1 | module Microlayer_m |
---|
2 | |
---|
3 | Implicit none |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE Microlayer(dter, dser, tkt, tks, hlb, tau, s_subskin, al, & |
---|
8 | xlv, taur, rf, rain, qcol) |
---|
9 | |
---|
10 | ! H. Bellenger 2016 |
---|
11 | |
---|
12 | USE const, ONLY: beta, cpw, grav, rhow |
---|
13 | USE fv_m, ONLY: fv |
---|
14 | |
---|
15 | REAL, INTENT(OUT):: dter(:) |
---|
16 | ! Temperature variation in the diffusive microlayer, that is |
---|
17 | ! ocean-air interface temperature minus subskin temperature. In K. |
---|
18 | |
---|
19 | REAL, INTENT(OUT):: dser(:) |
---|
20 | ! Salinity variation in the diffusive microlayer, that is ocean-air |
---|
21 | ! interface salinity minus subskin salinity. In ppt. |
---|
22 | |
---|
23 | REAL, INTENT(INOUT):: tkt(:) |
---|
24 | ! thickness of cool skin (microlayer), in m |
---|
25 | |
---|
26 | REAL, INTENT(INOUT):: tks(:) |
---|
27 | ! thickness of mass diffusion layer (microlayer), in m |
---|
28 | |
---|
29 | REAL, INTENT(IN):: hlb(:) |
---|
30 | ! latent heat flux at the surface, positive upward (W m-2) |
---|
31 | |
---|
32 | REAL, INTENT(IN):: tau(:) ! wind stress, turbulent part only, in Pa |
---|
33 | REAL, INTENT(IN):: s_subskin(:) ! subskin salinity, in ppt |
---|
34 | REAL, INTENT(IN):: al(:) ! water thermal expansion coefficient (in K-1) |
---|
35 | REAL, INTENT(IN):: xlv(:) ! latent heat of evaporation (J/kg) |
---|
36 | REAL, INTENT(IN):: taur(:) ! momentum flux due to rainfall, in Pa |
---|
37 | |
---|
38 | REAL, INTENT(IN):: rf(:) |
---|
39 | ! sensible heat flux at the surface due to rainfall, in W m-2 |
---|
40 | |
---|
41 | REAL, INTENT(IN):: rain(:) ! rain mass flux, in kg m-2 s-1 |
---|
42 | |
---|
43 | REAL, INTENT(IN):: qcol(:) |
---|
44 | ! net flux at the surface, without sensible heat flux due to rain, in W m-2 |
---|
45 | |
---|
46 | ! Local: |
---|
47 | |
---|
48 | REAL, DIMENSION(size(qcol)):: usrk, usrct, usrcs, alq |
---|
49 | REAL xlamx(size(qcol)) ! Saunders coefficient |
---|
50 | REAL, parameter:: visw = 1e-6 |
---|
51 | REAL, parameter:: tcw = 0.6 ! thermal conductivity of water |
---|
52 | |
---|
53 | REAL, parameter:: mu = 0.0129e-7 ! in m2 / s |
---|
54 | ! molecular salinity diffusivity, Kraus and Businger, page 47 |
---|
55 | |
---|
56 | REAL, parameter:: kappa = 1.49e-7 ! thermal diffusivity, in m2 / s |
---|
57 | |
---|
58 | REAL, parameter:: afk = 4e-4 |
---|
59 | REAL, parameter:: bfk = 1.3 |
---|
60 | ! a and b coefficient for the power function fitting the TKE flux |
---|
61 | ! carried by rain: Fk = a * R**b, derived form the exact solution |
---|
62 | ! of Soloviev and Lukas 2006 (Schlussel et al 1997, Craeye and |
---|
63 | ! Schlussel 1998) |
---|
64 | |
---|
65 | !-------------------------------------------------------------------------- |
---|
66 | |
---|
67 | alq = al * (qcol + rf * (1 - fV(tkt, rain))) - beta * s_subskin * cpw & |
---|
68 | * (hlb / xlv - rain * (1 - fV(tks, rain))) |
---|
69 | |
---|
70 | usrk = (afk / rhow)**(1. / 3.) * (rain * 3600.)**(bfk / 3.) |
---|
71 | ! Equivalent friction velocity due to the TKE input by the penetrating |
---|
72 | ! raindrops Fk |
---|
73 | |
---|
74 | ! Friction velocities in the air: |
---|
75 | usrct = sqrt((tau + (1. - fV(tkt, rain)) * taur) / rhow & |
---|
76 | + (fV(0., rain) - fV(tkt, rain)) * usrk**2) |
---|
77 | usrcs = sqrt((tau + (1. - fV(tks, rain)) * taur) / rhow & |
---|
78 | + (fV(0., rain) - fV(tks, rain)) * usrk**2) |
---|
79 | |
---|
80 | where (alq > 0.) |
---|
81 | ! Fairall 1996 982, equation (14): |
---|
82 | xlamx = 6. * (1. + (16. * grav * cpw * rhow * visw**3 * alq & |
---|
83 | / (tcw**2 * usrct**4 ))**0.75)**(- 1. / 3.) |
---|
84 | |
---|
85 | ! Fairall 1996 982, equation (12): |
---|
86 | tkt = xlamx * visw / usrct |
---|
87 | |
---|
88 | tks = xlamx * mu * (kappa / mu)**(2. / 3.) & |
---|
89 | * visw * cpw * rhow / ( tcw * usrcs) |
---|
90 | ! From Saunders 1967 (4) |
---|
91 | elsewhere |
---|
92 | xlamx = 6. ! prevent excessive warm skins |
---|
93 | tkt = min(.01, xlamx * visw / usrct) ! Limit tkt |
---|
94 | tks = min(.001, xlamx * mu * (kappa / mu)**(2. / 3.) * visw * cpw & |
---|
95 | * rhow / (tcw * usrcs)) |
---|
96 | end where |
---|
97 | |
---|
98 | ! Fairall 1996 982, equation (13): |
---|
99 | dter = - (qcol + rf * (1 - fV(tkt, rain))) * tkt / tcw |
---|
100 | |
---|
101 | dser = s_subskin * (hlb / xlv - rain * (1 - fV(tks, rain))) * tks & |
---|
102 | / (rhow * mu) ! eq. fresh skin |
---|
103 | |
---|
104 | END SUBROUTINE Microlayer |
---|
105 | |
---|
106 | END MODULE Microlayer_m |
---|