source: LMDZ6/branches/Amaury_dev/libf/misc/slatec_libmath_pch.f90 @ 5441

Last change on this file since 5441 was 5218, checked in by abarral, 3 months ago

Rename lmdz_xer.f90 to slatec_xer.f90
Rename lmdz_libmath_pch.f90 to slatec_libmath_pch.f90
Merge r5138, r5149 from trunk which had been missed in previous merges

File size: 37.9 KB
Line 
1! This module encapsulates misc. math functions
2
3MODULE lmdz_libmath_pch
4  USE slatec_xer, ONLY: xermsg
5  IMPLICIT NONE; PRIVATE
6  PUBLIC pchfe_95, pchsp_95
7CONTAINS
8  REAL FUNCTION cbrt(x)
9    ! Return the cubic root for positive or negative x
10    REAL :: x
11
12    cbrt = sign(1., x) * (abs(x)**(1. / 3.))
13  END FUNCTION cbrt
14
15  SUBROUTINE CHFEV(X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR)
16    !***BEGIN PROLOGUE  CHFEV
17    !***PURPOSE  Evaluate a cubic polynomial given in Hermite form at an
18    ! array of points.  While designed for use by PCHFE, it may
19    ! be useful directly as an evaluator for a piecewise cubic
20    ! Hermite function in applications, such as graphing, where
21    ! the interval is known in advance.
22    !***LIBRARY   SLATEC (PCHIP)
23    !***CATEGORY  E3
24    !***TYPE      SINGLE PRECISION (CHFEV-S, DCHFEV-D)
25    !***KEYWORDS  CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION,
26    !  PCHIP
27    !***AUTHOR  Fritsch, F. N., (LLNL)
28    !  Lawrence Livermore National Laboratory
29    !  P.O. Box 808  (L-316)
30    !  Livermore, CA  94550
31    !  FTS 532-4275, (510) 422-4275
32    !***DESCRIPTION
33
34    !      CHFEV:  Cubic Hermite Function EValuator
35
36    ! Evaluates the cubic polynomial determined by function values
37    ! F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points
38    ! XE(J), J=1(1)NE.
39
40    ! ----------------------------------------------------------------------
41
42    !  Calling sequence:
43
44    !    INTEGER  NE, NEXT(2), IERR
45    !    REAL  X1, X2, F1, F2, D1, D2, XE(NE), FE(NE)
46
47    !    CALL  CHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR)
48
49    !   Parameters:
50
51    ! X1,X2 -- (input) endpoints of interval of definition of cubic.
52    !       (Error return if  X1.EQ.X2 .)
53
54    ! F1,F2 -- (input) values of function at X1 and X2, respectively.
55
56    ! D1,D2 -- (input) values of derivative at X1 and X2, respectively.
57
58    ! NE -- (input) number of evaluation points.  (Error return if
59    !       NE.LT.1 .)
60
61    ! XE -- (input) real array of points at which the function is to be
62    !       evaluated.  If any of the XE are outside the interval
63    !       [X1,X2], a warning error is returned in NEXT.
64
65    ! FE -- (output) real array of values of the cubic function defined
66    !       by  X1,X2, F1,F2, D1,D2  at the points  XE.
67
68    ! NEXT -- (output) integer array indicating number of extrapolation
69    !       points:
70    !        NEXT(1) = number of evaluation points to left of interval.
71    !        NEXT(2) = number of evaluation points to right of interval.
72
73    ! IERR -- (output) error flag.
74    !       Normal return:
75    !          IERR = 0  (no errors).
76    !       "Recoverable" errors:
77    !          IERR = -1  if NE.LT.1 .
78    !          IERR = -2  if X1.EQ.X2 .
79    !            (The FE-array has not been changed in either case.)
80
81    !***REFERENCES  (NONE)
82    !***ROUTINES CALLED  XERMSG
83    !***REVISION HISTORY  (YYMMDD)
84    !   811019  DATE WRITTEN
85    !   820803  Minor cosmetic changes for release 1.
86    !   890411  Added SAVE statements (Vers. 3.2).
87    !   890531  Changed all specific intrinsics to generic.  (WRB)
88    !   890703  Corrected category record.  (WRB)
89    !   890703  REVISION DATE from Version 3.2
90    !   891214  Prologue converted to Version 4.0 format.  (BAB)
91    !   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
92    !***END PROLOGUE  CHFEV
93    !  Programming notes:
94
95    ! To produce a double precision version, simply:
96    !    a. Change CHFEV to DCHFEV wherever it occurs,
97    !    b. Change the real declaration to double precision, and
98    !    c. Change the constant ZERO to double precision.
99
100    !  DECLARE ARGUMENTS.
101
102    INTEGER :: NE, NEXT(2), IERR
103    REAL :: X1, X2, F1, F2, D1, D2, XE(*), FE(*)
104
105    !  DECLARE LOCAL VARIABLES.
106
107    INTEGER :: I
108    REAL :: C2, C3, DEL1, DEL2, DELTA, H, X, XMI, XMA, ZERO
109    SAVE ZERO
110    DATA  ZERO /0./
111
112    !  VALIDITY-CHECK ARGUMENTS.
113
114    !***FIRST EXECUTABLE STATEMENT  CHFEV
115    IF (NE < 1)  GO TO 5001
116    H = X2 - X1
117    IF (H == ZERO)  GO TO 5002
118
119    !  INITIALIZE.
120
121    IERR = 0
122    NEXT(1) = 0
123    NEXT(2) = 0
124    XMI = MIN(ZERO, H)
125    XMA = MAX(ZERO, H)
126
127    !  COMPUTE CUBIC COEFFICIENTS (EXPANDED ABOUT X1).
128
129    DELTA = (F2 - F1) / H
130    DEL1 = (D1 - DELTA) / H
131    DEL2 = (D2 - DELTA) / H
132    ! (DELTA IS NO LONGER NEEDED.)
133    C2 = -(DEL1 + DEL1 + DEL2)
134    C3 = (DEL1 + DEL2) / H
135    ! (H, DEL1 AND DEL2 ARE NO LONGER NEEDED.)
136
137    !  EVALUATION LOOP.
