0.95 ! Parameter that control launching altitude
175    RDISS = 0.5  ! Diffusion parameter
176
177    ! maximum of rain for which our theory applies (in kg/m^2/s)
178
179    DZ = 1000. ! Characteristic depth of the source
180    XTROP = 0.2 ! Parameter that control tropopause altitude
181    DELTAT = 24. * 3600. ! Time scale of the waves (first introduced in 9b)
182    !   DELTAT=DTIME     ! No AR-1 Accumulation, OR OFFLINE
183
184    KMIN = 2.E-5
185    ! minimum horizontal wavenumber (inverse of the subgrid scale resolution)
186
187    KMAX = 1.E-3  ! Max horizontal wavenumber
188    CMIN = 1.     ! Min phase velocity
189
190    TR = 240. ! Reference Temperature
191    PR = 101300. ! Reference pressure
192    H0 = RD * TR / RG ! Characteristic vertical scale height
193
194    BVSEC = 5.E-3 ! Security to avoid negative BVF
195    PSEC = 1.E-6 ! Security to avoid division by 0 pressure
196    ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ
197    CORSEC = ROMEGA * 2. * SIN(2. * RPI / 180.)! Security for CORIO
198
199    !  ONLINE
200    CALL assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), &
201            size(vv, 1), size(rot, 1), size(zustr), size(zvstr), size(d_u, 1), &
202            size(d_v, 1), &
203            size(east_gwstress, 1), size(west_gwstress, 1) /), &
204            "ACAMA_GWD_RANDO klon")
205    CALL assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), &
206            size(vv, 2), size(d_u, 2), size(d_v, 2), &
207            size(east_gwstress, 2), size(west_gwstress, 2) /), &
208            "ACAMA_GWD_RANDO klev")
209    !  END ONLINE
210
211    IF(DELTAT < DTIME)THEN
212      !       PRINT *, 'flott_gwd_rando: deltat < dtime!'
213      !       STOP 1
214      abort_message = ' deltat < dtime! '
215      CALL abort_physic(modname, abort_message, 1)
216    ENDIF
217
218    IF (KLEV < NW) THEN
219      !       PRINT *, 'flott_gwd_rando: you will have problem with random numbers'
220      !       STOP 1
221      abort_message = ' you will have problem with random numbers'
