1 | module regr1_conserv_m |
---|
2 | |
---|
3 | ! Author: Lionel GUEZ |
---|
4 | |
---|
5 | use assert_eq_m, only: assert_eq |
---|
6 | use assert_m, only: assert |
---|
7 | use interpolation, only: locate |
---|
8 | |
---|
9 | implicit none |
---|
10 | |
---|
11 | interface regr1_conserv |
---|
12 | |
---|
13 | ! This generic procedure regrids a piecewise linear function (not |
---|
14 | ! necessarily continuous) by averaging it. This is a conservative |
---|
15 | ! regridding. The regridding operation is done on the first |
---|
16 | ! dimension of the input array. Input are positions of cell |
---|
17 | ! edges. The target grid should be included in the source grid: |
---|
18 | ! no extrapolation is allowed. |
---|
19 | |
---|
20 | ! The only difference between the procedures is the rank of the |
---|
21 | ! first argument. |
---|
22 | |
---|
23 | ! real, intent(in), rank >= 1:: vs ! (ns, ...) |
---|
24 | ! averages of cells of the source grid |
---|
25 | ! vs(is, ...) for [xs(is), xs(is + 1)] |
---|
26 | |
---|
27 | ! real, intent(in):: xs(:) ! (ns + 1) |
---|
28 | ! edges of cells of the source grid, in strictly ascending order |
---|
29 | |
---|
30 | ! real, intent(in):: xt(:) ! (nt + 1) |
---|
31 | ! edges of cells of the target grid, in strictly ascending order |
---|
32 | |
---|
33 | ! real, intent(in), optional, rank >= 1:: slope ! (ns, ...) |
---|
34 | ! same rank as vs |
---|
35 | ! slopes inside cells of the source grid |
---|
36 | ! slope(is, ...) for [xs(is), xs(is + 1)] |
---|
37 | ! If not present, slopes are taken equal to 0. The regridding is |
---|
38 | ! then first order. |
---|
39 | |
---|
40 | ! real, intent(out), rank >= 1:: vt(nt, ...) |
---|
41 | ! has the same rank as vs and slope |
---|
42 | ! averages of cells of the target grid |
---|
43 | ! vt(it, ...) for [xt(it), xt(it + 1)] |
---|
44 | |
---|
45 | ! ns and nt must be >= 1. |
---|
46 | |
---|
47 | ! See notes for explanations on the algorithm and justification |
---|
48 | ! of algorithmic choices. |
---|
49 | |
---|
50 | module procedure regr11_conserv, regr12_conserv, regr13_conserv, & |
---|
51 | regr14_conserv |
---|
52 | end interface regr1_conserv |
---|
53 | |
---|
54 | private |
---|
55 | public regr1_conserv |
---|
56 | |
---|
57 | contains |
---|
58 | |
---|
59 | subroutine regr11_conserv(vs, xs, xt, vt, slope) |
---|
60 | |
---|
61 | ! vs and slope have rank 1. |
---|
62 | |
---|
63 | real, intent(in):: vs(:) |
---|
64 | real, intent(in):: xs(:) |
---|
65 | real, intent(in):: xt(:) |
---|
66 | real, intent(out):: vt(:) |
---|
67 | real, intent(in), optional:: slope(:) |
---|
68 | |
---|
69 | ! Local: |
---|
70 | integer is, it, ns, nt |
---|
71 | logical slope_present |
---|
72 | |
---|
73 | !--------------------------------------------- |
---|
74 | |
---|
75 | ns = assert_eq(size(vs), size(xs) - 1, "regr11_conserv ns") |
---|
76 | nt = assert_eq(size(xt) - 1, size(vt), "regr11_conserv nt") |
---|
77 | |
---|
78 | ! Quick check on sort order: |
---|
79 | call assert(xs(1) < xs(2), "regr11_conserv xs bad order") |
---|
80 | call assert(xt(1) < xt(2), "regr11_conserv xt bad order") |
---|
81 | |
---|
82 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
83 | "regr11_conserv extrapolation") |
---|
84 | slope_present = present(slope) |
---|
85 | |
---|
86 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
87 | do it = 1, nt |
---|