138
139    DO I = 1, NE
140      X = XE(I) - X1
141      FE(I) = F1 + X * (D1 + X * (C2 + X * C3))
142      ! COUNT EXTRAPOLATION POINTS.
143      IF (X<XMI)  NEXT(1) = NEXT(1) + 1
144      IF (X>XMA)  NEXT(2) = NEXT(2) + 1
145      ! (NOTE REDUNDANCY--IF EITHER CONDITION IS TRUE, OTHER IS FALSE.)
146    END DO
147
148    !  NORMAL RETURN.
149
150    RETURN
151
152    !  ERROR RETURNS.
153
154    5001   CONTINUE
155    ! NE.LT.1 RETURN.
156    IERR = -1
157    CALL XERMSG ('SLATEC', 'CHFEV', &
158            'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
159    RETURN
160
161    5002   CONTINUE
162    ! X1.EQ.X2 RETURN.
163    IERR = -2
164    CALL XERMSG ('SLATEC', 'CHFEV', 'INTERVAL ENDPOINTS EQUAL', IERR, &
165            1)
166    RETURN
167    !------------- LAST LINE OF CHFEV FOLLOWS ------------------------------
168  END SUBROUTINE CHFEV
169
170  SUBROUTINE PCHFE(N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
171    !***BEGIN PROLOGUE  PCHFE
172    !***PURPOSE  Evaluate a piecewise cubic Hermite function at an array of
173    ! points.  May be used by itself for Hermite interpolation,
174    ! or as an evaluator for PCHIM or PCHIC.
175    !***LIBRARY   SLATEC (PCHIP)
176    !***CATEGORY  E3
177    !***TYPE      SINGLE PRECISION (PCHFE-S, DPCHFE-D)
178    !***KEYWORDS  CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
179    !  PIECEWISE CUBIC EVALUATION
180    !***AUTHOR  Fritsch, F. N., (LLNL)
181    !  Lawrence Livermore National Laboratory
182    !  P.O. Box 808  (L-316)
183    !  Livermore, CA  94550
184    !  FTS 532-4275, (510) 422-4275
185    !***DESCRIPTION
186
187    !      PCHFE:  Piecewise Cubic Hermite Function Evaluator
188
189    ! Evaluates the cubic Hermite function defined by  N, X, F, D  at
190    ! the points  XE(J), J=1(1)NE.
191
192    ! To provide compatibility with PCHIM and PCHIC, includes an
193    ! increment between successive values of the F- and D-arrays.
194
195    ! ----------------------------------------------------------------------
196
197    !  Calling sequence:
198
199    !    PARAMETER  (INCFD = ...)
200    !    INTEGER  N, NE, IERR
201    !    REAL  X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE)
202    !    LOGICAL  SKIP
203
204    !    CALL  PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
205
206    !   Parameters:
207
208    ! N -- (input) number of data points.  (Error return if N.LT.2 .)
209
210    ! X -- (input) real array of independent variable values.  The
211    !       elements of X must be strictly increasing:
212    !            X(I-1) .LT. X(I),  I = 2(1)N.
213    !       (Error return if not.)
214
215    ! F -- (input) real array of function values.  F(1+(I-1)*INCFD) is
216    !       the value corresponding to X(I).
217
218    ! D -- (input) real array of derivative values.  D(1+(I-1)*INCFD) is
219    !       the value corresponding to X(I).
220
221    ! INCFD -- (input) increment between successive values in F and D.
222    !       (Error return if  INCFD.LT.1 .)
223
224    ! SKIP -- (input/output) LOGICAL variable which should be set to
225    !       .TRUE. if the user wishes to skip checks for validity of
226    !       preceding parameters, or to .FALSE. otherwise.
227    !       This will save time in case these checks have already
228    !       been performed (say, in PCHIM or PCHIC).
229    !       SKIP will be set to .TRUE. on normal return.
230
231    ! NE -- (input) number of evaluation points.  (Error return if
232    !       NE.LT.1 .)
233
234    ! XE -- (input) real array of points at which the function is to be
235    !       evaluated.
236
237    !      NOTES:
238    !       1. The evaluation will be most efficient if the elements
239    !          of XE are increasing relative to X;
240    !          that is,   XE(J) .GE. X(I)
241    !          implies    XE(K) .GE. X(I),  all K.GE.J .
242    !       2. If any of the XE are outside the interval [X(1),X(N)],
243    !          values are extrapolated from the nearest extreme cubic,
244    !          and a warning error is returned.
245
246    ! FE -- (output) real array of values of the cubic Hermite function
247    !       defined by  N, X, F, D  at the points  XE.
248
249    ! IERR -- (output) error flag.
250    !       Normal return:
251    !          IERR = 0  (no errors).
252    !       Warning error:
253    !          IERR.GT.0  means that extrapolation was performed at
254    !             IERR points.
255    !       "Recoverable" errors:
256    !          IERR = -1  if N.LT.2 .
257    !          IERR = -2  if INCFD.LT.1 .
258    !          IERR = -3  if the X-array is not strictly increasing.
259    !          IERR = -4  if NE.LT.1 .
260    !         (The FE-array has not been changed in any of these cases.)
261    !           NOTE:  The above errors are checked in the order listed,
262    !               and following arguments have **NOT** been validated.
263
264    !***REFERENCES  (NONE)
265    !***ROUTINES CALLED  CHFEV, XERMSG
266    !***REVISION HISTORY  (YYMMDD)
267    !   811020  DATE WRITTEN
268    !   820803  Minor cosmetic changes for release 1.
269    !   870707  Minor cosmetic changes to prologue.
270    !   890531  Changed all specific intrinsics to generic.  (WRB)
271    !   890831  Modified array declarations.  (WRB)
272    !   890831  REVISION DATE from Version 3.2
273    !   891214  Prologue converted to Version 4.0 format.  (BAB)
274    !   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
275    !***END PROLOGUE  PCHFE
276    !  Programming notes:
277
278    ! 1. To produce a double precision version, simply:
279    !    a. Change PCHFE to DPCHFE, and CHFEV to DCHFEV, wherever they
280    !       occur,
281    !    b. Change the real declaration to double precision,
282
283    ! 2. Most of the coding between the CALL to CHFEV and the end of
284    !    the IR-loop could be eliminated if it were permissible to
285    !    assume that XE is ordered relative to X.
