1 | |
---|
2 | ! $Id: coagulate.F90 5117 2024-07-24 14:23:34Z evignon $ |
---|
3 | |
---|
4 | SUBROUTINE COAGULATE(pdtcoag,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) |
---|
5 | ! ----------------------------------------------------------------------- |
---|
6 | |
---|
7 | ! Author : Christoph Kleinschmitt (with Olivier Boucher) |
---|
8 | ! ------ |
---|
9 | |
---|
10 | ! purpose |
---|
11 | ! ------- |
---|
12 | |
---|
13 | ! interface |
---|
14 | ! --------- |
---|
15 | ! input |
---|
16 | ! pdtphys time step duration [sec] |
---|
17 | ! tr_seri tracer mixing ratios [kg/kg] |
---|
18 | ! mdw # or mass median diameter [m] |
---|
19 | |
---|
20 | ! method |
---|
21 | ! ------ |
---|
22 | |
---|
23 | ! ----------------------------------------------------------------------- |
---|
24 | |
---|
25 | USE dimphy, ONLY: klon,klev |
---|
26 | USE aerophys |
---|
27 | USE infotrac_phy |
---|
28 | USE phys_local_var_mod, ONLY: DENSO4, DENSO4B, f_r_wet, f_r_wetB |
---|
29 | USE strataer_local_var_mod, ONLY: flag_new_strat_compo |
---|
30 | USE lmdz_yomcst |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | |
---|
34 | !-------------------------------------------------------- |
---|
35 | |
---|
36 | ! transfer variables when calling this routine |
---|
37 | REAL,INTENT(IN) :: pdtcoag ! Time step in coagulation routine [s] |
---|
38 | REAL,DIMENSION(nbtr_bin),INTENT(IN) :: mdw ! aerosol particle diameter in each bin [m] |
---|
39 | REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] |
---|
40 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
41 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
42 | REAL,DIMENSION(klon,klev) :: dens_aer! density of aerosol [kg/m3 aerosol] with default H2SO4 mass |
---|
43 | LOGICAL,DIMENSION(klon,klev),INTENT(IN) :: is_strato |
---|
44 | |
---|
45 | ! local variables in coagulation routine |
---|
46 | INTEGER :: i,j,k,nb,ilon,ilev |
---|
47 | REAL, DIMENSION(nbtr_bin) :: radiusdry ! dry aerosol particle radius in each bin [m] |
---|
48 | REAL, DIMENSION(nbtr_bin) :: radiuswet ! wet aerosol particle radius in each bin [m] |
---|
49 | REAL, DIMENSION(klon,klev,nbtr_bin) :: tr_t ! Concentration Traceur at time t [U/KgA] |
---|
50 | REAL, DIMENSION(klon,klev,nbtr_bin) :: tr_tp1 ! Concentration Traceur at time t+1 [U/KgA] |
---|
51 | REAL, DIMENSION(nbtr_bin,nbtr_bin,nbtr_bin) :: ff ! Volume fraction of intermediate particles |
---|
52 | REAL, DIMENSION(nbtr_bin) :: Vdry ! Volume dry of bins |
---|
53 | REAL, DIMENSION(nbtr_bin) :: Vwet ! Volume wet of bins |
---|
54 | REAL, DIMENSION(nbtr_bin,nbtr_bin) :: Vij ! Volume sum of i and j |
---|
55 | REAL :: eta ! Dynamic viscosity of air |
---|
56 | REAL, PARAMETER :: mair=4.8097E-26 ! Average mass of an air molecule [kg] |