88 | ! 1 <= is <= ns |
---|
89 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
90 | if (xt(it + 1) <= xs(is + 1)) then |
---|
91 | vt(it) = mean_lin(xt(it), xt(it + 1)) |
---|
92 | else |
---|
93 | vt(it) = mean_lin(xt(it), xs(is + 1)) * (xs(is + 1) - xt(it)) |
---|
94 | is = is + 1 |
---|
95 | do while (xs(is + 1) < xt(it + 1)) |
---|
96 | ! 1 <= is <= ns - 1 |
---|
97 | vt(it) = vt(it) + (xs(is + 1) - xs(is)) * vs(is) |
---|
98 | is = is + 1 |
---|
99 | END DO |
---|
100 | ! 1 <= is <= ns |
---|
101 | vt(it) = (vt(it) + mean_lin(xs(is), xt(it + 1)) * (xt(it + 1) & |
---|
102 | - xs(is))) / (xt(it + 1) - xt(it)) |
---|
103 | end if |
---|
104 | |
---|
105 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
106 | ! 1 <= is <= ns .or. it == nt |
---|
107 | END DO |
---|
108 | |
---|
109 | contains |
---|
110 | |
---|
111 | real function mean_lin(a, b) |
---|
112 | |
---|
113 | ! mean in [a, b] of the linear function in [xs(is), xs(is + 1)] |
---|
114 | |
---|
115 | real, intent(in):: a, b |
---|
116 | |
---|
117 | !--------------------------------------------- |
---|
118 | |
---|
119 | if (slope_present) then |
---|
120 | mean_lin = slope(is) / 2. * (a + b - xs(is) - xs(is + 1)) + vs(is) |
---|
121 | else |
---|
122 | mean_lin = vs(is) |
---|
123 | end if |
---|
124 | |
---|
125 | end function mean_lin |
---|
126 | |
---|
127 | end subroutine regr11_conserv |
---|
128 | |
---|
129 | !******************************************** |
---|
130 | |
---|
131 | subroutine regr12_conserv(vs, xs, xt, vt, slope) |
---|
132 | |
---|
133 | ! vs and slope have rank 2. |
---|
134 | |
---|
135 | real, intent(in):: vs(:, :) |
---|
136 | real, intent(in):: xs(:) |
---|
137 | real, intent(in):: xt(:) |
---|
138 | real, intent(out):: vt(:, :) |
---|
139 | real, intent(in), optional:: slope(:, :) |
---|
140 | |
---|
141 | ! Local: |
---|
142 | integer is, it, ns, nt, n2 |
---|
143 | logical slope_present |
---|
144 | |
---|
145 | !--------------------------------------------- |
---|
146 | |
---|
147 | ns = assert_eq(size(vs, 1), size(xs) - 1, "regr12_conserv ns") |
---|
148 | nt = assert_eq(size(xt) - 1, size(vt, 1), "regr12_conserv nt") |
---|
149 | n2 = assert_eq(size(vs, 2), size(vt, 2), "regr12_conserv n2") |
---|
150 | |
---|
151 | ! Quick check on sort order: |
---|
152 | call assert(xs(1) < xs(2), "regr12_conserv xs bad order") |
---|
153 | call assert(xt(1) < xt(2), "regr12_conserv xt bad order") |
---|
154 | |
---|
155 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
156 | "regr12_conserv extrapolation") |
---|
157 | slope_present = present(slope) |
---|
158 | |
---|
159 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
160 | do it = 1, nt |
---|
161 | ! 1 <= is <= ns |
---|
162 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
163 | if (xt(it + 1) <= xs(is + 1)) then |
---|
164 | vt(it, :) = mean_lin(xt(it), xt(it + 1)) |
---|
165 | else |
---|
166 | vt(it, :) = mean_lin(xt(it), xs(is + 1)) * (xs(is + 1) - xt(it)) |
---|
167 | is = is + 1 |
---|
168 | do while (xs(is + 1) < xt(it + 1)) |
---|
169 | ! 1 <= is <= ns - 1 |
---|
170 | vt(it, :) = vt(it, :) + (xs(is + 1) - xs(is)) * vs(is, :) |
---|
171 | is = is + 1 |
---|
172 | END DO |
---|
173 | ! 1 <= is <= ns |
---|
174 | vt(it, :) = (vt(it, :) + mean_lin(xs(is), xt(it + 1)) * (xt(it + 1) & |
---|
175 | - xs(is))) / (xt(it + 1) - xt(it)) |
---|
176 | end if |
---|
177 | |
