| 1 | ! This module encapsulates misc. math functions |
|---|
| 2 | |
|---|
| 3 | MODULE lmdz_libmath_pch |
|---|
| 4 | USE slatec_xer, ONLY: xermsg |
|---|
| 5 | IMPLICIT NONE; PRIVATE |
|---|
| 6 | PUBLIC pchfe_95, pchsp_95 |
|---|
| 7 | CONTAINS |
|---|
| 8 | REAL FUNCTION cbrt(x) |
|---|
| 9 | ! Return the cubic root for positive or negative x |
|---|
| 10 | REAL :: x |
|---|
| 11 | |
|---|
| 12 | cbrt = sign(1., x) * (abs(x)**(1. / 3.)) |
|---|
| 13 | END FUNCTION cbrt |
|---|
| 14 | |
|---|
| 15 | SUBROUTINE CHFEV(X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR) |
|---|
| 16 | !***BEGIN PROLOGUE CHFEV |
|---|
| 17 | !***PURPOSE Evaluate a cubic polynomial given in Hermite form at an |
|---|
| 18 | ! array of points. While designed for use by PCHFE, it may |
|---|
| 19 | ! be useful directly as an evaluator for a piecewise cubic |
|---|
| 20 | ! Hermite function in applications, such as graphing, where |
|---|
| 21 | ! the interval is known in advance. |
|---|
| 22 | !***LIBRARY SLATEC (PCHIP) |
|---|
| 23 | !***CATEGORY E3 |
|---|
| 24 | !***TYPE SINGLE PRECISION (CHFEV-S, DCHFEV-D) |
|---|
| 25 | !***KEYWORDS CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION, |
|---|
| 26 | ! PCHIP |
|---|
| 27 | !***AUTHOR Fritsch, F. N., (LLNL) |
|---|
| 28 | ! Lawrence Livermore National Laboratory |
|---|
| 29 | ! P.O. Box 808 (L-316) |
|---|
| 30 | ! Livermore, CA 94550 |
|---|
| 31 | ! FTS 532-4275, (510) 422-4275 |
|---|
| 32 | !***DESCRIPTION |
|---|
| 33 | |
|---|
| 34 | ! CHFEV: Cubic Hermite Function EValuator |
|---|
| 35 | |
|---|
| 36 | ! Evaluates the cubic polynomial determined by function values |
|---|
| 37 | ! F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points |
|---|
| 38 | ! XE(J), J=1(1)NE. |
|---|
| 39 | |
|---|
| 40 | ! ---------------------------------------------------------------------- |
|---|
| 41 | |
|---|
| 42 | ! Calling sequence: |
|---|
| 43 | |
|---|
| 44 | ! INTEGER NE, NEXT(2), IERR |
|---|
| 45 | ! REAL X1, X2, F1, F2, D1, D2, XE(NE), FE(NE) |
|---|
| 46 | |
|---|
| 47 | ! CALL CHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR) |
|---|
| 48 | |
|---|
| 49 | ! Parameters: |
|---|
| 50 | |
|---|
| 51 | ! X1,X2 -- (input) endpoints of interval of definition of cubic. |
|---|
| 52 | ! (Error return if X1.EQ.X2 .) |
|---|
| 53 | |
|---|
| 54 | ! F1,F2 -- (input) values of function at X1 and X2, respectively. |
|---|
| 55 | |
|---|
| 56 | ! D1,D2 -- (input) values of derivative at X1 and X2, respectively. |
|---|
| 57 | |
|---|
| 58 | ! NE -- (input) number of evaluation points. (Error return if |
|---|
| 59 | ! NE.LT.1 .) |
|---|
| 60 | |
|---|
| 61 | ! XE -- (input) real array of points at which the function is to be |
|---|
| 62 | ! evaluated. If any of the XE are outside the interval |
|---|
