1 | MODULE traccoag_mod |
---|
2 | |
---|
3 | ! This module calculates the concentration of aerosol particles in certain size bins |
---|
4 | ! considering coagulation and sedimentation. |
---|
5 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | SUBROUTINE traccoag(pdtphys, gmtime, debutphy, julien, & |
---|
9 | presnivs, xlat, xlon, pphis, pphi, & |
---|
10 | t_seri, pplay, paprs, sh, rh, tr_seri) |
---|
11 | |
---|
12 | USE phys_local_var_mod, ONLY: mdw, R2SO4, DENSO4, f_r_wet, surf_PM25_sulf, & |
---|
13 | budg_emi_ocs, budg_emi_so2, budg_emi_h2so4, budg_emi_part, & |
---|
14 | R2SO4B, DENSO4B, f_r_wetB, sulfmmr, SAD_sulfate, sulfmmr_mode, nd_mode, reff_sulfate |
---|
15 | USE dimphy |
---|
16 | USE infotrac_phy, ONLY: nbtr_bin, nbtr_sulgas, nbtr, id_SO2_strat |
---|
17 | USE aerophys |
---|
18 | USE lmdz_geometry, ONLY: cell_area, boundslat |
---|
19 | USE lmdz_grid_phy |
---|
20 | USE lmdz_phys_mpi_data, ONLY: is_mpi_root |
---|
21 | USE lmdz_phys_para, ONLY: gather, scatter |
---|
22 | USE phys_cal_mod, ONLY: year_len, year_cur, mth_cur, day_cur, hour |
---|
23 | USE sulfate_aer_mod |
---|
24 | USE phys_local_var_mod, ONLY: stratomask |
---|
25 | USE lmdz_yomcst |
---|
26 | USE lmdz_print_control, ONLY: lunout |
---|
27 | USE strataer_local_var_mod |
---|
28 | |
---|
29 | IMPLICIT NONE |
---|
30 | |
---|
31 | ! Input argument |
---|
32 | !--------------- |
---|
33 | REAL, INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) |
---|
34 | REAL, INTENT(IN) :: gmtime ! Heure courante |
---|
35 | LOGICAL, INTENT(IN) :: debutphy ! le flag de l'initialisation de la physique |
---|
36 | INTEGER, INTENT(IN) :: julien ! Jour julien |
---|
37 | |
---|
38 | REAL, DIMENSION(klev), INTENT(IN) :: presnivs! pressions approximat. des milieux couches (en PA) |
---|
39 | REAL, DIMENSION(klon), INTENT(IN) :: xlat ! latitudes pour chaque point |
---|
40 | REAL, DIMENSION(klon), INTENT(IN) :: xlon ! longitudes pour chaque point |
---|
41 | REAL, DIMENSION(klon), INTENT(IN) :: pphis ! geopotentiel du sol |
---|
42 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pphi ! geopotentiel de chaque couche |
---|
43 | |
---|
44 | REAL, DIMENSION(klon, klev), INTENT(IN) :: t_seri ! Temperature |
---|
45 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
46 | REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) |
---|
47 | REAL, DIMENSION(klon, klev), INTENT(IN) :: sh ! humidite specifique |
---|
48 | REAL, DIMENSION(klon, klev), INTENT(IN) :: rh ! humidite relative |
---|
49 | |
---|
50 | ! Output argument |
---|
51 | !---------------- |
---|
52 | REAL, DIMENSION(klon, klev, nbtr), INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] |
---|
53 | |
---|
54 | ! Local variables |
---|
55 | !---------------- |
---|
56 | REAL :: m_aer_emiss_vol_daily ! daily injection mass emission |
---|
57 | REAL :: m_aer ! aerosol mass |
---|
58 | INTEGER :: it, k, i, j, ilon, ilev, itime, i_int, ieru |
---|
59 | LOGICAL, DIMENSION(klon, klev) :: is_strato ! true = above tropopause, false = below |
---|