222      CALL abort_physic(modname, abort_message, 1)
223    ENDIF
224
225    ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS
226
227    ! Pressure and Inv of pressure
228    DO LL = 2, KLEV
229      PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.)
230      PHM1(:, LL) = 1. / PH(:, LL)
231    end DO
232
233    PH(:, KLEV + 1) = 0.
234    PHM1(:, KLEV + 1) = 1. / PSEC
235    PH(:, 1) = 2. * PP(:, 1) - PH(:, 2)
236
237    ! Launching altitude
238
239    IF (gwd_reproductibilite_mpiomp) THEN
240      ! Reprend la formule qui calcule PH en fonction de PP=play
241      DO LL = 2, KLEV
242        HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.)
243      end DO
244      HREF(KLEV + 1) = 0.
245      HREF(1) = 2. * presnivs(1) - HREF(2)
246    ELSE
247      HREF(1:KLEV) = PH(KLON / 2, 1:KLEV)
248    ENDIF
249
250    LAUNCH = 0
251    LTROP = 0
252    DO LL = 1, KLEV
253      IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL
254    ENDDO
255    DO LL = 1, KLEV
256      IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL
257    ENDDO
258    !LAUNCH=22 ; LTROP=33
259    !   PRINT*,'LAUNCH=',LAUNCH,'LTROP=',LTROP
260
261
262    !   PRINT *,'LAUNCH IN ACAMARA:',LAUNCH
263
264    ! Log pressure vert. coordinate
265    DO LL = 1, KLEV + 1
266      ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC))
267    end DO
268
269    ! BV frequency
270    DO LL = 2, KLEV
271      ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS)
272      UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) &
273              * RD**2 / RCPD / H0**2 + (TT(:, LL) &
274              - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0
275    end DO
276    BVLOW = 0.5 * (TT(:, LTROP) + TT(:, LAUNCH)) &
277            * RD**2 / RCPD / H0**2 + (TT(:, LTROP) &
278            - TT(:, LAUNCH)) / (ZH(:, LTROP) - ZH(:, LAUNCH)) * RD / H0
279
280    UH(:, 1) = UH(:, 2)
281    UH(:, KLEV + 1) = UH(:, KLEV)
282    BV(:, 1) = UH(:, 2)
283    BV(:, KLEV + 1) = UH(:, KLEV)
284    ! SMOOTHING THE BV HELPS
285    DO LL = 2, KLEV
286      BV(:, LL) = (UH(:, LL + 1) + 2. * UH(:, LL) + UH(:, LL - 1)) / 4.
287    end DO
288
289    BV = MAX(SQRT(MAX(BV, 0.)), BVSEC)
290    BVLOW = MAX(SQRT(MAX(BVLOW, 0.)), BVSEC)
291
292    ! WINDS
293    DO LL = 2, KLEV
294      UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind
295      VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind
296      UZ(:, LL) = ABS((SQRT(UU(:, LL)**2 + VV(:, LL)**2) &
297              - SQRT(UU(:, LL - 1)**2 + VV(:, LL - 1)**2)) &
298              / (ZH(:, LL) - ZH(:, LL - 1)))
299    end DO
300    UH(:, 1) = 0.
301    VH(:, 1) = 0.
302    UH(:, KLEV + 1) = UU(:, KLEV)
303    VH(:, KLEV + 1) = VV(:, KLEV)
304
305    UZ(:, 1) = UZ(:, 2)
306    UZ(:, KLEV + 1) = UZ(:, KLEV)
307    UZ(:, :) = MAX(UZ(:, :), PSEC)
308
309    ! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER
310
311    CORIO(:) = MAX(ROMEGA * 2. * ABS(SIN(PLAT(:) * RPI / 180.)), CORSEC)
312    ROTBA(:) = 0.
313    DO LL = 1, KLEV - 1
314      !ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1))
315      ! Introducing the complete formula (exp of Richardson number):
316      ROTBA(:) = ROTBA(:) + &
317              !((ROT(:,LL)+ROT(:,LL+1))/2.)**2 &
318              (CORIO(:) * TANH(ABS(ROT(:, LL) + ROT(:, LL + 1)) / 2. / CORIO(:)))**2 &
319                      / RG * (PP(:, LL) - PP(:, LL + 1)) &
320                      * EXP(-RPI * BV(:, LL + 1) / UZ(:, LL + 1)) &
321                      !               * DZ*BV(:,LL+1)/4./ABS(CORIO(:))
322                      * DZ * BV(:, LL + 1) / 4. / 1.E-4           !  Changes after 1991
323      !ARRET
324    ENDDO
325    !   PRINT *,'MAX ROTBA:',MAXVAL(ROTBA)
326    !   ROTBA(:)=(1.*ROTBA(:)  & ! Testing zone
327    !           +0.15*CORIO(:)**2                &
328    !           /(COS(PLAT(:)*RPI/180.)+0.02)  &
329    !           )*DZ*0.01/0.0001/4. ! & ! Testing zone
330    !   MODIF GWD4 AFTER 1985
331    !            *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25
332    !          *1./(COS(PLAT(:)*RPI/180.)+0.02)
333    !    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1)
334
335    ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE
336
337    ! The mod functions of weird arguments are used to produce the
338    ! waves characteristics in an almost stochastic way
339
340    JW = 0
341    DO JW = 1, NW
342      ! Angle
343      DO II = 1, KLON
344        ! Angle (0 or PI so far)
345        ! ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) &
346        !      * RPI / 2.