| 63 | ! [X1,X2], a warning error is returned in NEXT. |
|---|
| 64 | |
|---|
| 65 | ! FE -- (output) real array of values of the cubic function defined |
|---|
| 66 | ! by X1,X2, F1,F2, D1,D2 at the points XE. |
|---|
| 67 | |
|---|
| 68 | ! NEXT -- (output) integer array indicating number of extrapolation |
|---|
| 69 | ! points: |
|---|
| 70 | ! NEXT(1) = number of evaluation points to left of interval. |
|---|
| 71 | ! NEXT(2) = number of evaluation points to right of interval. |
|---|
| 72 | |
|---|
| 73 | ! IERR -- (output) error flag. |
|---|
| 74 | ! Normal return: |
|---|
| 75 | ! IERR = 0 (no errors). |
|---|
| 76 | ! "Recoverable" errors: |
|---|
| 77 | ! IERR = -1 if NE.LT.1 . |
|---|
| 78 | ! IERR = -2 if X1.EQ.X2 . |
|---|
| 79 | ! (The FE-array has not been changed in either case.) |
|---|
| 80 | |
|---|
| 81 | !***REFERENCES (NONE) |
|---|
| 82 | !***ROUTINES CALLED XERMSG |
|---|
| 83 | !***REVISION HISTORY (YYMMDD) |
|---|
| 84 | ! 811019 DATE WRITTEN |
|---|
| 85 | ! 820803 Minor cosmetic changes for release 1. |
|---|
| 86 | ! 890411 Added SAVE statements (Vers. 3.2). |
|---|
| 87 | ! 890531 Changed all specific intrinsics to generic. (WRB) |
|---|
| 88 | ! 890703 Corrected category record. (WRB) |
|---|
| 89 | ! 890703 REVISION DATE from Version 3.2 |
|---|
| 90 | ! 891214 Prologue converted to Version 4.0 format. (BAB) |
|---|
| 91 | ! 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
|---|
| 92 | !***END PROLOGUE CHFEV |
|---|
| 93 | ! Programming notes: |
|---|
| 94 | |
|---|
| 95 | ! To produce a double precision version, simply: |
|---|
| 96 | ! a. Change CHFEV to DCHFEV wherever it occurs, |
|---|
| 97 | ! b. Change the real declaration to double precision, and |
|---|
| 98 | ! c. Change the constant ZERO to double precision. |
|---|
| 99 | |
|---|
| 100 | ! DECLARE ARGUMENTS. |
|---|
| 101 | |
|---|
| 102 | INTEGER :: NE, NEXT(2), IERR |
|---|
| 103 | REAL :: X1, X2, F1, F2, D1, D2, XE(*), FE(*) |
|---|
| 104 | |
|---|
| 105 | ! DECLARE LOCAL VARIABLES. |
|---|
| 106 | |
|---|
| 107 | INTEGER :: I |
|---|
| 108 | REAL :: C2, C3, DEL1, DEL2, DELTA, H, X, XMI, XMA, ZERO |
|---|
| 109 | SAVE ZERO |
|---|
| 110 | DATA ZERO /0./ |
|---|
| 111 | |
|---|
| 112 | ! VALIDITY-CHECK ARGUMENTS. |
|---|
| 113 | |
|---|
| 114 | !***FIRST EXECUTABLE STATEMENT CHFEV |
|---|
| 115 | IF (NE < 1) GO TO 5001 |
|---|
| 116 | H = X2 - X1 |
|---|
| 117 | IF (H == ZERO) GO TO 5002 |
|---|
| 118 | |
|---|
| 119 | ! INITIALIZE. |
|---|
| 120 | |
|---|
| 121 | IERR = 0 |
|---|
| 122 | NEXT(1) = 0 |
|---|
| 123 | NEXT(2) = 0 |
|---|
| 124 | XMI = MIN(ZERO, H) |
|---|
| 125 | XMA = MAX(ZERO, H) |
|---|
| 126 | |
|---|
| 127 | ! COMPUTE CUBIC COEFFICIENTS (EXPANDED ABOUT X1). |
|---|
| 128 | |
|---|
| 129 | DELTA = (F2 - F1) / H |
|---|
| 130 | DEL1 = (D1 - DELTA) / H |
|---|