60 | REAL, DIMENSION(klon, klev) :: m_air_gridbox ! mass of air in every grid box [kg] |
---|
61 | REAL, DIMENSION(klon_glo, klev, nbtr) :: tr_seri_glo ! Concentration Traceur [U/KgA] |
---|
62 | REAL, DIMENSION(klev + 1) :: altLMDz ! altitude of layer interfaces in m |
---|
63 | REAL, DIMENSION(klev) :: f_lay_emiss ! fraction of emission for every vertical layer |
---|
64 | REAL :: f_lay_sum ! sum of layer emission fractions |
---|
65 | REAL :: alt ! altitude for integral calculation |
---|
66 | INTEGER, PARAMETER :: n_int_alt = 10 ! number of subintervals for integration over Gaussian emission profile |
---|
67 | REAL, DIMENSION(nbtr_bin) :: r_bin ! particle radius in size bin [m] |
---|
68 | REAL, DIMENSION(nbtr_bin) :: r_lower ! particle radius at lower bin boundary [m] |
---|
69 | REAL, DIMENSION(nbtr_bin) :: r_upper ! particle radius at upper bin boundary [m] |
---|
70 | REAL, DIMENSION(nbtr_bin) :: m_part_dry ! mass of one dry particle in size bin [kg] |
---|
71 | REAL :: zrho ! Density of air [kg/m3] |
---|
72 | REAL :: zdz ! thickness of atm. model layer in m |
---|
73 | REAL, DIMENSION(klev) :: zdm ! mass of atm. model layer in kg |
---|
74 | REAL, DIMENSION(klon, klev) :: dens_aer ! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass fraction |
---|
75 | REAL :: emission ! emission |
---|
76 | REAL :: theta_min, theta_max ! for SAI computation between two latitudes |
---|
77 | REAL :: dlat_loc |
---|
78 | REAL :: latmin, latmax, lonmin, lonmax ! lat/lon min/max for injection |
---|
79 | REAL :: sigma_alt, altemiss ! injection altitude + sigma for distrib |
---|
80 | REAL :: pdt, stretchlong ! physic timestep, stretch emission over one day |
---|
81 | |
---|
82 | INTEGER :: injdur_sai ! injection duration for SAI case [days] |
---|
83 | INTEGER :: yr, is_bissext |
---|
84 | REAL :: samoment2, samoment3! 2nd and 3rd order moments of size distribution |
---|
85 | |
---|
86 | IF (is_mpi_root .AND. flag_verbose_strataer) THEN |
---|
87 | WRITE(lunout, *) 'in traccoag: date from phys_cal_mod =', year_cur, '-', mth_cur, '-', day_cur, '-', hour |
---|
88 | WRITE(lunout, *) 'IN traccoag flag_emit: ', flag_emit |
---|
89 | ENDIF |
---|
90 | |
---|
91 | ! radius [m] |
---|
92 | DO it = 1, nbtr_bin |
---|
93 | r_bin(it) = mdw(it) / 2. |
---|
94 | ENDDO |
---|
95 | |
---|
96 | !--set boundaries of size bins |
---|
97 | DO it = 1, nbtr_bin |
---|
98 | IF (it==1) THEN |
---|
99 | r_upper(it) = sqrt(r_bin(it + 1) * r_bin(it)) |
---|
100 | r_lower(it) = r_bin(it)**2. / r_upper(it) |
---|
101 | ELSEIF (it==nbtr_bin) THEN |
---|
102 | r_lower(it) = sqrt(r_bin(it) * r_bin(it - 1)) |
---|
103 | r_upper(it) = r_bin(it)**2. / r_lower(it) |
---|
104 | ELSE |
---|
105 | r_lower(it) = sqrt(r_bin(it) * r_bin(it - 1)) |
---|
106 | r_upper(it) = sqrt(r_bin(it + 1) * r_bin(it)) |
---|
107 | ENDIF |
---|
108 | ENDDO |
---|
109 | |
---|
110 | IF (debutphy .AND. is_mpi_root) THEN |
---|
111 | DO it = 1, nbtr_bin |
---|
112 | WRITE(lunout, *) 'radius bin', it, ':', r_bin(it), '(from', r_lower(it), 'to', r_upper(it), ')' |
---|