286
287    ! 3. CHFEV does not assume that X1 is less than X2.  thus, it would
288    !    be possible to write a version of PCHFE that assumes a strict-
289    !    ly decreasing X-array by simply running the IR-loop backwards
290    !    (and reversing the order of appropriate tests).
291
292    ! 4. The present code has a minor bug, which I have decided is not
293    !    worth the effort that would be required to fix it.
294    !    If XE contains points in [X(N-1),X(N)], followed by points .LT.
295    !    X(N-1), followed by points .GT.X(N), the extrapolation points
296    !    will be counted (at least) twice in the total returned in IERR.
297
298    !  DECLARE ARGUMENTS.
299
300    INTEGER :: N, INCFD, NE, IERR
301    REAL :: X(*), F(INCFD, *), D(INCFD, *), XE(*), FE(*)
302    LOGICAL :: SKIP
303
304    !  DECLARE LOCAL VARIABLES.
305
306    INTEGER :: I, IERC, IR, J, JFIRST, NEXT(2), NJ
307
308    !  VALIDITY-CHECK ARGUMENTS.
309
310    !***FIRST EXECUTABLE STATEMENT  PCHFE
311    IF (SKIP)  GO TO 5
312
313    IF (N<2)  GO TO 5001
314    IF (INCFD<1)  GO TO 5002
315    DO I = 2, N
316      IF (X(I)<=X(I - 1))  GO TO 5003
317    END DO
318
319    !  FUNCTION DEFINITION IS OK, GO ON.
320
321    5   CONTINUE
322    IF (NE<1)  GO TO 5004
323    IERR = 0
324    SKIP = .TRUE.
325
326    !  LOOP OVER INTERVALS.        (   INTERVAL INDEX IS  IL = IR-1  . )
327    !                              ( INTERVAL IS X(IL).LE.X.LT.X(IR) . )
328    JFIRST = 1
329    IR = 2
330    10   CONTINUE
331
332    ! SKIP OUT OF LOOP IF HAVE PROCESSED ALL EVALUATION POINTS.
333
334    IF (JFIRST > NE)  GO TO 5000
335
336    ! LOCATE ALL POINTS IN INTERVAL.
337
338    DO J = JFIRST, NE
339      IF (XE(J) >= X(IR))  GO TO 30
340    END DO
341    J = NE + 1
342    GO TO 40
343
344    ! HAVE LOCATED FIRST POINT BEYOND INTERVAL.
345
346    30   CONTINUE
347    IF (IR == N)  J = NE + 1
348
349    40   CONTINUE
350    NJ = J - JFIRST
351
352    ! SKIP EVALUATION IF NO POINTS IN INTERVAL.
353
354    IF (NJ == 0)  GO TO 50
355
356    ! EVALUATE CUBIC AT XE(I),  I = JFIRST (1) J-1 .
357
358    !   ----------------------------------------------------------------
359    CALL CHFEV (X(IR - 1), X(IR), F(1, IR - 1), F(1, IR), D(1, IR - 1), D(1, IR), &
360            NJ, XE(JFIRST), FE(JFIRST), NEXT, IERC)
361    ! ----------------------------------------------------------------
362    IF (IERC < 0)  GO TO 5005
363
364    IF (NEXT(2) == 0)  GO TO 42
365    ! IF (NEXT(2) .GT. 0)  THEN
366    !    IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(2) TO THE
367    !    RIGHT OF X(IR).
368
369    IF (IR < N)  GO TO 41
370    ! IF (IR .EQ. N)  THEN
371    !    THESE ARE ACTUALLY EXTRAPOLATION POINTS.
372    IERR = IERR + NEXT(2)
373    GO TO 42
374    41    CONTINUE
375    ! ELSE
376    !    WE SHOULD NEVER HAVE GOTTEN HERE.
377    GO TO 5005
378    ! ENDIF
379    ! ENDIF
380    42   CONTINUE
381
382    IF (NEXT(1) == 0)  GO TO 49
383    ! IF (NEXT(1) .GT. 0)  THEN
384    !    IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(1) TO THE
385    !    LEFT OF X(IR-1).
386
387    IF (IR > 2)  GO TO 43
388    ! IF (IR .EQ. 2)  THEN
389    !    THESE ARE ACTUALLY EXTRAPOLATION POINTS.
390    IERR = IERR + NEXT(1)
391    GO TO 49
392    43    CONTINUE
393    ! ELSE
394    !    XE IS NOT ORDERED RELATIVE TO X, SO MUST ADJUST
395    !    EVALUATION INTERVAL.
396
397    !          FIRST, LOCATE FIRST POINT TO LEFT OF X(IR-1).
398    DO I = JFIRST, J - 1
399      IF (XE(I) < X(IR - 1))  GO TO 45
400    END DO
401    ! NOTE-- CANNOT DROP THROUGH HERE UNLESS THERE IS AN ERROR
402    !        IN CHFEV.
403    GO TO 5005
404
405    45       CONTINUE
406    ! RESET J.  (THIS WILL BE THE NEW JFIRST.)
407    J = I
408
409    !          NOW FIND OUT HOW FAR TO BACK UP IN THE X-ARRAY.
410    DO I = 1, IR - 1
411      IF (XE(J) < X(I)) GO TO 47
412    END DO
413    ! NB-- CAN NEVER DROP THROUGH HERE, SINCE XE(J).LT.X(IR-1).
414
415    47       CONTINUE
416    ! AT THIS POINT, EITHER  XE(J) .LT. X(1)
417    !    OR      X(I-1) .LE. XE(J) .LT. X(I) .
418    ! RESET IR, RECOGNIZING THAT IT WILL BE INCREMENTED BEFORE
419    ! CYCLING.
420    IR = MAX(1, I - 1)
421    ! ENDIF
422    ! ENDIF
423    49   CONTINUE
424
425    JFIRST = J
426
427    ! END OF IR-LOOP.