347        ! Angle between 0 and pi
348        ZP(JW, II) = MOD(TT(II, JW) * 10., 1.) * RPI
349        ! TEST WITH POSITIVE WAVES ONLY (Part I/II)
350        !               ZP(JW, II) = 0.
351        ! Horizontal wavenumber amplitude
352        ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.)
353        ! Horizontal phase speed
354        CPHA = 0.
355        DO JJ = 1, NA
356          CPHA = CPHA + &
357                  CMAX * 2. * (MOD(TT(II, JW + 4 * (JJ - 1) + JJ)**2, 1.) - 0.5) * SQRT(3.) / SQRT(NA * 1.)
358        END DO
359        IF (CPHA<0.)  THEN
360          CPHA = -1. * CPHA
361          ZP(JW, II) = ZP(JW, II) + RPI
362          ! TEST WITH POSITIVE WAVES ONLY (Part II/II)
363          !               ZP(JW, II) = 0.
364        ENDIF
365        CPHA = CPHA + CMIN !we dont allow |c|<1m/s
366        ! Absolute frequency is imposed
367        ZO(JW, II) = CPHA * ZK(JW, II)
368        ! Intrinsic frequency is imposed
369        ZO(JW, II) = ZO(JW, II) &
370                + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) &
371                + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH)
372        ! Momentum flux at launch lev
373        ! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE
374        !  RIGHT IN THE SH (GWD4 after 1990)
375        RUW0(JW, II) = 0.
376        DO JJ = 1, NA
377          RUW0(JW, II) = RUW0(JW, II) + &
378                  2. * (MOD(TT(II, JW + 4 * (JJ - 1) + JJ)**2, 1.) - 0.5) * SQRT(3.) / SQRT(NA * 1.)
379        END DO
380        RUW0(JW, II) = RUWFRT &
381                * EXP(RUW0(JW, II)) / 1250. &  ! 2 mpa at south pole
382                * ((1.05 + SIN(PLAT(II) * RPI / 180.)) / (1.01 + SIN(PLAT(II) * RPI / 180.)) - 2.05 / 2.01)
383        ! RUW0(JW, II) = RUWFRT
384      ENDDO
385    end DO
386
387    ! 4. COMPUTE THE FLUXES
388
389    ! 4.0
390
391    ! 4.1 Vertical velocity at launching altitude to ensure
392    ! the correct value to the imposed fluxes.
393
394    DO JW = 1, NW
395
396      ! Evaluate intrinsic frequency at launching altitude:
397      ZOP(JW, :) = ZO(JW, :) &
398              - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) &
399              - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH)
400
401      ! VERSION WITH FRONTAL SOURCES
402
403      ! Momentum flux at launch level imposed by vorticity sources
404
405      ! tanh limitation for values above CORIO (inertial instability).
406      ! WWP(JW, :) = RUW0(JW, :) &
407      WWP(JW, :) = RUWFRT      &
408              !     * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 &
409              !    * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) &
410              !  CONSTANT FLUX
411              !    * (CORIO(:)*CORIO(:)) &
412              ! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE)
413              !      *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(JW, :)),ZOISEC)**2 &
414              !      *ZK(JW, :)**2*DZ**2) &
415              ! COMPLETE FORMULA:
416              !* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) &
417              * ROTBA(:) &
418              !  RESTORE DIMENSION OF A FLUX
419              !     *RD*TR/PR
420              !     *1. + RUW0(JW, :)
421              * 1.
422
423      ! Factor related to the characteristics of the waves: NONE
424
425      ! Moderation by the depth of the source (dz here): NONE
426
427      ! Put the stress in the right direction:
428
429      RUWP(JW, :) = SIGN(1., ZOP(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :)
430      RVWP(JW, :) = SIGN(1., ZOP(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :)
431
432    end DO
433
434    ! 4.2 Uniform values below the launching altitude
435
436    DO LL = 1, LAUNCH
437      RUW(:, LL) = 0
438      RVW(:, LL) = 0
439      DO JW = 1, NW
440        RUW(:, LL) = RUW(:, LL) + RUWP(JW, :)
441        RVW(:, LL) = RVW(:, LL) + RVWP(JW, :)
442      end DO
443    end DO
444
445    ! 4.3 Loop over altitudes, with passage from one level to the next
446    ! done by i) conserving the EP flux, ii) dissipating a little,
447    ! iii) testing critical levels, and vi) testing the breaking.