113 | ENDDO |
---|
114 | ENDIF |
---|
115 | |
---|
116 | !--initialising LOGICAL is_strato from stratomask |
---|
117 | is_strato(:, :) = .FALSE. |
---|
118 | WHERE (stratomask>0.5) is_strato = .TRUE. |
---|
119 | |
---|
120 | IF(flag_new_strat_compo) THEN |
---|
121 | IF(debutphy) WRITE(lunout, *) 'traccoag: COMPO/DENSITY (Tabazadeh 97) + H2O kelvin effect', flag_new_strat_compo |
---|
122 | ! STRACOMP (H2O, P, t_seri, R -> R2SO4 + Kelvin effect) : Taba97, Socol, etc... |
---|
123 | CALL stracomp_kelvin(sh, t_seri, pplay) |
---|
124 | ELSE |
---|
125 | IF(debutphy) WRITE(lunout, *) 'traccoag: COMPO from Bekki 2D model', flag_new_strat_compo |
---|
126 | ! STRACOMP (H2O, P, t_seri -> aerosol composition (R2SO4)) |
---|
127 | ! H2SO4 mass fraction in aerosol (%) |
---|
128 | CALL stracomp(sh, t_seri, pplay) |
---|
129 | |
---|
130 | ! aerosol density (gr/cm3) |
---|
131 | CALL denh2sa(t_seri) |
---|
132 | |
---|
133 | ! compute factor for converting dry to wet radius (for every grid box) |
---|
134 | f_r_wet(:, :) = (dens_aer_dry / (DENSO4(:, :) * 1000.) / (R2SO4(:, :) / 100.))**(1. / 3.) |
---|
135 | ENDIF |
---|
136 | |
---|
137 | !--calculate mass of air in every grid box |
---|
138 | DO ilon = 1, klon |
---|
139 | DO ilev = 1, klev |
---|
140 | m_air_gridbox(ilon, ilev) = (paprs(ilon, ilev) - paprs(ilon, ilev + 1)) / RG * cell_area(ilon) |
---|
141 | ENDDO |
---|
142 | ENDDO |
---|
143 | |
---|
144 | !--initialise emission diagnostics |
---|
145 | IF (nErupt > 0 .AND. (flag_emit == 1 .OR. flag_emit == 4)) budg_emi(:, 1) = 0.0 |
---|
146 | budg_emi_ocs(:) = 0.0 |
---|
147 | budg_emi_so2(:) = 0.0 |
---|
148 | budg_emi_h2so4(:) = 0.0 |
---|
149 | budg_emi_part(:) = 0.0 |
---|
150 | |
---|
151 | !--sulfur emission, depending on chosen scenario (flag_emit) |
---|
152 | SELECT CASE(flag_emit) |
---|
153 | |
---|
154 | CASE(0) ! background aerosol |
---|
155 | ! do nothing (no emission) |
---|
156 | |
---|
157 | CASE(1) ! volcanic eruption |
---|
158 | !--only emit on day of eruption |
---|
159 | ! stretch emission over one day of Pinatubo eruption |
---|
160 | DO ieru = 1, nErupt |
---|
161 | IF (year_cur==year_emit_vol(ieru).AND.mth_cur==mth_emit_vol(ieru).AND.& |
---|
162 | day_cur>=day_emit_vol(ieru).AND.day_cur<(day_emit_vol(ieru) + injdur)) THEN |
---|
163 | |
---|
164 | ! daily injection mass emission |
---|
165 | m_aer = m_aer_emiss_vol(ieru, 1) / (REAL(injdur) * REAL(ponde_lonlat_vol(ieru))) |
---|
166 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
167 | m_aer = m_aer * (mSO2mol / mSatom) |
---|
168 | |
---|
169 | WRITE(lunout, *) 'IN traccoag m_aer_emiss_vol(ieru)=', m_aer_emiss_vol(ieru, 1), & |
---|
170 | 'ponde_lonlat_vol(ieru)=', ponde_lonlat_vol(ieru), '(injdur*ponde_lonlat_vol(ieru))', & |
---|
171 | (injdur * ponde_lonlat_vol(ieru)), 'm_aer_emiss_vol_daily=', m_aer, 'ieru=', ieru |
---|
172 | WRITE(lunout, *) 'IN traccoag, dlon=', dlon |
---|
173 | |
---|
174 | latmin = xlat_min_vol(ieru) |
---|
175 | latmax = xlat_max_vol(ieru) |
---|
176 | lonmin = xlon_min_vol(ieru) |
---|