| 131 | DEL2 = (D2 - DELTA) / H |
|---|
| 132 | ! (DELTA IS NO LONGER NEEDED.) |
|---|
| 133 | C2 = -(DEL1 + DEL1 + DEL2) |
|---|
| 134 | C3 = (DEL1 + DEL2) / H |
|---|
| 135 | ! (H, DEL1 AND DEL2 ARE NO LONGER NEEDED.) |
|---|
| 136 | |
|---|
| 137 | ! EVALUATION LOOP. |
|---|
| 138 | |
|---|
| 139 | DO I = 1, NE |
|---|
| 140 | X = XE(I) - X1 |
|---|
| 141 | FE(I) = F1 + X * (D1 + X * (C2 + X * C3)) |
|---|
| 142 | ! COUNT EXTRAPOLATION POINTS. |
|---|
| 143 | IF (X<XMI) NEXT(1) = NEXT(1) + 1 |
|---|
| 144 | IF (X>XMA) NEXT(2) = NEXT(2) + 1 |
|---|
| 145 | ! (NOTE REDUNDANCY--IF EITHER CONDITION IS TRUE, OTHER IS FALSE.) |
|---|
| 146 | END DO |
|---|
| 147 | |
|---|
| 148 | ! NORMAL RETURN. |
|---|
| 149 | |
|---|
| 150 | RETURN |
|---|
| 151 | |
|---|
| 152 | ! ERROR RETURNS. |
|---|
| 153 | |
|---|
| 154 | 5001 CONTINUE |
|---|
| 155 | ! NE.LT.1 RETURN. |
|---|
| 156 | IERR = -1 |
|---|
| 157 | CALL XERMSG ('SLATEC', 'CHFEV', & |
|---|
| 158 | 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1) |
|---|
| 159 | RETURN |
|---|
| 160 | |
|---|
| 161 | 5002 CONTINUE |
|---|
| 162 | ! X1.EQ.X2 RETURN. |
|---|
| 163 | IERR = -2 |
|---|
| 164 | CALL XERMSG ('SLATEC', 'CHFEV', 'INTERVAL ENDPOINTS EQUAL', IERR, & |
|---|
| 165 | 1) |
|---|
| 166 | RETURN |
|---|
| 167 | !------------- LAST LINE OF CHFEV FOLLOWS ------------------------------ |
|---|
| 168 | END SUBROUTINE CHFEV |
|---|
| 169 | |
|---|
| 170 | SUBROUTINE PCHFE(N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR) |
|---|
| 171 | !***BEGIN PROLOGUE PCHFE |
|---|
| 172 | !***PURPOSE Evaluate a piecewise cubic Hermite function at an array of |
|---|
| 173 | ! points. May be used by itself for Hermite interpolation, |
|---|
| 174 | ! or as an evaluator for PCHIM or PCHIC. |
|---|
| 175 | !***LIBRARY SLATEC (PCHIP) |
|---|
| 176 | !***CATEGORY E3 |
|---|
| 177 | !***TYPE SINGLE PRECISION (PCHFE-S, DPCHFE-D) |
|---|
| 178 | !***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP, |
|---|
| 179 | ! PIECEWISE CUBIC EVALUATION |
|---|
| 180 | !***AUTHOR Fritsch, F. N., (LLNL) |
|---|
| 181 | ! Lawrence Livermore National Laboratory |
|---|
| 182 | ! P.O. Box 808 (L-316) |
|---|
| 183 | ! Livermore, CA 94550 |
|---|
| 184 | ! FTS 532-4275, (510) 422-4275 |
|---|
| 185 | !***DESCRIPTION |
|---|
| 186 | |
|---|
| 187 | ! PCHFE: Piecewise Cubic Hermite Function Evaluator |
|---|
| 188 | |
|---|
| 189 | ! Evaluates the cubic Hermite function defined by N, X, F, D at |
|---|
| 190 | ! the points XE(J), J=1(1)NE. |
|---|
| 191 | |
|---|
| 192 | ! To provide compatibility with PCHIM and PCHIC, includes an |
|---|
| 193 | ! increment between successive values of the F- and D-arrays. |
|---|
| 194 | |
|---|
| 195 | ! ---------------------------------------------------------------------- |
|---|
| 196 | |
|---|
| 197 | ! Calling sequence: |
