1 | c*********************************************************************** |
---|
2 | subroutine neutral(u10_mps,ustar_mps,obklen_m, |
---|
3 | + u10n_mps ) |
---|
4 | c----------------------------------------------------------------------- |
---|
5 | c subroutine to compute u10 neutral wind speed |
---|
6 | c inputs |
---|
7 | c u10_mps - wind speed at 10 m (m/s) |
---|
8 | c ustar_mps - friction velocity (m/s) |
---|
9 | c obklen_m - monin-obukhov length scale (m) |
---|
10 | c outputs |
---|
11 | c u10n_mps - wind speed at 10 m under neutral conditions (m/s) |
---|
12 | c following code assumes reference height Z is 10m, consistent with use |
---|
13 | c of u10 and u10_neutral. If not, code |
---|
14 | c should be changed so that constants of 50. and 160. in equations |
---|
15 | c below are changed to -5 * Z and -16 * Z respectively. |
---|
16 | c Reference: G. L. Geernaert. 'Bulk parameterizations for the |
---|
17 | c wind stress and heat fluxes,' in Surface Waves and Fluxes, Vol. I, |
---|
18 | c Current Theory, Geernaert and W.J. Plant, editors, Kluwer Academic |
---|
19 | c Publishers, Boston, MA, 1990. |
---|
20 | c subroutine written Feb 2001 by eg chapman |
---|
21 | c adapted to LMD-ZT by E. Cosme 310801 |
---|
22 | c Following Will Shaw (PNL, Seattle) the theory applied for flux |
---|
23 | c calculation with the scheme of Nightingale et al. (2000) does not |
---|
24 | c hold anymore when -1<obklen<20. In this case, u10n is set to 0, |
---|
25 | c so that the transfer velocity computed in nightingale.F will also |
---|
26 | c be 0. The flux is then set to 0. |
---|
27 | c---------------------------------------------------------------------- |
---|
28 | c |
---|
29 | USE dimphy |
---|
30 | INCLUDE "dimensions.h" |
---|
31 | c |
---|
32 | real u10_mps(klon),ustar_mps(klon),obklen_m(klon) |
---|
33 | real u10n_mps(klon) |
---|
34 | real pi,von_karman |
---|
35 | c parameter (pi = 3.141592653589793, von_karman = 0.4) |
---|
36 | c pour etre coherent avec vk de bl_for_dms.F |
---|
37 | parameter (pi = 3.141592653589793, von_karman = 0.35) |
---|
38 | c |
---|
39 | real phi, phi_inv, phi_inv_sq, f1, f2, f3, dum1, psi |
---|
40 | integer i |
---|
41 | |
---|
42 | |
---|
43 | psi = 0. |
---|
44 | do i=1,klon |
---|
45 | |
---|
46 | if (u10_mps(i) < 0.) u10_mps(i) = 0.0 |
---|
47 | |
---|
48 | if (obklen_m(i) < 0.) then |
---|
49 | phi = (1. - 160./obklen_m(i))**(-0.25) |
---|
50 | phi_inv = 1./phi |
---|
51 | phi_inv_sq = 1./phi * 1./phi |
---|
52 | f1 = (1. + phi_inv) / 2. |
---|
53 | f2 = (1. + phi_inv_sq)/2. |
---|
54 | c following to avoid numerical overruns. recall tan(90deg)=infinity |
---|
55 | dum1 = min (1.e24, phi_inv) |
---|
56 | f3 = atan(dum1) |
---|
57 | psi = 2.*log(f1) + log(f2) - 2.*f3 + pi/2. |
---|
58 | else if (obklen_m(i) > 0.) then |
---|
59 | psi = -50. / obklen_m(i) |
---|
60 | end if |
---|
61 | |
---|
62 | u10n_mps(i) = u10_mps(i) + (ustar_mps(i) * psi /von_karman ) |
---|
63 | c u10n set to 0. if -1 < obklen < 20 |
---|
64 | if ((obklen_m(i)>-1.).and.(obklen_m(i)<20.)) then |
---|
65 | u10n_mps(i) = 0. |
---|
66 | endif |
---|
67 | if (u10n_mps(i) < 0.) u10n_mps(i) = 0.0 |
---|
68 | |
---|
69 | enddo |
---|
70 | return |
---|
71 | end |
---|
72 | c*********************************************************************** |
---|