177 | lonmax = xlon_max_vol(ieru) |
---|
178 | altemiss = altemiss_vol(ieru) |
---|
179 | sigma_alt = sigma_alt_vol(ieru) |
---|
180 | pdt = pdtphys |
---|
181 | ! stretch emission over one day of eruption |
---|
182 | stretchlong = 1. |
---|
183 | |
---|
184 | CALL STRATEMIT(pdtphys, pdt, xlat, xlon, t_seri, pplay, paprs, tr_seri, & |
---|
185 | m_aer, latmin, latmax, lonmin, lonmax, altemiss, sigma_alt, id_SO2_strat, & |
---|
186 | stretchlong, 1, 0) |
---|
187 | |
---|
188 | ENDIF ! emission period |
---|
189 | ENDDO ! eruption number |
---|
190 | |
---|
191 | CASE(2) ! stratospheric aerosol injections (SAI) |
---|
192 | |
---|
193 | ! Computing duration of SAI in days... |
---|
194 | ! ... starting from 0... |
---|
195 | injdur_sai = 0 |
---|
196 | ! ... then adding whole years from first to (n-1)th... |
---|
197 | DO yr = year_emit_sai_start, year_emit_sai_end - 1 |
---|
198 | ! (n % 4 == 0) and (n % 100 != 0 or n % 400 == 0) |
---|
199 | is_bissext = (MOD(yr, 4)==0) .AND. (MOD(yr, 100) /= 0 .OR. MOD(yr, 400) == 0) |
---|
200 | injdur_sai = injdur_sai + 365 + is_bissext |
---|
201 | ENDDO |
---|
202 | ! ... then subtracting part of the first year where no injection yet... |
---|
203 | is_bissext = (MOD(year_emit_sai_start, 4)==0) .AND. (MOD(year_emit_sai_start, 100) /= 0 .OR. MOD(year_emit_sai_start, 400) == 0) |
---|
204 | SELECT CASE(mth_emit_sai_start) |
---|
205 | CASE(2) |
---|
206 | injdur_sai = injdur_sai - 31 |
---|
207 | CASE(3) |
---|
208 | injdur_sai = injdur_sai - 31 - 28 - is_bissext |
---|
209 | CASE(4) |
---|
210 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 |
---|
211 | CASE(5) |
---|
212 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 |
---|
213 | CASE(6) |
---|
214 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 |
---|
215 | CASE(7) |
---|
216 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 - 30 |
---|
217 | CASE(8) |
---|
218 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 - 30 - 31 |
---|
219 | CASE(9) |
---|
220 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 - 30 - 31 - 31 |
---|
221 | CASE(10) |
---|
222 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 - 30 - 31 - 31 - 30 |
---|
223 | CASE(11) |
---|
224 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 - 30 - 31 - 31 - 30 - 31 |
---|
225 | CASE(12) |
---|
226 | injdur_sai = injdur_sai - 31 - 28 - is_bissext - 31 - 30 - 31 - 30 - 31 - 31 - 30 - 31 - 30 |
---|
227 | END SELECT |
---|
228 | injdur_sai = injdur_sai - day_emit_sai_start + 1 |
---|
229 | ! ... then adding part of the n-th year |
---|
230 | is_bissext = (MOD(year_emit_sai_end, 4)==0) .AND. (MOD(year_emit_sai_end, 100) /= 0 .OR. MOD(year_emit_sai_end, 400) == 0) |
---|
231 | SELECT CASE(mth_emit_sai_end) |
---|
232 | CASE(2) |
---|
233 | injdur_sai = injdur_sai + 31 |
---|
234 | CASE(3) |
---|
235 | injdur_sai = injdur_sai + 31 + 28 + is_bissext |
---|
236 | CASE(4) |
---|
237 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 |
---|
238 | CASE(5) |
---|
239 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 |
---|