|---|
| 198 | |
|---|
| 199 | ! PARAMETER (INCFD = ...) |
|---|
| 200 | ! INTEGER N, NE, IERR |
|---|
| 201 | ! REAL X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE) |
|---|
| 202 | ! LOGICAL SKIP |
|---|
| 203 | |
|---|
| 204 | ! CALL PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR) |
|---|
| 205 | |
|---|
| 206 | ! Parameters: |
|---|
| 207 | |
|---|
| 208 | ! N -- (input) number of data points. (Error return if N.LT.2 .) |
|---|
| 209 | |
|---|
| 210 | ! X -- (input) real array of independent variable values. The |
|---|
| 211 | ! elements of X must be strictly increasing: |
|---|
| 212 | ! X(I-1) .LT. X(I), I = 2(1)N. |
|---|
| 213 | ! (Error return if not.) |
|---|
| 214 | |
|---|
| 215 | ! F -- (input) real array of function values. F(1+(I-1)*INCFD) is |
|---|
| 216 | ! the value corresponding to X(I). |
|---|
| 217 | |
|---|
| 218 | ! D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is |
|---|
| 219 | ! the value corresponding to X(I). |
|---|
| 220 | |
|---|
| 221 | ! INCFD -- (input) increment between successive values in F and D. |
|---|
| 222 | ! (Error return if INCFD.LT.1 .) |
|---|
| 223 | |
|---|
| 224 | ! SKIP -- (input/output) LOGICAL variable which should be set to |
|---|
| 225 | ! .TRUE. if the user wishes to skip checks for validity of |
|---|
| 226 | ! preceding parameters, or to .FALSE. otherwise. |
|---|
| 227 | ! This will save time in case these checks have already |
|---|
| 228 | ! been performed (say, in PCHIM or PCHIC). |
|---|
| 229 | ! SKIP will be set to .TRUE. on normal return. |
|---|
| 230 | |
|---|
| 231 | ! NE -- (input) number of evaluation points. (Error return if |
|---|
| 232 | ! NE.LT.1 .) |
|---|
| 233 | |
|---|
| 234 | ! XE -- (input) real array of points at which the function is to be |
|---|
| 235 | ! evaluated. |
|---|
| 236 | |
|---|
| 237 | ! NOTES: |
|---|
| 238 | ! 1. The evaluation will be most efficient if the elements |
|---|
| 239 | ! of XE are increasing relative to X; |
|---|
| 240 | ! that is, XE(J) .GE. X(I) |
|---|
| 241 | ! implies XE(K) .GE. X(I), all K.GE.J . |
|---|
| 242 | ! 2. If any of the XE are outside the interval [X(1),X(N)], |
|---|
| 243 | ! values are extrapolated from the nearest extreme cubic, |
|---|
| 244 | ! and a warning error is returned. |
|---|
| 245 | |
|---|
| 246 | ! FE -- (output) real array of values of the cubic Hermite function |
|---|
| 247 | ! defined by N, X, F, D at the points XE. |
|---|
| 248 | |
|---|
| 249 | ! IERR -- (output) error flag. |
|---|
| 250 | ! Normal return: |
|---|
| 251 | ! IERR = 0 (no errors). |
|---|
| 252 | ! Warning error: |
|---|
| 253 | ! IERR.GT.0 means that extrapolation was performed at |
|---|
| 254 | ! IERR points. |
|---|
| 255 | ! "Recoverable" errors: |
|---|
| 256 | ! IERR = -1 if N.LT.2 . |
|---|
| 257 | ! IERR = -2 if INCFD.LT.1 . |