---|
57 | REAL :: zrho ! Density of air |
---|
58 | REAL :: mnfrpth ! Mean free path of air |
---|
59 | REAL, DIMENSION(nbtr_bin) :: Kn ! Knudsen number of particle i |
---|
60 | REAL, DIMENSION(nbtr_bin) :: Di ! Particle diffusion coefficient |
---|
61 | REAL, DIMENSION(nbtr_bin) :: m_par ! Mass of particle i |
---|
62 | REAL, DIMENSION(nbtr_bin) :: thvelpar! Thermal velocity of particle i |
---|
63 | REAL, DIMENSION(nbtr_bin) :: mfppar ! Mean free path of particle i |
---|
64 | REAL, DIMENSION(nbtr_bin) :: delta! delta of particle i (from equation 21) |
---|
65 | REAL, DIMENSION(nbtr_bin,nbtr_bin) :: beta ! Coagulation kernel from Brownian diffusion |
---|
66 | REAL :: beta_const ! Constant coagulation kernel (for comparison) |
---|
67 | REAL :: num |
---|
68 | REAL :: numi |
---|
69 | REAL :: denom |
---|
70 | |
---|
71 | ! Additional variables for coagulation enhancement factor due to van der Waals forces |
---|
72 | ! Taken from Chan and Mozurkewich, Measurement of the coagulation rate constant for sulfuric acid |
---|
73 | ! particles as a function of particle size using TDMA, Aerosol Science, 32, 321-339, 2001. |
---|
74 | !--ok_vdw is 0 for no vdW forces, 1 for E(0), 2 for E(infinity) |
---|
75 | INTEGER, PARAMETER :: ok_vdw = 0 |
---|
76 | REAL, PARAMETER :: avdW1 = 0.0757 |
---|
77 | REAL, PARAMETER :: avdW3 = 0.0015 |
---|
78 | REAL, PARAMETER :: bvdW0 = 0.0151 |
---|
79 | REAL, PARAMETER :: bvdW1 = -0.186 |
---|
80 | REAL, PARAMETER :: bvdW3 = -0.0163 |
---|
81 | REAL, PARAMETER :: AvdW = 6.4e-20 !Hamaker constant in J = 1e7 erg |
---|
82 | REAL :: AvdWi |
---|
83 | REAL :: xvdW |
---|
84 | REAL :: EvdW |
---|
85 | |
---|
86 | ! ff(i,j,k): Volume fraction of Vi,j that is partitioned to each model bin k |
---|
87 | ! just need to be calculated in model initialization because mdw(:) size is fixed |
---|
88 | ! no need to recalculate radius, Vdry, Vij, and ff every timestep because it is for |
---|
89 | ! dry aerosols |
---|
90 | DO i=1, nbtr_bin |
---|
91 | radiusdry(i)=mdw(i)/2. |
---|
92 | Vdry(i)=radiusdry(i)**3. !neglecting factor 4*RPI/3 |
---|
93 | Vwet(i)=0.0 |
---|
94 | ENDDO |
---|
95 | |
---|
96 | DO j=1, nbtr_bin |
---|
97 | DO i=1, nbtr_bin |
---|
98 | Vij(i,j)= Vdry(i)+Vdry(j) |
---|
99 | ENDDO |
---|
100 | ENDDO |
---|
101 | |
---|
102 | !--pre-compute the f(i,j,k) from Jacobson equation 13 |
---|
103 | ff=0.0 |
---|
104 | DO k=1, nbtr_bin |
---|
105 | DO j=1, nbtr_bin |
---|
106 | DO i=1, nbtr_bin |
---|
107 | IF (k==1) THEN |
---|
108 | ff(i,j,k)= 0.0 |
---|
109 | ELSEIF (k>1.AND.Vdry(k-1)<Vij(i,j).AND.Vij(i,j)<Vdry(k)) THEN |
---|
110 | ff(i,j,k)= 1.-ff(i,j,k-1) |
---|
111 | ELSEIF (k==nbtr_bin) THEN |
---|
112 | IF (Vij(i,j)>=Vdry(k)) THEN |
---|
113 | ff(i,j,k)= 1. |
---|
114 | ELSE |
