[5104] | 1 | !*********************************************************************** |
---|
| 2 | SUBROUTINE neutral(u10_mps, ustar_mps, obklen_m, & |
---|
| 3 | u10n_mps) |
---|
| 4 | !----------------------------------------------------------------------- |
---|
| 5 | ! SUBROUTINE to compute u10 neutral wind speed |
---|
| 6 | ! inputs |
---|
| 7 | ! u10_mps - wind speed at 10 m (m/s) |
---|
| 8 | ! ustar_mps - friction velocity (m/s) |
---|
| 9 | ! obklen_m - monin-obukhov length scale (m) |
---|
| 10 | ! outputs |
---|
| 11 | ! u10n_mps - wind speed at 10 m under neutral conditions (m/s) |
---|
| 12 | ! following code assumes reference height Z is 10m, consistent with use |
---|
| 13 | ! of u10 and u10_neutral. If not, code |
---|
| 14 | ! should be changed so that constants of 50. and 160. in equations |
---|
| 15 | ! below are changed to -5 * Z and -16 * Z respectively. |
---|
| 16 | ! Reference: G. L. Geernaert. 'Bulk parameterizations for the |
---|
| 17 | ! wind stress and heat fluxes,' in Surface Waves and Fluxes, Vol. I, |
---|
| 18 | ! Current Theory, Geernaert and W.J. Plant, editors, Kluwer Academic |
---|
| 19 | ! Publishers, Boston, MA, 1990. |
---|
| 20 | ! SUBROUTINE written Feb 2001 by eg chapman |
---|
| 21 | ! adapted to LMD-ZT by E. Cosme 310801 |
---|
| 22 | ! Following Will Shaw (PNL, Seattle) the theory applied for flux |
---|
| 23 | ! calculation with the scheme of Nightingale et al. (2000) does not |
---|
| 24 | ! hold anymore when -1<obklen<20. In this case, u10n is set to 0, |
---|
| 25 | ! so that the transfer velocity computed in nightingale.F will also |
---|
| 26 | ! be 0. The flux is then set to 0. |
---|
| 27 | !---------------------------------------------------------------------- |
---|
[5159] | 28 | |
---|
| 29 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
[5104] | 30 | USE dimphy |
---|
[5159] | 31 | |
---|
| 32 | |
---|
[5116] | 33 | REAL :: u10_mps(klon), ustar_mps(klon), obklen_m(klon) |
---|
| 34 | REAL :: u10n_mps(klon) |
---|
| 35 | REAL :: pi, von_karman |
---|
[5104] | 36 | ! parameter (pi = 3.141592653589793, von_karman = 0.4) |
---|
| 37 | ! pour etre coherent avec vk de bl_for_dms.F |
---|
| 38 | parameter (pi = 3.141592653589793, von_karman = 0.35) |
---|
[5159] | 39 | |
---|
[5116] | 40 | REAL :: phi, phi_inv, phi_inv_sq, f1, f2, f3, dum1, psi |
---|
| 41 | INTEGER :: i |
---|
[2630] | 42 | |
---|
[5104] | 43 | psi = 0. |
---|
[5158] | 44 | DO i = 1, klon |
---|
[2630] | 45 | |
---|
[5117] | 46 | IF (u10_mps(i) < 0.) u10_mps(i) = 0.0 |
---|
[2630] | 47 | |
---|
[5117] | 48 | IF (obklen_m(i) < 0.) THEN |
---|
[5104] | 49 | phi = (1. - 160. / obklen_m(i))**(-0.25) |
---|
| 50 | phi_inv = 1. / phi |
---|
| 51 | phi_inv_sq = 1. / phi * 1. / phi |
---|
| 52 | f1 = (1. + phi_inv) / 2. |
---|
| 53 | f2 = (1. + phi_inv_sq) / 2. |
---|
| 54 | ! following to avoid numerical overruns. reCALL tan(90deg)=infinity |
---|
| 55 | dum1 = min (1.e24, phi_inv) |
---|
| 56 | f3 = atan(dum1) |
---|
| 57 | psi = 2. * log(f1) + log(f2) - 2. * f3 + pi / 2. |
---|
[5117] | 58 | ELSE IF (obklen_m(i) > 0.) THEN |
---|
[5104] | 59 | psi = -50. / obklen_m(i) |
---|
| 60 | end if |
---|
[2630] | 61 | |
---|
[5104] | 62 | u10n_mps(i) = u10_mps(i) + (ustar_mps(i) * psi / von_karman) |
---|
| 63 | ! u10n set to 0. if -1 < obklen < 20 |
---|
[5117] | 64 | IF ((obklen_m(i)>-1.).AND.(obklen_m(i)<20.)) THEN |
---|
[5104] | 65 | u10n_mps(i) = 0. |
---|
| 66 | endif |
---|
[5117] | 67 | IF (u10n_mps(i) < 0.) u10n_mps(i) = 0.0 |
---|
[2630] | 68 | |
---|
[5104] | 69 | enddo |
---|
[5105] | 70 | |
---|
[5116] | 71 | END SUBROUTINE neutral |
---|
[5104] | 72 | !*********************************************************************** |
---|