428
429    50   CONTINUE
430    IR = IR + 1
431    IF (IR <= N)  GO TO 10
432
433    !  NORMAL RETURN.
434
435    5000   CONTINUE
436    RETURN
437
438    !  ERROR RETURNS.
439
440    5001   CONTINUE
441    ! N.LT.2 RETURN.
442    IERR = -1
443    CALL XERMSG ('SLATEC', 'PCHFE', &
444            'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
445    RETURN
446
447    5002   CONTINUE
448    ! INCFD.LT.1 RETURN.
449    IERR = -2
450    CALL XERMSG ('SLATEC', 'PCHFE', 'INCREMENT LESS THAN ONE', IERR, &
451            1)
452    RETURN
453
454    5003   CONTINUE
455    ! X-ARRAY NOT STRICTLY INCREASING.
456    IERR = -3
457    CALL XERMSG ('SLATEC', 'PCHFE', 'X-ARRAY NOT STRICTLY INCREASING' &
458            , IERR, 1)
459    RETURN
460
461    5004   CONTINUE
462    ! NE.LT.1 RETURN.
463    IERR = -4
464    CALL XERMSG ('SLATEC', 'PCHFE', &
465            'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
466    RETURN
467
468    5005   CONTINUE
469    ! ERROR RETURN FROM CHFEV.
470    !   *** THIS CASE SHOULD NEVER OCCUR ***
471    IERR = -5
472    CALL XERMSG ('SLATEC', 'PCHFE', &
473            'ERROR RETURN FROM CHFEV -- FATAL', IERR, 2)
474    RETURN
475    !------------- LAST LINE OF PCHFE FOLLOWS ------------------------------
476  END SUBROUTINE PCHFE
477
478  SUBROUTINE PCHFE_95(X, F, D, SKIP, XE, FE, IERR)
479
480    ! PURPOSE  Evaluate a piecewise cubic Hermite function at an array of
481    !            points.  May be used by itself for Hermite interpolation,
482    !            or as an evaluator for PCHIM or PCHIC.
483    ! CATEGORY  E3
484    ! KEYWORDS  CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
485    !             PIECEWISE CUBIC EVALUATION
486
487    !          PCHFE:  Piecewise Cubic Hermite Function Evaluator
488    ! Evaluates the cubic Hermite function defined by  X, F, D  at
489    ! the points  XE.
490
491    USE lmdz_assert_eq, ONLY: assert_eq
492
493    REAL, INTENT(IN) :: X(:) ! real array of independent variable values
494    ! The elements of X must be strictly increasing.
495
496    REAL, INTENT(IN) :: F(:) ! real array of function values
497    ! F(I) is the value corresponding to X(I).
498
499    REAL, INTENT(IN) :: D(:) ! real array of derivative values
500    ! D(I) is the value corresponding to X(I).
501
502    LOGICAL, INTENT(INOUT) :: SKIP
503    ! request to skip checks for validity of "x"
504    ! If "skip" is false then "pchfe" will check that size(x) >= 2 and
505    ! "x" is in strictly ascending order.
506    ! Setting "skip" to true will save time in case these checks have
507    ! already been performed (say, in "PCHIM" or "PCHIC").
508    ! "SKIP" will be set to TRUE on normal return.
509
510    REAL, INTENT(IN) :: XE(:) ! points at which the function is to be evaluated
511    ! NOTES:
512    ! 1. The evaluation will be most efficient if the elements of XE
513    ! are increasing relative to X.
514    ! That is,   XE(J) .GE. X(I)
515    ! implies    XE(K) .GE. X(I),  all K.GE.J
516    ! 2. If any of the XE are outside the interval [X(1),X(N)], values
517    ! are extrapolated from the nearest extreme cubic, and a warning
518    ! error is returned.
519
520    REAL, INTENT(OUT) :: FE(:) ! values of the cubic Hermite function
521    ! defined by X, F, D at the points XE
522
523    INTEGER, INTENT(OUT) :: IERR ! error flag
524    ! Normal return:
525    ! IERR = 0  no error
526    ! Warning error:
527    ! IERR > 0  means that extrapolation was performed at IERR points
528    ! "Recoverable" errors:
529    !              IERR = -1  if N < 2
530    !              IERR = -3  if the X-array is not strictly increasing
531    !              IERR = -4  if NE < 1
532    ! NOTE: The above errors are checked in the order listed, and
533    ! following arguments have **NOT** been validated.
534
535    ! Variables local to the procedure:
536
537    INTEGER  N, NE
538
539    !---------------------------------------
540
541    n = assert_eq(size(x), size(f), size(d), "PCHFE_95 n")
542    ne = assert_eq(size(xe), size(fe), "PCHFE_95 ne")
543    CALL PCHFE(N, X, F, D, 1, SKIP, NE, XE, FE, IERR)
544
545  END SUBROUTINE  PCHFE_95
546
547  FUNCTION pchsp_95(x, f, ibeg, iend, vc_beg, vc_end)
548
549    ! PURPOSE: Set derivatives needed to determine the Hermite
550    ! representation of the cubic spline interpolant to given data,
551    ! with specified boundary conditions.
552
553    ! Part of the "pchip" package.
554
555    ! CATEGORY: E1A
556
557    ! KEYWORDS: cubic hermite interpolation, piecewise cubic
558    ! interpolation, spline interpolation
559
560    ! DESCRIPTION: "pchsp" stands for "Piecewise Cubic Hermite Spline"
561    ! Computes the Hermite representation of the cubic spline
562    ! interpolant to the data given in X and F satisfying the boundary
563    ! conditions specified by Ibeg, iend, vc_beg and VC_end.
564
565    ! The resulting piecewise cubic Hermite function may be evaluated
566    ! by "pchfe" or "pchfd".
567
568    ! NOTE: This is a modified version of C. de Boor's cubic spline
569    ! routine "cubspl".
570
571    ! REFERENCE: Carl de Boor, A Practical Guide to Splines, Springer,
572    ! 2001, pages 43-47
573
574    USE lmdz_assert_eq, ONLY: assert_eq
575
576    REAL, INTENT(IN) :: x(:)
577    ! independent variable values
578    ! The elements of X must be strictly increasing:
579    !                X(I-1) < X(I),  I = 2...N.
