1 | SUBROUTINE nightingale(u, v, u_10m, v_10m, paprs, pplay, & |
---|
2 | cdragh, cdragm, t, q, ftsol, tsol, & |
---|
3 | pctsrf, lmt_dmsconc, lmt_dms) |
---|
4 | |
---|
5 | USE dimphy |
---|
6 | USE indice_sol_mod |
---|
7 | USE lmdz_yomcst |
---|
8 | |
---|
9 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
10 | IMPLICIT NONE |
---|
11 | ! |
---|
12 | |
---|
13 | |
---|
14 | REAL :: u(klon, klev), v(klon, klev) |
---|
15 | REAL :: u_10m(klon), v_10m(klon) |
---|
16 | REAL :: ftsol(klon, nbsrf) |
---|
17 | REAL :: tsol(klon) |
---|
18 | REAL :: paprs(klon, klev + 1), pplay(klon, klev) |
---|
19 | REAL :: t(klon, klev) |
---|
20 | REAL :: q(klon, klev) |
---|
21 | REAL :: cdragh(klon), cdragm(klon) |
---|
22 | REAL :: pctsrf(klon, nbsrf) |
---|
23 | REAL :: lmt_dmsconc(klon) ! concentration oceanique DMS |
---|
24 | REAL :: lmt_dms(klon) ! flux de DMS |
---|
25 | |
---|
26 | REAL :: ustar(klon), obklen(klon) |
---|
27 | REAL :: u10(klon), u10n(klon) |
---|
28 | REAL :: tvelocity, schmidt_corr |
---|
29 | REAL :: t1, t2, t3, t4, viscosity_kin, diffusivity, schmidt |
---|
30 | INTEGER :: i |
---|
31 | |
---|
32 | CALL bl_for_dms(u, v, paprs, pplay, cdragh, cdragm, & |
---|
33 | t, q, tsol, ustar, obklen) |
---|
34 | |
---|
35 | DO i = 1, klon |
---|
36 | u10(i) = SQRT(u_10m(i)**2 + v_10m(i)**2) |
---|
37 | ENDDO |
---|
38 | |
---|
39 | CALL neutral(u10, ustar, obklen, u10n) |
---|
40 | |
---|
41 | DO i = 1, klon |
---|
42 | |
---|
43 | ! tvelocity - transfer velocity, also known as kw (cm/s) |
---|
44 | ! schmidt_corr - Schmidt number correction factor (dimensionless) |
---|
45 | ! Reference: Nightingale, P.D., G. Malin, C. S. Law, J. J. Watson, P.S. Liss |
---|
46 | ! M. I. Liddicoat, J. Boutin, R.C. Upstill-Goddard. 'In situ evaluation |
---|
47 | ! of air-sea gas exchange parameterizations using conservative and |
---|
48 | ! volatile tracers.' Glob. Biogeochem. Cycles, 14:373-387, 2000. |
---|
49 | ! compute transfer velocity using u10neutral |
---|
50 | |
---|
51 | tvelocity = 0.222 * u10n(i) * u10n(i) + 0.333 * u10n(i) |
---|
52 | |
---|
53 | ! above expression gives tvelocity in cm/hr. convert to cm/s. 1hr =3600 sec |
---|
54 | |
---|
55 | tvelocity = tvelocity / 3600. |
---|
56 | |
---|
57 | ! compute the correction factor, which for Nightingale parameterization is |
---|
58 | ! based on how different the schmidt number is from 600. |
---|
59 | ! correction factor based on temperature in Kelvin. good |
---|
60 | ! only for t<=30 deg C. for temperatures above that, set correction factor |
---|
61 | ! equal to value at 30 deg C. |
---|
62 | |
---|
63 | IF (ftsol(i, is_oce) <= 303.15) THEN |
---|
64 | t1 = ftsol(i, is_oce) |
---|
65 | ELSE |
---|
66 | t1 = 303.15 |
---|
67 | ENDIF |
---|
68 | |
---|
69 | t2 = t1 * t1 |
---|
70 | t3 = t2 * t1 |
---|
71 | t4 = t3 * t1 |
---|
72 | viscosity_kin = 3.0363e-9 * t4 - 3.655198e-6 * t3 + 1.65333e-3 * t2 & |
---|
73 | - 3.332083e-1 * t1 + 25.26819 |
---|
74 | diffusivity = 0.01922 * exp(-2177.1 / t1) |
---|
75 | schmidt = viscosity_kin / diffusivity |
---|
76 | schmidt_corr = (schmidt / 600.)**(-.5) |
---|
77 | |
---|
78 | lmt_dms(i) = tvelocity * pctsrf(i, is_oce) & |
---|
79 | * lmt_dmsconc(i) / 1.0e12 * schmidt_corr * RNAVO |
---|
80 | |
---|
81 | IF (lmt_dmsconc(i)<=1.e-20) lmt_dms(i) = 0.0 |
---|
82 | |
---|
83 | ENDDO |
---|
84 | |
---|
85 | END SUBROUTINE nightingale |
---|