|---|
| 258 | ! IERR = -3 if the X-array is not strictly increasing. |
|---|
| 259 | ! IERR = -4 if NE.LT.1 . |
|---|
| 260 | ! (The FE-array has not been changed in any of these cases.) |
|---|
| 261 | ! NOTE: The above errors are checked in the order listed, |
|---|
| 262 | ! and following arguments have **NOT** been validated. |
|---|
| 263 | |
|---|
| 264 | !***REFERENCES (NONE) |
|---|
| 265 | !***ROUTINES CALLED CHFEV, XERMSG |
|---|
| 266 | !***REVISION HISTORY (YYMMDD) |
|---|
| 267 | ! 811020 DATE WRITTEN |
|---|
| 268 | ! 820803 Minor cosmetic changes for release 1. |
|---|
| 269 | ! 870707 Minor cosmetic changes to prologue. |
|---|
| 270 | ! 890531 Changed all specific intrinsics to generic. (WRB) |
|---|
| 271 | ! 890831 Modified array declarations. (WRB) |
|---|
| 272 | ! 890831 REVISION DATE from Version 3.2 |
|---|
| 273 | ! 891214 Prologue converted to Version 4.0 format. (BAB) |
|---|
| 274 | ! 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
|---|
| 275 | !***END PROLOGUE PCHFE |
|---|
| 276 | ! Programming notes: |
|---|
| 277 | |
|---|
| 278 | ! 1. To produce a double precision version, simply: |
|---|
| 279 | ! a. Change PCHFE to DPCHFE, and CHFEV to DCHFEV, wherever they |
|---|
| 280 | ! occur, |
|---|
| 281 | ! b. Change the real declaration to double precision, |
|---|
| 282 | |
|---|
| 283 | ! 2. Most of the coding between the CALL to CHFEV and the end of |
|---|
| 284 | ! the IR-loop could be eliminated if it were permissible to |
|---|
| 285 | ! assume that XE is ordered relative to X. |
|---|
| 286 | |
|---|
| 287 | ! 3. CHFEV does not assume that X1 is less than X2. thus, it would |
|---|
| 288 | ! be possible to write a version of PCHFE that assumes a strict- |
|---|
| 289 | ! ly decreasing X-array by simply running the IR-loop backwards |
|---|
| 290 | ! (and reversing the order of appropriate tests). |
|---|
| 291 | |
|---|
| 292 | ! 4. The present code has a minor bug, which I have decided is not |
|---|
| 293 | ! worth the effort that would be required to fix it. |
|---|
| 294 | ! If XE contains points in [X(N-1),X(N)], followed by points .LT. |
|---|
| 295 | ! X(N-1), followed by points .GT.X(N), the extrapolation points |
|---|
| 296 | ! will be counted (at least) twice in the total returned in IERR. |
|---|
| 297 | |
|---|
| 298 | ! DECLARE ARGUMENTS. |
|---|
| 299 | |
|---|
| 300 | INTEGER :: N, INCFD, NE, IERR |
|---|
| 301 | REAL :: X(*), F(INCFD, *), D(INCFD, *), XE(*), FE(*) |
|---|
| 302 | LOGICAL :: SKIP |
|---|
| 303 | |
|---|
| 304 | ! DECLARE LOCAL VARIABLES. |
|---|
| 305 | |
|---|
| 306 | INTEGER :: I, IERC, IR, J, JFIRST, NEXT(2), NJ |
|---|
| 307 | |
|---|
| 308 | ! VALIDITY-CHECK ARGUMENTS. |
|---|
| 309 | |
|---|
| 310 | !***FIRST EXECUTABLE STATEMENT PCHFE |
|---|
| 311 | IF (SKIP) GO TO 5 |