580    !           (Error return if not.)
581    ! (error if size(x) < 2)
582
583    REAL, INTENT(IN) :: f(:)
584    !     dependent variable values to be interpolated
585    !  F(I) is value corresponding to X(I).
586
587    INTEGER, INTENT(IN) :: ibeg
588    !     desired boundary condition at beginning of data
589
590    !        IBEG = 0  to set pchsp_95(1) so that the third derivative is con-
591    !              tinuous at X(2).  This is the "not a knot" condition
592    !              provided by de Boor's cubic spline routine CUBSPL.
593    !              This is the default boundary condition.
594    !        IBEG = 1  if first derivative at X(1) is given in VC_BEG.
595    !        IBEG = 2  if second derivative at X(1) is given in VC_BEG.
596    !        IBEG = 3  to use the 3-point difference formula for pchsp_95(1).
597    !              (Reverts to the default boundary condition if size(x) < 3 .)
598    !        IBEG = 4  to use the 4-point difference formula for pchsp_95(1).
599    !              (Reverts to the default boundary condition if size(x) < 4 .)
600
601    !          NOTES:
602    !           1. An error return is taken if IBEG is out of range.
603    !           2. For the "natural" boundary condition, use IBEG=2 and
604    !              VC_BEG=0.
605
606    INTEGER, INTENT(IN) :: iend
607    !           IC(2) = IEND, desired condition at end of data.
608    !  IEND may take on the same values as IBEG, but applied to
609    !  derivative at X(N). In case IEND = 1 or 2, The value is given in VC_END.
610
611    !          NOTES:
612    !           1. An error return is taken if IEND is out of range.
613    !           2. For the "natural" boundary condition, use IEND=2 and
614    !              VC_END=0.
615
616    REAL, INTENT(IN), optional :: vc_beg
617    ! desired boundary value, as indicated above.
618    !           VC_BEG need be set only if IBEG = 1 or 2 .
619
620    REAL, INTENT(IN), optional :: vc_end
621    ! desired boundary value, as indicated above.
622    !           VC_END need be set only if Iend = 1 or 2 .
623
624    REAL pchsp_95(size(x))
625    ! derivative values at the data points
626    !           These values will determine the cubic spline interpolant
627    !           with the requested boundary conditions.
628    !           The value corresponding to X(I) is stored in
629    !                PCHSP_95(I),  I=1...N.
630
631    ! LOCAL VARIABLES:
632    REAL wk(2, size(x)) ! real array of working storage
633    INTEGER n ! number of data points
634    INTEGER ierr, ic(2)
635    REAL vc(2)
636
637    !-------------------------------------------------------------------
638
639    n = assert_eq(size(x), size(f), "pchsp_95 n")
640    IF ((ibeg == 1 .OR. ibeg == 2) .AND. .NOT. present(vc_beg)) THEN
641      PRINT *, "vc_beg required for IBEG = 1 or 2"
642      stop 1
643    end if
644    IF ((iend == 1 .OR. iend == 2) .AND. .NOT. present(vc_end)) THEN
645      PRINT *, "vc_end required for IEND = 1 or 2"
646      stop 1
647    end if
648    ic = (/ibeg, iend/)
649    IF (present(vc_beg)) vc(1) = vc_beg
650    IF (present(vc_end)) vc(2) = vc_end
651    CALL PCHSP(IC, VC, N, X, F, pchsp_95, 1, WK, size(WK), IERR)
652    IF (ierr /= 0) stop 1
653
654  END FUNCTION pchsp_95
655
656  REAL FUNCTION PCHDF(K, X, S, IERR)
657    !***BEGIN PROLOGUE  PCHDF
658    !***SUBSIDIARY
659    !***PURPOSE  Computes divided differences for PCHCE and PCHSP
660    !***LIBRARY   SLATEC (PCHIP)
661    !***TYPE      SINGLE PRECISION (PCHDF-S, DPCHDF-D)
662    !***AUTHOR  Fritsch, F. N., (LLNL)
663    !***DESCRIPTION
664
665    !      PCHDF:   PCHIP Finite Difference Formula
666
667    ! Uses a divided difference formulation to compute a K-point approx-
668    ! imation to the derivative at X(K) based on the data in X and S.
669
670    ! Called by  PCHCE  and  PCHSP  to compute 3- and 4-point boundary
671    ! derivative approximations.
672
673    ! ----------------------------------------------------------------------
674
675    ! On input:
676    !    K      is the order of the desired derivative approximation.
677    !           K must be at least 3 (error return if not).
678    !    X      contains the K values of the independent variable.
679    !           X need not be ordered, but the values **MUST** be
680    !           distinct.  (Not checked here.)
681    !    S      contains the associated slope values:
682    !              S(I) = (F(I+1)-F(I))/(X(I+1)-X(I)), I=1(1)K-1.
683    !           (Note that S need only be of length K-1.)
684
685    ! On return:
686    !    S      will be destroyed.
687    !    IERR   will be set to -1 if K.LT.2 .
688    !    PCHDF  will be set to the desired derivative approximation if
689    !           IERR=0 or to zero if IERR=-1.
690
691    ! ----------------------------------------------------------------------
692
693    !***SEE ALSO  PCHCE, PCHSP
694    !***REFERENCES  Carl de Boor, A Practical Guide to Splines, Springer-
695    !             Verlag, New York, 1978, pp. 10-16.
696    !***ROUTINES CALLED  XERMSG
697    !***REVISION HISTORY  (YYMMDD)
698    !   820503  DATE WRITTEN
699    !   820805  Converted to SLATEC library version.
700    !   870813  Minor cosmetic changes.
701    !   890411  Added SAVE statements (Vers. 3.2).
702    !   890411  REVISION DATE from Version 3.2
703    !   891214  Prologue converted to Version 4.0 format.  (BAB)
704    !   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
705    !   900328  Added TYPE section.  (WRB)
706    !   910408  Updated AUTHOR and DATE WRITTEN sections in prologue.  (WRB)
707    !   920429  Revised format and order of references.  (WRB,FNF)
708    !   930503  Improved purpose.  (FNF)
709    !***END PROLOGUE  PCHDF
710
711    !**End
712
713    !  DECLARE ARGUMENTS.