---|
178 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
179 | ! 1 <= is <= ns .or. it == nt |
---|
180 | END DO |
---|
181 | |
---|
182 | contains |
---|
183 | |
---|
184 | function mean_lin(a, b) |
---|
185 | |
---|
186 | ! mean in [a, b] of the linear function in [xs(is), xs(is + 1)] |
---|
187 | |
---|
188 | real, intent(in):: a, b |
---|
189 | real mean_lin(n2) |
---|
190 | |
---|
191 | !--------------------------------------------- |
---|
192 | |
---|
193 | if (slope_present) then |
---|
194 | mean_lin = slope(is, :) / 2. * (a + b - xs(is) - xs(is + 1)) & |
---|
195 | + vs(is, :) |
---|
196 | else |
---|
197 | mean_lin = vs(is, :) |
---|
198 | end if |
---|
199 | |
---|
200 | end function mean_lin |
---|
201 | |
---|
202 | end subroutine regr12_conserv |
---|
203 | |
---|
204 | !******************************************** |
---|
205 | |
---|
206 | subroutine regr13_conserv(vs, xs, xt, vt, slope) |
---|
207 | |
---|
208 | ! vs and slope have rank 3. |
---|
209 | |
---|
210 | real, intent(in):: vs(:, :, :) |
---|
211 | real, intent(in):: xs(:) |
---|
212 | real, intent(in):: xt(:) |
---|
213 | real, intent(out):: vt(:, :, :) |
---|
214 | real, intent(in), optional:: slope(:, :, :) |
---|
215 | |
---|
216 | ! Local: |
---|
217 | integer is, it, ns, nt, n2, n3 |
---|
218 | logical slope_present |
---|
219 | |
---|
220 | !--------------------------------------------- |
---|
221 | |
---|
222 | ns = assert_eq(size(vs, 1), size(xs) - 1, "regr13_conserv ns") |
---|
223 | nt = assert_eq(size(xt) - 1, size(vt, 1), "regr13_conserv nt") |
---|
224 | n2 = assert_eq(size(vs, 2), size(vt, 2), "regr13_conserv n2") |
---|
225 | n3 = assert_eq(size(vs, 3), size(vt, 3), "regr13_conserv n3") |
---|
226 | |
---|
227 | ! Quick check on sort order: |
---|
228 | call assert(xs(1) < xs(2), "regr13_conserv xs bad order") |
---|
229 | call assert(xt(1) < xt(2), "regr13_conserv xt bad order") |
---|
230 | |
---|
231 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
232 | "regr13_conserv extrapolation") |
---|
233 | slope_present = present(slope) |
---|
234 | |
---|
235 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
236 | do it = 1, nt |
---|
237 | ! 1 <= is <= ns |
---|
238 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
239 | if (xt(it + 1) <= xs(is + 1)) then |
---|
240 | vt(it, :, :) = mean_lin(xt(it), xt(it + 1)) |
---|
241 | else |
---|
242 | vt(it, :, :) = mean_lin(xt(it), xs(is + 1)) * (xs(is + 1) - xt(it)) |
---|
243 | is = is + 1 |
---|
244 | do while (xs(is + 1) < xt(it + 1)) |
---|
245 | ! 1 <= is <= ns - 1 |
---|
246 | vt(it, :, :) = vt(it, :, :) + (xs(is + 1) - xs(is)) * vs(is, :, :) |
---|
247 | is = is + 1 |
---|
248 | END DO |
---|
249 | ! 1 <= is <= ns |
---|
250 | vt(it, :, :) = (vt(it, :, :) + mean_lin(xs(is), xt(it + 1)) & |
---|
251 | * (xt(it + 1) - xs(is))) / (xt(it + 1) - xt(it)) |
---|
252 | end if |
---|
253 | |
---|
254 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
255 | ! 1 <= is <= ns .or. it == nt |
---|
256 | END DO |
---|
257 | |
---|
258 | contains |
---|
259 | |
---|
260 | function mean_lin(a, b) |
---|
261 | |
---|
262 | ! mean in [a, b] of the linear function in [xs(is), xs(is + 1)] |
---|
263 | |
---|
264 | real, intent(in):: a, b |
---|
265 | real mean_lin(n2, n3) |
---|
266 | |
---|
267 | !--------------------------------------------- |
---|
268 | |
---|
269 | if (slope_present) then |