|---|
| 312 | |
|---|
| 313 | IF (N<2) GO TO 5001 |
|---|
| 314 | IF (INCFD<1) GO TO 5002 |
|---|
| 315 | DO I = 2, N |
|---|
| 316 | IF (X(I)<=X(I - 1)) GO TO 5003 |
|---|
| 317 | END DO |
|---|
| 318 | |
|---|
| 319 | ! FUNCTION DEFINITION IS OK, GO ON. |
|---|
| 320 | |
|---|
| 321 | 5 CONTINUE |
|---|
| 322 | IF (NE<1) GO TO 5004 |
|---|
| 323 | IERR = 0 |
|---|
| 324 | SKIP = .TRUE. |
|---|
| 325 | |
|---|
| 326 | ! LOOP OVER INTERVALS. ( INTERVAL INDEX IS IL = IR-1 . ) |
|---|
| 327 | ! ( INTERVAL IS X(IL).LE.X.LT.X(IR) . ) |
|---|
| 328 | JFIRST = 1 |
|---|
| 329 | IR = 2 |
|---|
| 330 | 10 CONTINUE |
|---|
| 331 | |
|---|
| 332 | ! SKIP OUT OF LOOP IF HAVE PROCESSED ALL EVALUATION POINTS. |
|---|
| 333 | |
|---|
| 334 | IF (JFIRST > NE) GO TO 5000 |
|---|
| 335 | |
|---|
| 336 | ! LOCATE ALL POINTS IN INTERVAL. |
|---|
| 337 | |
|---|
| 338 | DO J = JFIRST, NE |
|---|
| 339 | IF (XE(J) >= X(IR)) GO TO 30 |
|---|
| 340 | END DO |
|---|
| 341 | J = NE + 1 |
|---|
| 342 | GO TO 40 |
|---|
| 343 | |
|---|
| 344 | ! HAVE LOCATED FIRST POINT BEYOND INTERVAL. |
|---|
| 345 | |
|---|
| 346 | 30 CONTINUE |
|---|
| 347 | IF (IR == N) J = NE + 1 |
|---|
| 348 | |
|---|
| 349 | 40 CONTINUE |
|---|
| 350 | NJ = J - JFIRST |
|---|
| 351 | |
|---|
| 352 | ! SKIP EVALUATION IF NO POINTS IN INTERVAL. |
|---|
| 353 | |
|---|
| 354 | IF (NJ == 0) GO TO 50 |
|---|
| 355 | |
|---|
| 356 | ! EVALUATE CUBIC AT XE(I), I = JFIRST (1) J-1 . |
|---|
| 357 | |
|---|
| 358 | ! ---------------------------------------------------------------- |
|---|
| 359 | CALL CHFEV (X(IR - 1), X(IR), F(1, IR - 1), F(1, IR), D(1, IR - 1), D(1, IR), & |
|---|
| 360 | NJ, XE(JFIRST), FE(JFIRST), NEXT, IERC) |
|---|
| 361 | ! ---------------------------------------------------------------- |
|---|
| 362 | IF (IERC < 0) GO TO 5005 |
|---|
| 363 | |
|---|
| 364 | IF (NEXT(2) == 0) GO TO 42 |
|---|
| 365 | ! IF (NEXT(2) .GT. 0) THEN |
|---|
| 366 | ! IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(2) TO THE |
|---|
| 367 | ! RIGHT OF X(IR). |
|---|
| 368 | |
|---|
| 369 | IF (IR < N) GO TO 41 |
|---|
| 370 | ! IF (IR .EQ. N) THEN |
|---|
| 371 | ! THESE ARE ACTUALLY EXTRAPOLATION POINTS. |
|---|
| 372 | IERR = IERR + NEXT(2) |
|---|
| 373 | GO TO 42 |
|---|
| 374 | 41 CONTINUE |
|---|
| 375 | ! ELSE |
|---|
| 376 | ! WE SHOULD NEVER HAVE GOTTEN HERE. |
|---|
| 377 | GO TO 5005 |
|---|
| 378 | ! ENDIF |
|---|
| 379 | ! ENDIF |
|---|
| 380 | 42 CONTINUE |
|---|
| 381 | |
|---|
| 382 | IF (NEXT(1) == 0) GO TO 49 |
|---|
| 383 | ! IF (NEXT(1) .GT. 0) THEN |
|---|
| 384 | ! IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(1) TO THE |
|---|
| 385 | ! LEFT OF X(IR-1). |
|---|
| 386 | |
|---|
| 387 | IF (IR > 2) GO TO 43 |
|---|
| 388 | ! IF (IR .EQ. 2) THEN |
|---|
| 389 | ! THESE ARE ACTUALLY EXTRAPOLATION POINTS. |