---|
115 | ff(i,j,k)= 0.0 |
---|
116 | ENDIF |
---|
117 | ELSEIF (k<=(nbtr_bin-1).AND.Vdry(k)<=Vij(i,j).AND.Vij(i,j)<Vdry(k+1)) THEN |
---|
118 | ff(i,j,k)= Vdry(k)/Vij(i,j)*(Vdry(k+1)-Vij(i,j))/(Vdry(k+1)-Vdry(k)) |
---|
119 | ENDIF |
---|
120 | ENDDO |
---|
121 | ENDDO |
---|
122 | ENDDO |
---|
123 | ! End of just need to be calculated at initialization because mdw(:) size is fixed |
---|
124 | |
---|
125 | DO ilon=1, klon |
---|
126 | DO ilev=1, klev |
---|
127 | !only in the stratosphere |
---|
128 | IF (is_strato(ilon,ilev)) THEN |
---|
129 | !compute actual wet particle radius & volume for every grid box |
---|
130 | IF(flag_new_strat_compo) THEN |
---|
131 | DO i=1, nbtr_bin |
---|
132 | radiuswet(i)=f_r_wetB(ilon,ilev,i)*mdw(i)/2. |
---|
133 | Vwet(i)= radiuswet(i)**3. !neglecting factor 4*RPI/3 |
---|
134 | !! Vwet(i)= Vdry(i)*(f_r_wetB(ilon,ilev,i)**3) |
---|
135 | ENDDO |
---|
136 | ELSE |
---|
137 | DO i=1, nbtr_bin |
---|
138 | radiuswet(i)=f_r_wet(ilon,ilev)*mdw(i)/2. |
---|
139 | Vwet(i)= radiuswet(i)**3. !neglecting factor 4*RPI/3 |
---|
140 | !! Vwet(i)= Vdry(i)*(f_r_wet(ilon,ilev)**3) |
---|
141 | ENDDO |
---|
142 | ENDIF |
---|
143 | |
---|
144 | !--Calculations for the coagulation kernel--------------------------------------------------------- |
---|
145 | |
---|
146 | zrho=pplay(ilon,ilev)/t_seri(ilon,ilev)/RD |
---|
147 | |
---|
148 | !--initialize the tracer at time t and convert from [number/KgA] to [number/m3] |
---|
149 | DO i=1, nbtr_bin |
---|
150 | tr_t(ilon,ilev,i) = tr_seri(ilon,ilev,i+nbtr_sulgas) * zrho |
---|
151 | ENDDO |
---|
152 | |
---|
153 | ! mean free path of air (Pruppacher and Klett, 2010, p.417) [m] |
---|
154 | mnfrpth=6.6E-8*(1.01325E+5/pplay(ilon,ilev))*(t_seri(ilon,ilev)/293.15) |
---|
155 | ! mnfrpth=2.*eta/(zrho*thvelair) |
---|
156 | ! mean free path of air (Prupp. Klett) in [10^-6 m] |
---|
157 | ! ZLAIR = 0.066 *(1.01325E+5/PPLAY)*(T_SERI/293.15)*1.E-06 |
---|
158 | |
---|
159 | ! dynamic viscosity of air (Pruppacher and Klett, 2010, p.417) [kg/(m*s)] |
---|
160 | IF (t_seri(ilon,ilev)>=273.15) THEN |
---|
161 | eta=(1.718+0.0049*(t_seri(ilon,ilev)-273.15))*1.E-5 |
---|
162 | ELSE |
---|
163 | eta=(1.718+0.0049*(t_seri(ilon,ilev)-273.15)-1.2E-5*(t_seri(ilon,ilev)-273.15)**2)*1.E-5 |
---|
164 | ENDIF |
---|
165 | |
---|
166 | !--pre-compute the particle diffusion coefficient Di(i) from equation 18 |
---|
167 | Di=0.0 |
---|
168 | DO i=1, nbtr_bin |
---|
169 | Kn(i)=mnfrpth/radiuswet(i) |
---|
170 | Di(i)=RKBOL*t_seri(ilon,ilev)/(6.*RPI*radiuswet(i)*eta)*(1.+Kn(i)*(1.249+0.42*exp(-0.87/Kn(i)))) |
---|
171 | ENDDO |
---|
172 | |
---|
173 | !--pre-compute the thermal velocity of a particle thvelpar(i) from equation 20 |
---|
174 | thvelpar=0.0 |
---|