240 | CASE(6) |
---|
241 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 |
---|
242 | CASE(7) |
---|
243 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 + 30 |
---|
244 | CASE(8) |
---|
245 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 + 30 + 31 |
---|
246 | CASE(9) |
---|
247 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 + 30 + 31 + 31 |
---|
248 | CASE(10) |
---|
249 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 + 30 + 31 + 31 + 30 |
---|
250 | CASE(11) |
---|
251 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 |
---|
252 | CASE(12) |
---|
253 | injdur_sai = injdur_sai + 31 + 28 + is_bissext + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 |
---|
254 | END SELECT |
---|
255 | injdur_sai = injdur_sai + day_emit_sai_end |
---|
256 | ! A security: are SAI dates of injection consistent? |
---|
257 | IF (injdur_sai <= 0) THEN |
---|
258 | CALL abort_physic('traccoag_mod', 'Pb in SAI dates of injection.', 1) |
---|
259 | ENDIF |
---|
260 | ! Injection in itself |
---|
261 | IF ((year_emit_sai_start <= year_cur) & |
---|
262 | .AND. (year_cur <= year_emit_sai_end) & |
---|
263 | .AND. (mth_emit_sai_start <= mth_cur .OR. year_emit_sai_start < year_cur) & |
---|
264 | .AND. (mth_cur <= mth_emit_sai_end .OR. year_cur < year_emit_sai_end) & |
---|
265 | .AND. (day_emit_sai_start <= day_cur .OR. mth_emit_sai_start < mth_cur .OR. year_emit_sai_start < year_cur) & |
---|
266 | .AND. (day_cur <= day_emit_sai_end .OR. mth_cur < mth_emit_sai_end .OR. year_cur < year_emit_sai_end)) THEN |
---|
267 | |
---|
268 | m_aer = m_aer_emiss_sai |
---|
269 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
270 | m_aer = m_aer * (mSO2mol / mSatom) |
---|
271 | |
---|
272 | latmin = xlat_sai |
---|
273 | latmax = xlat_sai |
---|
274 | lonmin = xlon_sai |
---|
275 | lonmax = xlon_sai |
---|
276 | altemiss = altemiss_sai |
---|
277 | sigma_alt = sigma_alt_sai |
---|
278 | pdt = 0. |
---|
279 | ! stretch emission over whole year (360d) |
---|
280 | stretchlong = FLOAT(year_len) |
---|
281 | |
---|
282 | CALL STRATEMIT(pdtphys, pdt, xlat, xlon, t_seri, pplay, paprs, m_air_gridbox, tr_seri, & |
---|
283 | m_aer, latmin, latmax, lonmin, lonmax, altemiss, sigma_alt, id_SO2_strat, & |
---|
284 | stretchlong, 1, 0) |
---|
285 | |
---|
286 | budg_emi_so2(:) = budg_emi(:, 1) * mSatom / mSO2mol |
---|
287 | ENDIF ! Condition over injection dates |
---|
288 | |
---|
289 | CASE(3) ! --- SAI injection over a single band of longitude and between |
---|
290 | ! lat_min and lat_max |
---|
291 | |
---|
292 | m_aer = m_aer_emiss_sai |
---|
293 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
294 | m_aer = m_aer * (mSO2mol / mSatom) |
---|
295 | |
---|
296 | latmin = xlat_min_sai |
---|
297 | latmax = xlat_max_sai |
---|
298 | lonmin = xlon_sai |
---|
299 | lonmax = xlon_sai |
---|
300 | altemiss = altemiss_sai |
---|
301 | sigma_alt = sigma_alt_sai |
---|
302 | pdt = 0. |
---|
303 | ! stretch emission over whole year (360d) |
---|
304 | stretchlong = FLOAT(year_len) |
---|
305 | |
---|
