1 | !*********************************************************************** |
---|
2 | SUBROUTINE neutral(u10_mps, ustar_mps, obklen_m, & |
---|
3 | u10n_mps) |
---|
4 | !----------------------------------------------------------------------- |
---|
5 | ! SUBROUTINE to compute u10 neutral wind speed |
---|
6 | ! inputs |
---|
7 | ! u10_mps - wind speed at 10 m (m/s) |
---|
8 | ! ustar_mps - friction velocity (m/s) |
---|
9 | ! obklen_m - monin-obukhov length scale (m) |
---|
10 | ! outputs |
---|
11 | ! u10n_mps - wind speed at 10 m under neutral conditions (m/s) |
---|
12 | ! following code assumes reference height Z is 10m, consistent with use |
---|
13 | ! of u10 and u10_neutral. If not, code |
---|
14 | ! should be changed so that constants of 50. and 160. in equations |
---|
15 | ! below are changed to -5 * Z and -16 * Z respectively. |
---|
16 | ! Reference: G. L. Geernaert. 'Bulk parameterizations for the |
---|
17 | ! wind stress and heat fluxes,' in Surface Waves and Fluxes, Vol. I, |
---|
18 | ! Current Theory, Geernaert and W.J. Plant, editors, Kluwer Academic |
---|
19 | ! Publishers, Boston, MA, 1990. |
---|
20 | ! SUBROUTINE written Feb 2001 by eg chapman |
---|
21 | ! adapted to LMD-ZT by E. Cosme 310801 |
---|
22 | ! Following Will Shaw (PNL, Seattle) the theory applied for flux |
---|
23 | ! calculation with the scheme of Nightingale et al. (2000) does not |
---|
24 | ! hold anymore when -1<obklen<20. In this case, u10n is set to 0, |
---|
25 | ! so that the transfer velocity computed in nightingale.F will also |
---|
26 | ! be 0. The flux is then set to 0. |
---|
27 | !---------------------------------------------------------------------- |
---|
28 | ! |
---|
29 | USE dimphy |
---|
30 | INCLUDE "dimensions.h" |
---|
31 | ! |
---|
32 | REAL :: u10_mps(klon), ustar_mps(klon), obklen_m(klon) |
---|
33 | REAL :: u10n_mps(klon) |
---|
34 | REAL :: pi, von_karman |
---|
35 | ! parameter (pi = 3.141592653589793, von_karman = 0.4) |
---|
36 | ! pour etre coherent avec vk de bl_for_dms.F |
---|
37 | parameter (pi = 3.141592653589793, von_karman = 0.35) |
---|
38 | ! |
---|
39 | REAL :: phi, phi_inv, phi_inv_sq, f1, f2, f3, dum1, psi |
---|
40 | INTEGER :: i |
---|
41 | |
---|
42 | psi = 0. |
---|
43 | do i = 1, klon |
---|
44 | |
---|
45 | IF (u10_mps(i) < 0.) u10_mps(i) = 0.0 |
---|
46 | |
---|
47 | IF (obklen_m(i) < 0.) THEN |
---|
48 | phi = (1. - 160. / obklen_m(i))**(-0.25) |
---|
49 | phi_inv = 1. / phi |
---|
50 | phi_inv_sq = 1. / phi * 1. / phi |
---|
51 | f1 = (1. + phi_inv) / 2. |
---|
52 | f2 = (1. + phi_inv_sq) / 2. |
---|
53 | ! following to avoid numerical overruns. reCALL tan(90deg)=infinity |
---|
54 | dum1 = min (1.e24, phi_inv) |
---|
55 | f3 = atan(dum1) |
---|
56 | psi = 2. * log(f1) + log(f2) - 2. * f3 + pi / 2. |
---|
57 | ELSE IF (obklen_m(i) > 0.) THEN |
---|
58 | psi = -50. / obklen_m(i) |
---|
59 | end if |
---|
60 | |
---|
61 | u10n_mps(i) = u10_mps(i) + (ustar_mps(i) * psi / von_karman) |
---|
62 | ! u10n set to 0. if -1 < obklen < 20 |
---|
63 | IF ((obklen_m(i)>-1.).AND.(obklen_m(i)<20.)) THEN |
---|
64 | u10n_mps(i) = 0. |
---|
65 | endif |
---|
66 | IF (u10n_mps(i) < 0.) u10n_mps(i) = 0.0 |
---|
67 | |
---|
68 | enddo |
---|
69 | |
---|
70 | END SUBROUTINE neutral |
---|
71 | !*********************************************************************** |
---|