175 | IF(flag_new_strat_compo) THEN |
---|
176 | DO i=1, nbtr_bin |
---|
177 | m_par(i)=4./3.*RPI*radiuswet(i)**3.*DENSO4B(ilon,ilev,i)*1000. |
---|
178 | thvelpar(i)=sqrt(8.*RKBOL*t_seri(ilon,ilev)/(RPI*m_par(i))) |
---|
179 | ENDDO |
---|
180 | ELSE |
---|
181 | DO i=1, nbtr_bin |
---|
182 | m_par(i)=4./3.*RPI*radiuswet(i)**3.*DENSO4(ilon,ilev)*1000. |
---|
183 | thvelpar(i)=sqrt(8.*RKBOL*t_seri(ilon,ilev)/(RPI*m_par(i))) |
---|
184 | ENDDO |
---|
185 | ENDIF |
---|
186 | |
---|
187 | !--pre-compute the particle mean free path mfppar(i) from equation 22 |
---|
188 | mfppar=0.0 |
---|
189 | DO i=1, nbtr_bin |
---|
190 | mfppar(i)=8.*Di(i)/(RPI*thvelpar(i)) |
---|
191 | ENDDO |
---|
192 | |
---|
193 | !--pre-compute the mean distance delta(i) from the center of a sphere reached by particles |
---|
194 | !--leaving the surface of the sphere and traveling a distance of particle mfppar(i) from equation 21 |
---|
195 | delta=0.0 |
---|
196 | DO i=1, nbtr_bin |
---|
197 | delta(i)=((2.*radiuswet(i)+mfppar(i))**3.-(4.*radiuswet(i)**2.+mfppar(i)**2.)**1.5)/ & |
---|
198 | (6.*radiuswet(i)*mfppar(i))-2.*radiuswet(i) |
---|
199 | ENDDO |
---|
200 | |
---|
201 | ! beta(i,j): coagulation kernel (rate coefficient) of 2 colliding particles i,j |
---|
202 | !--pre-compute the beta(i,j) from equation 17 in Jacobson |
---|
203 | num=0.0 |
---|
204 | DO j=1, nbtr_bin |
---|
205 | DO i=1, nbtr_bin |
---|
206 | |
---|
207 | num=4.*RPI*(radiuswet(i)+radiuswet(j))*(Di(i)+Di(j)) |
---|
208 | denom=(radiuswet(i)+radiuswet(j))/(radiuswet(i)+radiuswet(j)+sqrt(delta(i)**2.+delta(j)**2.))+ & |
---|
209 | 4.*(Di(i)+Di(j))/(sqrt(thvelpar(i)**2.+thvelpar(j)**2.)*(radiuswet(i)+radiuswet(j))) |
---|
210 | beta(i,j)=num/denom |
---|
211 | |
---|
212 | !--compute enhancement factor due to van der Waals forces |
---|
213 | IF (ok_vdw == 0) THEN !--no enhancement factor |
---|
214 | Evdw=1.0 |
---|
215 | ELSEIF (ok_vdw == 1) THEN !--E(0) case |
---|
216 | AvdWi = AvdW/(RKBOL*t_seri(ilon,ilev))*(4.*radiuswet(i)*radiuswet(j))/(radiuswet(i)+radiuswet(j))**2. |
---|
217 | xvdW = LOG(1.+AvdWi) |
---|
218 | EvdW = 1. + avdW1*xvdW + avdW3*xvdW**3 |
---|
219 | ELSEIF (ok_vdw == 2) THEN !--E(infinity) case |
---|
220 | AvdWi = AvdW/(RKBOL*t_seri(ilon,ilev))*(4.*radiuswet(i)*radiuswet(j))/(radiuswet(i)+radiuswet(j))**2. |
---|
221 | xvdW = LOG(1.+AvdWi) |
---|
222 | EvdW = 1. + SQRT(AvdWi/3.)/(1.+bvdW0*SQRT(AvdWi)) + bvdW1*xvdW + bvdW3*xvdW**3. |
---|
223 | ENDIF |
---|
224 | |
---|
225 | beta(i,j)=beta(i,j)*EvdW |
---|
226 | |
---|
227 | ENDDO |
---|
228 | ENDDO |
---|
229 | |
---|
230 | !--external loop for equation 14 |
---|
231 | DO k=1, nbtr_bin |
---|
232 | |
---|
233 | !--calculating denominator sum |
---|
234 | denom=0.0 |
---|
235 | DO j=1, nbtr_bin |