306 | CALL STRATEMIT(pdtphys, pdt, xlat, xlon, t_seri, pplay, paprs, m_air_gridbox, tr_seri, & |
---|
307 | m_aer, latmin, latmax, lonmin, lonmax, altemiss, sigma_alt, id_SO2_strat, & |
---|
308 | stretchlong, 1, 0) |
---|
309 | |
---|
310 | budg_emi_so2(:) = budg_emi(:, 1) * mSatom / mSO2mol |
---|
311 | |
---|
312 | END SELECT ! emission scenario (flag_emit) |
---|
313 | |
---|
314 | !--read background concentrations of OCS and SO2 and lifetimes from input file |
---|
315 | !--update the variables defined in phys_local_var_mod |
---|
316 | CALL interp_sulf_input(debutphy, pdtphys, paprs, tr_seri) |
---|
317 | |
---|
318 | !--convert OCS to SO2 in the stratosphere |
---|
319 | CALL ocs_to_so2(pdtphys, tr_seri, t_seri, pplay, paprs, is_strato) |
---|
320 | |
---|
321 | !--convert SO2 to H2SO4 |
---|
322 | CALL so2_to_h2so4(pdtphys, tr_seri, t_seri, pplay, paprs, is_strato) |
---|
323 | |
---|
324 | !--common routine for nucleation and condensation/evaporation with adaptive timestep |
---|
325 | CALL micphy_tstep(pdtphys, tr_seri, t_seri, pplay, paprs, rh, is_strato) |
---|
326 | |
---|
327 | !--CALL coagulation routine |
---|
328 | CALL coagulate(pdtphys, mdw, tr_seri, t_seri, pplay, dens_aer, is_strato) |
---|
329 | |
---|
330 | !--CALL sedimentation routine |
---|
331 | CALL aer_sedimnt(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer) |
---|
332 | |
---|
333 | !--compute mass concentration of PM2.5 sulfate particles (wet diameter and mass) at the surface for health studies |
---|
334 | surf_PM25_sulf(:) = 0.0 |
---|
335 | DO i = 1, klon |
---|
336 | DO it = 1, nbtr_bin |
---|
337 | IF (mdw(it) < 2.5e-6) THEN |
---|
338 | !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & |
---|
339 | !assume that particles consist of ammonium sulfate at the surface (132g/mol) |
---|
340 | !and are dry at T = 20 deg. C and 50 perc. humidity |
---|
341 | surf_PM25_sulf(i) = surf_PM25_sulf(i) + tr_seri(i, 1, it + nbtr_sulgas) & |
---|
342 | * 132. / 98. * dens_aer_dry * 4. / 3. * RPI * (mdw(it) / 2.)**3 & |
---|
343 | * pplay(i, 1) / t_seri(i, 1) / RD * 1.e9 |
---|
344 | ENDIF |
---|
345 | ENDDO |
---|
346 | ENDDO |
---|
347 | |
---|
348 | !--compute |
---|
349 | ! sulfmmr: Sulfate aerosol concentration (dry mixing ratio) (condensed H2SO4 mmr) |
---|
350 | ! SAD_sulfate: SAD all aerosols (cm2/cm3) (must be WET) |
---|
351 | ! sulfmmr_mode: sulfate(=H2SO4 if dry) MMR in different modes (ambiguous but based on sulfmmr, it mus be DRY(?) mmr) |
---|
352 | ! nd_mode: DRY(?) particle concentration in different modes (part/m3) |
---|
353 | sulfmmr(:, :) = 0.0 |
---|
354 | SAD_sulfate(:, :) = 0.0 |
---|
355 | sulfmmr_mode(:, :, :) = 0.0 |
---|
356 | nd_mode(:, :, :) = 0.0 |
---|
357 | reff_sulfate(:, :) = 0.0 |
---|
358 | |
---|
359 | DO i = 1, klon |
---|
360 | DO j = 1, klev |
---|
361 | samoment2 = 0.0 |
---|
362 | samoment3 = 0.0 |
---|
363 | DO it = 1, nbtr_bin |
---|
364 | !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & |
---|
365 | !assume that particles consist of ammonium sulfate at the surface (132g/mol) |