---|
270 | mean_lin = slope(is, :, :) / 2. * (a + b - xs(is) - xs(is + 1)) & |
---|
271 | + vs(is, :, :) |
---|
272 | else |
---|
273 | mean_lin = vs(is, :, :) |
---|
274 | end if |
---|
275 | |
---|
276 | end function mean_lin |
---|
277 | |
---|
278 | end subroutine regr13_conserv |
---|
279 | |
---|
280 | !******************************************** |
---|
281 | |
---|
282 | subroutine regr14_conserv(vs, xs, xt, vt, slope) |
---|
283 | |
---|
284 | ! vs and slope have rank 4. |
---|
285 | |
---|
286 | real, intent(in):: vs(:, :, :, :) |
---|
287 | real, intent(in):: xs(:) |
---|
288 | real, intent(in):: xt(:) |
---|
289 | real, intent(out):: vt(:, :, :, :) |
---|
290 | real, intent(in), optional:: slope(:, :, :, :) |
---|
291 | |
---|
292 | ! Local: |
---|
293 | integer is, it, ns, nt, n2, n3, n4 |
---|
294 | logical slope_present |
---|
295 | |
---|
296 | !--------------------------------------------- |
---|
297 | |
---|
298 | ns = assert_eq(size(vs, 1), size(xs) - 1, "regr14_conserv ns") |
---|
299 | nt = assert_eq(size(xt) - 1, size(vt, 1), "regr14_conserv nt") |
---|
300 | n2 = assert_eq(size(vs, 2), size(vt, 2), "regr14_conserv n2") |
---|
301 | n3 = assert_eq(size(vs, 3), size(vt, 3), "regr14_conserv n3") |
---|
302 | n4 = assert_eq(size(vs, 4), size(vt, 4), "regr14_conserv n4") |
---|
303 | |
---|
304 | ! Quick check on sort order: |
---|
305 | call assert(xs(1) < xs(2), "regr14_conserv xs bad order") |
---|
306 | call assert(xt(1) < xt(2), "regr14_conserv xt bad order") |
---|
307 | |
---|
308 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
309 | "regr14_conserv extrapolation") |
---|
310 | slope_present = present(slope) |
---|
311 | |
---|
312 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
313 | do it = 1, nt |
---|
314 | ! 1 <= is <= ns |
---|
315 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
316 | if (xt(it + 1) <= xs(is + 1)) then |
---|
317 | vt(it, :, :, :) = mean_lin(xt(it), xt(it + 1)) |
---|
318 | else |
---|
319 | vt(it, :, :, :) = mean_lin(xt(it), xs(is + 1)) * (xs(is + 1) - xt(it)) |
---|
320 | is = is + 1 |
---|
321 | do while (xs(is + 1) < xt(it + 1)) |
---|
322 | ! 1 <= is <= ns - 1 |
---|
323 | vt(it, :, :, :) = vt(it, :, :, :) + (xs(is + 1) - xs(is)) & |
---|
324 | * vs(is, :, :, :) |
---|
325 | is = is + 1 |
---|
326 | END DO |
---|
327 | ! 1 <= is <= ns |
---|
328 | vt(it, :, :, :) = (vt(it, :, :, :) + mean_lin(xs(is), xt(it + 1)) & |
---|
329 | * (xt(it + 1) - xs(is))) / (xt(it + 1) - xt(it)) |
---|
330 | end if |
---|
331 | |
---|
332 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
333 | ! 1 <= is <= ns .or. it == nt |
---|
334 | END DO |
---|
335 | |
---|
336 | contains |
---|
337 | |
---|
338 | function mean_lin(a, b) |
---|
339 | |
---|
340 | ! mean in [a, b] of the linear function in [xs(is), xs(is + 1)] |
---|
341 | |
---|
342 | real, intent(in):: a, b |
---|
343 | real mean_lin(n2, n3, n4) |
---|
344 | |
---|
345 | !--------------------------------------------- |
---|
346 | |
---|
347 | if (slope_present) then |
---|
348 | mean_lin = slope(is, :, :, :) / 2. * (a + b - xs(is) - xs(is + 1)) & |
---|
349 | + vs(is, :, :, :) |
---|
350 | else |
---|
351 | mean_lin = vs(is, :, :, :) |
---|
352 | end if |
---|
353 | |
---|
354 | end function mean_lin |
---|
355 | |
---|
356 | end subroutine regr14_conserv |
---|
357 | |
---|
358 | end module regr1_conserv_m |
---|