714
715    INTEGER :: K, IERR
716    REAL :: X(K), S(K)
717
718    !  DECLARE LOCAL VARIABLES.
719
720    INTEGER :: I, J
721    REAL :: VALUE, ZERO
722    SAVE ZERO
723    DATA  ZERO /0./
724
725    !  CHECK FOR LEGAL VALUE OF K.
726
727    !***FIRST EXECUTABLE STATEMENT  PCHDF
728    IF (K < 3)  GO TO 5001
729
730    !  COMPUTE COEFFICIENTS OF INTERPOLATING POLYNOMIAL.
731
732    DO J = 2, K - 1
733      DO I = 1, K - J
734        S(I) = (S(I + 1) - S(I)) / (X(I + J) - X(I))
735      END DO
736    END DO
737
738    !  EVALUATE DERIVATIVE AT X(K).
739
740    VALUE = S(1)
741    DO I = 2, K - 1
742      VALUE = S(I) + VALUE * (X(K) - X(I))
743    END DO
744
745    !  NORMAL RETURN.
746
747    IERR = 0
748    PCHDF = VALUE
749    RETURN
750
751    !  ERROR RETURN.
752
753    5001   CONTINUE
754    ! K.LT.3 RETURN.
755    IERR = -1
756    CALL XERMSG ('SLATEC', 'PCHDF', 'K LESS THAN THREE', IERR, 1)
757    PCHDF = ZERO
758    RETURN
759    !------------- LAST LINE OF PCHDF FOLLOWS ------------------------------
760  END FUNCTION PCHDF
761
762  SUBROUTINE PCHSP(IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
763    !***BEGIN PROLOGUE  PCHSP
764    !***PURPOSE  Set derivatives needed to determine the Hermite represen-
765    ! tation of the cubic spline interpolant to given data, with
766    ! specified boundary conditions.
767    !***LIBRARY   SLATEC (PCHIP)
768    !***CATEGORY  E1A
769    !***TYPE      SINGLE PRECISION (PCHSP-S, DPCHSP-D)
770    !***KEYWORDS  CUBIC HERMITE INTERPOLATION, PCHIP,
771    !  PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
772    !***AUTHOR  Fritsch, F. N., (LLNL)
773    !  Lawrence Livermore National Laboratory
774    !  P.O. Box 808  (L-316)
775    !  Livermore, CA  94550
776    !  FTS 532-4275, (510) 422-4275
777    !***DESCRIPTION
778
779    !      PCHSP:   Piecewise Cubic Hermite Spline
780
781    ! Computes the Hermite representation of the cubic spline inter-
782    ! polant to the data given in X and F satisfying the boundary
783    ! conditions specified by IC and VC.
784
785    ! To facilitate two-dimensional applications, includes an increment
786    ! between successive values of the F- and D-arrays.
787
788    ! The resulting piecewise cubic Hermite function may be evaluated
789    ! by PCHFE or PCHFD.
790
791    ! NOTE:  This is a modified version of C. de Boor's cubic spline
792    !        routine CUBSPL.
793
794    ! ----------------------------------------------------------------------
795
796    !  Calling sequence:
797
798    !    PARAMETER  (INCFD = ...)
799    !    INTEGER  IC(2), N, NWK, IERR
800    !    REAL  VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
801
802    !    CALL  PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
803
804    !   Parameters:
805
806    ! IC -- (input) integer array of length 2 specifying desired
807    !       boundary conditions:
808    !       IC(1) = IBEG, desired condition at beginning of data.
809    !       IC(2) = IEND, desired condition at end of data.
810
811    !       IBEG = 0  to set D(1) so that the third derivative is con-
812    !          tinuous at X(2).  This is the "not a knot" condition
813    !          provided by de Boor's cubic spline routine CUBSPL.
814    !          < This is the default boundary condition. >
815    !       IBEG = 1  if first derivative at X(1) is given in VC(1).
816    !       IBEG = 2  if second derivative at X(1) is given in VC(1).
817    !       IBEG = 3  to use the 3-point difference formula for D(1).
818    !                 (Reverts to the default b.c. if N.LT.3 .)
819    !       IBEG = 4  to use the 4-point difference formula for D(1).
820    !                 (Reverts to the default b.c. if N.LT.4 .)
821    !      NOTES:
822    !       1. An error return is taken if IBEG is out of range.
823    !       2. For the "natural" boundary condition, use IBEG=2 and
824    !          VC(1)=0.
825
826    !       IEND may take on the same values as IBEG, but applied to
827    !       derivative at X(N).  In case IEND = 1 or 2, the value is
828    !       given in VC(2).
829
830    !      NOTES:
831    !       1. An error return is taken if IEND is out of range.
832    !       2. For the "natural" boundary condition, use IEND=2 and
833    !          VC(2)=0.
834
835    ! VC -- (input) real array of length 2 specifying desired boundary
836    !       values, as indicated above.
837    !       VC(1) need be set only if IC(1) = 1 or 2 .
838    !       VC(2) need be set only if IC(2) = 1 or 2 .
839
840    ! N -- (input) number of data points.  (Error return if N.LT.2 .)
841
842    ! X -- (input) real array of independent variable values.  The
843    !       elements of X must be strictly increasing:
844    !            X(I-1) .LT. X(I),  I = 2(1)N.
845    !       (Error return if not.)
846
847    ! F -- (input) real array of dependent variable values to be inter-
848    !       polated.  F(1+(I-1)*INCFD) is value corresponding to X(I).
849
850    ! D -- (output) real array of derivative values at the data points.
851    !       These values will determine the cubic spline interpolant
852    !       with the requested boundary conditions.
853    !       The value corresponding to X(I) is stored in
854    !            D(1+(I-1)*INCFD),  I=1(1)N.
855    !       No other entries in D are changed.
856
857    ! INCFD -- (input) increment between successive values in F and D.
858    !       This argument is provided primarily for 2-D applications.
859    !       (Error return if  INCFD.LT.1 .)