|---|
| 390 | IERR = IERR + NEXT(1) |
|---|
| 391 | GO TO 49 |
|---|
| 392 | 43 CONTINUE |
|---|
| 393 | ! ELSE |
|---|
| 394 | ! XE IS NOT ORDERED RELATIVE TO X, SO MUST ADJUST |
|---|
| 395 | ! EVALUATION INTERVAL. |
|---|
| 396 | |
|---|
| 397 | ! FIRST, LOCATE FIRST POINT TO LEFT OF X(IR-1). |
|---|
| 398 | DO I = JFIRST, J - 1 |
|---|
| 399 | IF (XE(I) < X(IR - 1)) GO TO 45 |
|---|
| 400 | END DO |
|---|
| 401 | ! NOTE-- CANNOT DROP THROUGH HERE UNLESS THERE IS AN ERROR |
|---|
| 402 | ! IN CHFEV. |
|---|
| 403 | GO TO 5005 |
|---|
| 404 | |
|---|
| 405 | 45 CONTINUE |
|---|
| 406 | ! RESET J. (THIS WILL BE THE NEW JFIRST.) |
|---|
| 407 | J = I |
|---|
| 408 | |
|---|
| 409 | ! NOW FIND OUT HOW FAR TO BACK UP IN THE X-ARRAY. |
|---|
| 410 | DO I = 1, IR - 1 |
|---|
| 411 | IF (XE(J) < X(I)) GO TO 47 |
|---|
| 412 | END DO |
|---|
| 413 | ! NB-- CAN NEVER DROP THROUGH HERE, SINCE XE(J).LT.X(IR-1). |
|---|
| 414 | |
|---|
| 415 | 47 CONTINUE |
|---|
| 416 | ! AT THIS POINT, EITHER XE(J) .LT. X(1) |
|---|
| 417 | ! OR X(I-1) .LE. XE(J) .LT. X(I) . |
|---|
| 418 | ! RESET IR, RECOGNIZING THAT IT WILL BE INCREMENTED BEFORE |
|---|
| 419 | ! CYCLING. |
|---|
| 420 | IR = MAX(1, I - 1) |
|---|
| 421 | ! ENDIF |
|---|
| 422 | ! ENDIF |
|---|
| 423 | 49 CONTINUE |
|---|
| 424 | |
|---|
| 425 | JFIRST = J |
|---|
| 426 | |
|---|
| 427 | ! END OF IR-LOOP. |
|---|
| 428 | |
|---|
| 429 | 50 CONTINUE |
|---|
| 430 | IR = IR + 1 |
|---|
| 431 | IF (IR <= N) GO TO 10 |
|---|
| 432 | |
|---|
| 433 | ! NORMAL RETURN. |
|---|
| 434 | |
|---|
| 435 | 5000 CONTINUE |
|---|
| 436 | RETURN |
|---|
| 437 | |
|---|
| 438 | ! ERROR RETURNS. |
|---|
| 439 | |
|---|
| 440 | 5001 CONTINUE |
|---|
| 441 | ! N.LT.2 RETURN. |
|---|
| 442 | IERR = -1 |
|---|
| 443 | CALL XERMSG ('SLATEC', 'PCHFE', & |
|---|
| 444 | 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1) |
|---|
| 445 | RETURN |
|---|
| 446 | |
|---|
| 447 | 5002 CONTINUE |
|---|
| 448 | ! INCFD.LT.1 RETURN. |
|---|
| 449 | IERR = -2 |
|---|
| 450 | CALL XERMSG ('SLATEC', 'PCHFE', 'INCREMENT LESS THAN ONE', IERR, & |
|---|
| 451 | 1) |
|---|
| 452 | RETURN |
|---|
| 453 | |
|---|
| 454 | 5003 CONTINUE |
|---|
| 455 | ! X-ARRAY NOT STRICTLY INCREASING. |
|---|
| 456 | IERR = -3 |
|---|
| 457 | CALL XERMSG ('SLATEC', 'PCHFE', 'X-ARRAY NOT STRICTLY INCREASING' & |
|---|
| 458 | , IERR, 1) |
|---|
| 459 | RETURN |
|---|
| 460 | |
|---|
| 461 | 5004 CONTINUE |
|---|
| 462 | ! NE.LT.1 RETURN. |
|---|
| 463 | IERR = -4 |
|---|
| 464 | CALL XERMSG ('SLATEC', 'PCHFE', & |
|---|
| 465 | 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1) |
|---|
| 466 | RETURN |
|---|
| 467 | |
|---|
| 468 | 5005 CONTINUE |
|---|
| 469 | ! ERROR RETURN FROM CHFEV. |
|---|
| 470 | ! *** THIS CASE SHOULD NEVER OCCUR *** |
|---|
| 471 | IERR = -5 |