---|
366 | !and are dry at T = 20 deg. C and 50 perc. humidity |
---|
367 | |
---|
368 | ! sulfmmr_mode: sulfate(=H2SO4 if dry) MMR in different modes (based on sulfmmr, it must be DRY mmr) |
---|
369 | ! equivalent to condensed H2SO4 mmr= H2SO4 kg / kgA in bin it |
---|
370 | sulfmmr_mode(i, j, it) = tr_seri(i, j, it + nbtr_sulgas) & ! [DRY part/kgA in bin it] |
---|
371 | * (4. / 3.) * RPI * (mdw(it) / 2.)**3. & ! [mdw: dry diameter in m] |
---|
372 | * dens_aer_dry ! [dry aerosol mass density in kg/m3] |
---|
373 | |
---|
374 | ! sulfmmr: Sulfate aerosol concentration (dry mass mixing ratio) |
---|
375 | ! equivalent to total condensed H2SO4 mmr (H2SO4 kg / kgA |
---|
376 | sulfmmr(i, j) = sulfmmr(i, j) + sulfmmr_mode(i, j, it) |
---|
377 | |
---|
378 | ! nd_mode: particle concentration in different modes (DRY part/m3) |
---|
379 | nd_mode(i, j, it) = tr_seri(i, j, it + nbtr_sulgas) & ! [DRY part/kgA in bin it] |
---|
380 | * pplay(i, j) / t_seri(i, j) / RD ! [air mass concentration in kg air /m3A] |
---|
381 | |
---|
382 | IF(flag_new_strat_compo) THEN |
---|
383 | ! SAD_sulfate: SAD WET sulfate aerosols (cm2/cm3) |
---|
384 | SAD_sulfate(i, j) = SAD_sulfate(i, j) + nd_mode(i, j, it) & ! [DRY part/m3A (in bin it)] |
---|
385 | * 4. * RPI * (mdw(it) * f_r_wetB(i, j, it) / 2.)**2. & ! [WET SA of part it in m2] |
---|
386 | * 1.e-2 ! conversion from m2/m3 to cm2/cm3A! samoment2 : 2nd order moment of WET sulfate aerosols (m2/m3) |
---|
387 | samoment2 = samoment2 + nd_mode(i, j, it) & ! [DRY part/m3A (in bin it)] |
---|
388 | & * (mdw(it) * f_r_wetB(i, j, it) / 2.)**2. ! [WET SA of part it in m2] |
---|
389 | ! samoment3 : 3nd order moment of WET sulfate aerosols (cm2/cm3) |
---|
390 | samoment3 = samoment3 + nd_mode(i, j, it) & ! [DRY part/m3A (in bin it)] |
---|
391 | & * (mdw(it) * f_r_wetB(i, j, it) / 2.)**3. ! [WET SA of part it in m2] |
---|
392 | ELSE |
---|
393 | ! SAD_sulfate: SAD WET sulfate aerosols (cm2/cm3) |
---|
394 | SAD_sulfate(i, j) = SAD_sulfate(i, j) + nd_mode(i, j, it) & ! [DRY part/m3A (in bin it)] |
---|
395 | * 4. * RPI * (mdw(it) * f_r_wet(i, j) / 2.)**2. & ! [WET SA of part it in m2] |
---|
396 | * 1.e-2 ! conversion from m2/m3 to cm2/cm3A |
---|
397 | ! samoment2 : 2nd order moment of WET sulfate aerosols (m2/m3) |
---|
398 | samoment2 = samoment2 + nd_mode(i, j, it) & ! [DRY part/m3A (in bin it)] |
---|
399 | & * (mdw(it) * f_r_wet(i, j) / 2.)**2. ! [WET SA of part it in m2] |
---|
400 | ! samoment3 : 3nd order moment of WET sulfate aerosols (cm2/cm3) |
---|
401 | samoment3 = samoment3 + nd_mode(i, j, it) & ! [DRY part/m3A (in bin it)] |
---|
402 | & * (mdw(it) * f_r_wet(i, j) / 2.)**3. ! [WET SA of part it in m2] |
---|
403 | |
---|
404 | END IF |
---|
405 | END DO! reff_sulfate: effective radius of WET sulfate aerosols (cm) |
---|
406 | reff_sulfate(i, j) = (samoment3 / samoment2) & |
---|
407 | & * 1.e2 ! conversion from m to cm |
---|
408 | END DO |
---|
409 | END DO |
---|
410 | END SUBROUTINE traccoag |
---|
411 | |
---|
412 | END MODULE traccoag_mod |
---|