860
861    ! WK -- (scratch) real array of working storage.
862
863    ! NWK -- (input) length of work array.
864    !       (Error return if NWK.LT.2*N .)
865
866    ! IERR -- (output) error flag.
867    !       Normal return:
868    !          IERR = 0  (no errors).
869    !       "Recoverable" errors:
870    !          IERR = -1  if N.LT.2 .
871    !          IERR = -2  if INCFD.LT.1 .
872    !          IERR = -3  if the X-array is not strictly increasing.
873    !          IERR = -4  if IBEG.LT.0 or IBEG.GT.4 .
874    !          IERR = -5  if IEND.LT.0 of IEND.GT.4 .
875    !          IERR = -6  if both of the above are true.
876    !          IERR = -7  if NWK is too small.
877    !           NOTE:  The above errors are checked in the order listed,
878    !               and following arguments have **NOT** been validated.
879    !         (The D-array has not been changed in any of these cases.)
880    !          IERR = -8  in case of trouble solving the linear system
881    !                     for the interior derivative values.
882    !         (The D-array may have been changed in this case.)
883    !         (             Do **NOT** use it!                )
884
885    !***REFERENCES  Carl de Boor, A Practical Guide to Splines, Springer-
886    !             Verlag, New York, 1978, pp. 53-59.
887    !***ROUTINES CALLED  PCHDF, XERMSG
888    !***REVISION HISTORY  (YYMMDD)
889    !   820503  DATE WRITTEN
890    !   820804  Converted to SLATEC library version.
891    !   870707  Minor cosmetic changes to prologue.
892    !   890411  Added SAVE statements (Vers. 3.2).
893    !   890703  Corrected category record.  (WRB)
894    !   890831  Modified array declarations.  (WRB)
895    !   890831  REVISION DATE from Version 3.2
896    !   891214  Prologue converted to Version 4.0 format.  (BAB)
897    !   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
898    !   920429  Revised format and order of references.  (WRB,FNF)
899    !***END PROLOGUE  PCHSP
900    !  Programming notes:
901
902    ! To produce a double precision version, simply:
903    !    a. Change PCHSP to DPCHSP wherever it occurs,
904    !    b. Change the real declarations to double precision, and
905    !    c. Change the constants ZERO, HALF, ... to double precision.
906
907    !  DECLARE ARGUMENTS.
908
909    INTEGER :: IC(2), N, INCFD, NWK, IERR
910    REAL :: VC(2), X(*), F(INCFD, *), D(INCFD, *), WK(2, *)
911
912    !  DECLARE LOCAL VARIABLES.
913
914    INTEGER :: IBEG, IEND, INDEX, J, NM1
915    REAL :: G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO
916    SAVE ZERO, HALF, ONE, TWO, THREE
917
918    DATA  ZERO /0./, HALF /0.5/, ONE /1./, TWO /2./, THREE /3./
919
920    !  VALIDITY-CHECK ARGUMENTS.
921
922    !***FIRST EXECUTABLE STATEMENT  PCHSP
923    IF (N<2)  GO TO 5001
924    IF (INCFD<1)  GO TO 5002
925    DO J = 2, N
926      IF (X(J)<=X(J - 1))  GO TO 5003
927    END DO
928
929    IBEG = IC(1)
930    IEND = IC(2)
931    IERR = 0
932    IF ((IBEG<0).OR.(IBEG>4))  IERR = IERR - 1
933    IF ((IEND<0).OR.(IEND>4))  IERR = IERR - 2
934    IF (IERR<0)  GO TO 5004
935
936    !  FUNCTION DEFINITION IS OK -- GO ON.
937
938    IF (NWK < 2 * N)  GO TO 5007
939
940    !  COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO,
941    !  COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.).
942    DO J = 2, N
943      WK(1, J) = X(J) - X(J - 1)
944      WK(2, J) = (F(1, J) - F(1, J - 1)) / WK(1, J)
945    END DO
946
947    !  SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
948
949    IF (IBEG>N)  IBEG = 0
950    IF (IEND>N)  IEND = 0
951
952    !  SET UP FOR BOUNDARY CONDITIONS.
953
954    IF ((IBEG==1).OR.(IBEG==2))  THEN
955      D(1, 1) = VC(1)
956    ELSE IF (IBEG > 2)  THEN
957      ! PICK UP FIRST IBEG POINTS, IN REVERSE ORDER.
958      DO J = 1, IBEG
959        INDEX = IBEG - J + 1
960        ! INDEX RUNS FROM IBEG DOWN TO 1.
961        XTEMP(J) = X(INDEX)
962        IF (J < IBEG)  STEMP(J) = WK(2, INDEX)
963      END DO
964      ! --------------------------------
965      D(1, 1) = PCHDF (IBEG, XTEMP, STEMP, IERR)
966      ! --------------------------------
967      IF (IERR /= 0)  GO TO 5009
968      IBEG = 1
969    ENDIF
970
971    IF ((IEND==1).OR.(IEND==2))  THEN
972      D(1, N) = VC(2)
973    ELSE IF (IEND > 2)  THEN
974      ! PICK UP LAST IEND POINTS.
975      DO J = 1, IEND
976        INDEX = N - IEND + J
977        ! INDEX RUNS FROM N+1-IEND UP TO N.
978        XTEMP(J) = X(INDEX)
979        IF (J < IEND)  STEMP(J) = WK(2, INDEX + 1)
980      END DO
981      ! --------------------------------
982      D(1, N) = PCHDF (IEND, XTEMP, STEMP, IERR)
983      ! --------------------------------
984      IF (IERR /= 0)  GO TO 5009
985      IEND = 1
986    ENDIF
987
988    ! --------------------( BEGIN CODING FROM CUBSPL )--------------------
989
990    !  **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF
991    !  F  AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM-
992    !  INATION, WITH S(J) ENDING UP IN D(1,J), ALL J.
993    ! WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE.
994
995    !  CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM
996    !         WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1)
997
998    IF (IBEG == 0)  THEN
999      IF (N == 2)  THEN
1000        ! NO CONDITION AT LEFT END AND N = 2.