448
449    DO LL = LAUNCH, KLEV - 1
450      ! Warning: all the physics is here (passage from one level
451      ! to the next)
452      DO JW = 1, NW
453        ZOM(JW, :) = ZOP(JW, :)
454        WWM(JW, :) = WWP(JW, :)
455        ! Intrinsic Frequency
456        ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) &
457                - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1)
458
459        ! No breaking (Eq.6)
460        ! Dissipation (Eq. 8)
461        WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) &
462                + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 &
463                / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 &
464                * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL)))
465
466        ! Critical levels (forced to zero if intrinsic frequency changes sign)
467        ! Saturation (Eq. 12)
468        WWP(JW, :) = min(WWP(JW, :), MAX(0., &
469                SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 &
470                !    / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 &
471                / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 &
472                !              *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 &
473                * SATFRT**2       &
474                / ZK(JW, :)**4)
475      end DO
476
477      ! Evaluate EP-flux from Eq. 7 and give the right orientation to
478      ! the stress
479
480      DO JW = 1, NW
481        RUWP(JW, :) = SIGN(1., ZOP(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :)
482        RVWP(JW, :) = SIGN(1., ZOP(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :)
483      end DO
484
485      RUW(:, LL + 1) = 0.
486      RVW(:, LL + 1) = 0.
487
488      DO JW = 1, NW
489        RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :)
490        RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :)
491        EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LL) + MAX(0., RUWP(JW, :)) / FLOAT(NW)
492        WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LL) + MIN(0., RUWP(JW, :)) / FLOAT(NW)
493      end DO
494    end DO
495
496    ! 5 CALCUL DES TENDANCES:
497
498    ! 5.1 Rectification des flux au sommet et dans les basses couches
499
500    RUW(:, KLEV + 1) = 0.
501    RVW(:, KLEV + 1) = 0.
502    RUW(:, 1) = RUW(:, LAUNCH)
503    RVW(:, 1) = RVW(:, LAUNCH)
504    DO LL = 1, LAUNCH
505      RUW(:, LL) = RUW(:, LAUNCH + 1)
506      RVW(:, LL) = RVW(:, LAUNCH + 1)
507      EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LAUNCH)
508      WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LAUNCH)
509    end DO
510
511    ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4
512    DO LL = 1, KLEV
513      D_U(:, LL) = (1. - DTIME / DELTAT) * D_U(:, LL) + DTIME / DELTAT / REAL(NW) * &
514              RG * (RUW(:, LL + 1) - RUW(:, LL)) &
515              / (PH(:, LL + 1) - PH(:, LL)) * DTIME
516      !  NO AR1 FOR MERIDIONAL TENDENCIES
517      !      D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * &
518      D_V(:, LL) = 1. / REAL(NW) * &
519              RG * (RVW(:, LL + 1) - RVW(:, LL)) &
520              / (PH(:, LL + 1) - PH(:, LL)) * DTIME
521    ENDDO
522
523    ! Cosmetic: evaluation of the cumulated stress
524    ZUSTR = 0.
525    ZVSTR = 0.
526    DO LL = 1, KLEV
527      ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME
528      !      ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
529    ENDDO
530    ! COSMETICS TO VISUALIZE ROTBA
531    ZVSTR = ROTBA
532
533  END SUBROUTINE ACAMA_GWD_RANDO
534
535END MODULE ACAMA_GWD_rando_m
Note: See TracBrowser for help on using the repository browser.