---|
236 | ! fraction of coagulation of k and j that is not giving k |
---|
237 | denom=denom+(1.-ff(k,j,k))*beta(k,j)*tr_t(ilon,ilev,j) |
---|
238 | ENDDO |
---|
239 | |
---|
240 | IF (k==1) THEN |
---|
241 | !--calculate new concentration of smallest bin |
---|
242 | tr_tp1(ilon,ilev,k)=tr_t(ilon,ilev,k)/(1.+pdtcoag*denom) |
---|
243 | ELSE |
---|
244 | !--calculating double sum terms in numerator of eq 14 |
---|
245 | num=0.0 |
---|
246 | DO j=1, k |
---|
247 | numi=0.0 |
---|
248 | DO i=1, k-1 |
---|
249 | |
---|
250 | ! see Jacobson: " In order to conserve volume and volume concentration (which |
---|
251 | ! coagulation physically does) while giving up some accuracy in number concentration" |
---|
252 | |
---|
253 | ! Coagulation of i and j giving k |
---|
254 | ! with V(i) and then V(j) because it considers i,j and j,i with the double loop |
---|
255 | |
---|
256 | ! BUT WHY WET VOLUME V(i) in old STRATAER? tracers are already dry aerosols and coagulation |
---|
257 | ! kernel beta(i,j) accounts for wet aerosols -> reply below |
---|
258 | |
---|
259 | ! numi=numi+ff(i,j,k)*beta(i,j)*V(i)*tr_tp1(ilon,ilev,i)*tr_t(ilon,ilev,j) |
---|
260 | numi=numi+ff(i,j,k)*beta(i,j)*Vdry(i)*tr_tp1(ilon,ilev,i)*tr_t(ilon,ilev,j) |
---|
261 | ENDDO |
---|
262 | num=num+numi |
---|
263 | ENDDO |
---|
264 | |
---|
265 | !--calculate new concentration of other bins |
---|
266 | ! tr_tp1(ilon,ilev,k)=(V(k)*tr_t(ilon,ilev,k)+pdtcoag*num)/( (1.+pdtcoag*denom)*V(k) ) |
---|
267 | tr_tp1(ilon,ilev,k)=(Vdry(k)*tr_t(ilon,ilev,k)+pdtcoag*num)/( (1.+pdtcoag*denom)*Vdry(k) ) |
---|
268 | |
---|
269 | ! In constant composition (no dependency on aerosol size because no kelvin effect) |
---|
270 | ! V(l)= (f_r_wet(ilon,ilev)**3)*((mdw(l)/2.)**3) = (f_r_wet(ilon,ilev)**3)*Vdry(i) |
---|
271 | ! so numi and num are proportional (f_r_wet(ilon,ilev)**3) |
---|
272 | ! and so |
---|
273 | ! tr_tp1(ilon,ilev,k)=(V(k)*tr_t(ilon,ilev,k)+pdtcoag*num)/( (1.+pdtcoag*denom)*V(k) ) |
---|
274 | ! =(Vdry(k)*tr_t(ilon,ilev,k)+pdtcoag*num_dry)/( (1.+pdtcoag*denom)*Vdry(k) ) |
---|
275 | ! with num_dry=...beta(i,j)*Vdry(i)*.... |
---|
276 | ! so in old STRATAER (.NOT.flag_new_strat_compo), it was correct |
---|
277 | ENDIF |
---|
278 | |
---|
279 | ENDDO !--end of loop k |
---|
280 | |
---|
281 | !--convert tracer concentration back from [number/m3] to [number/KgA] and write into tr_seri |
---|
282 | DO i=1, nbtr_bin |
---|
283 | tr_seri(ilon,ilev,i+nbtr_sulgas) = tr_tp1(ilon,ilev,i) / zrho |
---|
284 | ENDDO |
---|
285 | |
---|
286 | ENDIF ! IF IN STRATOSPHERE |
---|
287 | ENDDO !--end of loop klev |
---|
288 | ENDDO !--end of loop klon |
---|
289 | ! ********************************************* |
---|
290 | |
---|
291 | END SUBROUTINE COAGULATE |
---|