1001        WK(2, 1) = ONE
1002        WK(1, 1) = ONE
1003        D(1, 1) = TWO * WK(2, 2)
1004      ELSE
1005        ! NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2.
1006        WK(2, 1) = WK(1, 3)
1007        WK(1, 1) = WK(1, 2) + WK(1, 3)
1008        D(1, 1) = ((WK(1, 2) + TWO * WK(1, 1)) * WK(2, 2) * WK(1, 3) &
1009                + WK(1, 2)**2 * WK(2, 3)) / WK(1, 1)
1010      ENDIF
1011    ELSE IF (IBEG == 1)  THEN
1012      ! SLOPE PRESCRIBED AT LEFT END.
1013      WK(2, 1) = ONE
1014      WK(1, 1) = ZERO
1015    ELSE
1016      ! SECOND DERIVATIVE PRESCRIBED AT LEFT END.
1017      WK(2, 1) = TWO
1018      WK(1, 1) = ONE
1019      D(1, 1) = THREE * WK(2, 2) - HALF * WK(1, 2) * D(1, 1)
1020    ENDIF
1021
1022    !  IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND
1023    !  CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH
1024    !  EQUATION READS    WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J).
1025
1026    NM1 = N - 1
1027    IF (NM1 > 1)  THEN
1028      DO J = 2, NM1
1029        IF (WK(2, J - 1) == ZERO)  GO TO 5008
1030        G = -WK(1, J + 1) / WK(2, J - 1)
1031        D(1, J) = G * D(1, J - 1) &
1032                + THREE * (WK(1, J) * WK(2, J + 1) + WK(1, J + 1) * WK(2, J))
1033        WK(2, J) = G * WK(1, J - 1) + TWO * (WK(1, J) + WK(1, J + 1))
1034      END DO
1035    ENDIF
1036
1037    !  CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM
1038    !       (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N)
1039
1040    ! IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK-
1041    ! SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT
1042    ! AT THIS POINT.
1043    IF (IEND == 1)  GO TO 30
1044
1045    IF (IEND == 0)  THEN
1046      IF (N==2 .AND. IBEG==0)  THEN
1047        ! NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2.
1048        D(1, 2) = WK(2, 2)
1049        GO TO 30
1050      ELSE IF ((N==2) .OR. (N==3 .AND. IBEG==0))  THEN
1051        ! EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT*
1052        ! NOT-A-KNOT AT LEFT END POINT).
1053        D(1, N) = TWO * WK(2, N)
1054        WK(2, N) = ONE
1055        IF (WK(2, N - 1) == ZERO)  GO TO 5008
1056        G = -ONE / WK(2, N - 1)
1057      ELSE
1058        ! NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR  ALSO NOT-A-
1059        ! KNOT AT LEFT END POINT.
1060        G = WK(1, N - 1) + WK(1, N)
1061        ! DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES).
1062        D(1, N) = ((WK(1, N) + TWO * G) * WK(2, N) * WK(1, N - 1) &
1063                + WK(1, N)**2 * (F(1, N - 1) - F(1, N - 2)) / WK(1, N - 1)) / G
1064        IF (WK(2, N - 1) == ZERO)  GO TO 5008
1065        G = -G / WK(2, N - 1)
1066        WK(2, N) = WK(1, N - 1)
1067      ENDIF
1068    ELSE
1069      ! SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT.
1070      D(1, N) = THREE * WK(2, N) + HALF * WK(1, N) * D(1, N)
1071      WK(2, N) = TWO
1072      IF (WK(2, N - 1) == ZERO)  GO TO 5008
1073      G = -ONE / WK(2, N - 1)
1074    ENDIF
1075
1076    !  COMPLETE FORWARD PASS OF GAUSS ELIMINATION.
1077
1078    WK(2, N) = G * WK(1, N - 1) + WK(2, N)
1079    IF (WK(2, N) == ZERO)   GO TO 5008
1080    D(1, N) = (G * D(1, N - 1) + D(1, N)) / WK(2, N)
1081
1082    !  CARRY OUT BACK SUBSTITUTION
1083
1084    30   CONTINUE
1085    DO J = NM1, 1, -1
1086      IF (WK(2, J) == ZERO)  GO TO 5008
1087      D(1, J) = (D(1, J) - WK(1, J) * D(1, J + 1)) / WK(2, J)
1088    END DO
1089    ! --------------------(  END  CODING FROM CUBSPL )--------------------
1090
1091    !  NORMAL RETURN.
1092
1093    RETURN
1094
1095    !  ERROR RETURNS.
1096
1097    5001   CONTINUE
1098    ! N.LT.2 RETURN.
1099    IERR = -1
1100    CALL XERMSG ('SLATEC', 'PCHSP', &
1101            'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
1102    RETURN
1103
1104    5002   CONTINUE
1105    ! INCFD.LT.1 RETURN.
1106    IERR = -2
1107    CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR, &
1108            1)
1109    RETURN
1110
1111    5003   CONTINUE
1112    ! X-ARRAY NOT STRICTLY INCREASING.
1113    IERR = -3
1114    CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING' &
1115            , IERR, 1)
1116    RETURN
1117
1118    5004   CONTINUE
1119    ! IC OUT OF RANGE RETURN.
1120    IERR = IERR - 3
1121    CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1)
1122    RETURN
1123
1124    5007   CONTINUE
1125    ! NWK TOO SMALL RETURN.
1126    IERR = -7
1127    CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1)
1128    RETURN
1129
1130    5008   CONTINUE
1131    ! SINGULAR SYSTEM.
1132    !   *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES   ***
1133    !   *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). ***
1134    IERR = -8
1135    CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR, &
1136            1)
1137    RETURN
1138
1139    5009   CONTINUE
1140    ! ERROR RETURN FROM PCHDF.
1141    !   *** THIS CASE SHOULD NEVER OCCUR ***
1142    IERR = -9
1143    CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR, &
1144            1)
1145    RETURN
1146    !------------- LAST LINE OF PCHSP FOLLOWS ------------------------------
1147  END SUBROUTINE PCHSP
1148
1149
1150END MODULE lmdz_libmath_pch
Note: See TracBrowser for help on using the repository browser.