|---|
| 472 | CALL XERMSG ('SLATEC', 'PCHFE', & |
|---|
| 473 | 'ERROR RETURN FROM CHFEV -- FATAL', IERR, 2) |
|---|
| 474 | RETURN |
|---|
| 475 | !------------- LAST LINE OF PCHFE FOLLOWS ------------------------------ |
|---|
| 476 | END SUBROUTINE PCHFE |
|---|
| 477 | |
|---|
| 478 | SUBROUTINE PCHFE_95(X, F, D, SKIP, XE, FE, IERR) |
|---|
| 479 | |
|---|
| 480 | ! PURPOSE Evaluate a piecewise cubic Hermite function at an array of |
|---|
| 481 | ! points. May be used by itself for Hermite interpolation, |
|---|
| 482 | ! or as an evaluator for PCHIM or PCHIC. |
|---|
| 483 | ! CATEGORY E3 |
|---|
| 484 | ! KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP, |
|---|
| 485 | ! PIECEWISE CUBIC EVALUATION |
|---|
| 486 | |
|---|
| 487 | ! PCHFE: Piecewise Cubic Hermite Function Evaluator |
|---|
| 488 | ! Evaluates the cubic Hermite function defined by X, F, D at |
|---|
| 489 | ! the points XE. |
|---|
| 490 | |
|---|
| 491 | USE lmdz_assert_eq, ONLY: assert_eq |
|---|
| 492 | |
|---|
| 493 | REAL, INTENT(IN) :: X(:) ! real array of independent variable values |
|---|
| 494 | ! The elements of X must be strictly increasing. |
|---|
| 495 | |
|---|
| 496 | REAL, INTENT(IN) :: F(:) ! real array of function values |
|---|
| 497 | ! F(I) is the value corresponding to X(I). |
|---|
| 498 | |
|---|
| 499 | REAL, INTENT(IN) :: D(:) ! real array of derivative values |
|---|
| 500 | ! D(I) is the value corresponding to X(I). |
|---|
| 501 | |
|---|
| 502 | LOGICAL, INTENT(INOUT) :: SKIP |
|---|
| 503 | ! request to skip checks for validity of "x" |
|---|
| 504 | ! If "skip" is false then "pchfe" will check that size(x) >= 2 and |
|---|
| 505 | ! "x" is in strictly ascending order. |
|---|
| 506 | ! Setting "skip" to true will save time in case these checks have |
|---|
| 507 | ! already been performed (say, in "PCHIM" or "PCHIC"). |
|---|
| 508 | ! "SKIP" will be set to TRUE on normal return. |
|---|
| 509 | |
|---|
| 510 | REAL, INTENT(IN) :: XE(:) ! points at which the function is to be evaluated |
|---|
| 511 | ! NOTES: |
|---|
| 512 | ! 1. The evaluation will be most efficient if the elements of XE |
|---|
| 513 | ! are increasing relative to X. |
|---|
| 514 | ! That is, XE(J) .GE. X(I) |
|---|
| 515 | ! implies XE(K) .GE. X(I), all K.GE.J |
|---|
| 516 | ! 2. If any of the XE are outside the interval [X(1),X(N)], values |
|---|
| 517 | ! are extrapolated from the nearest extreme cubic, and a warning |
|---|
| 518 | ! error is returned. |
|---|
| 519 | |
|---|
| 520 | REAL, INTENT(OUT) :: FE(:) ! values of the cubic Hermite function |
|---|
| 521 | ! defined by X, F, D at the points XE |
|---|
| 522 | |
|---|
| 523 | INTEGER, INTENT(OUT) :: IERR ! error flag |
|---|
| 524 | ! Normal return: |
|---|
| 525 | ! IERR = 0 no error |
|---|
| 526 | ! Warning error: |
|---|
| 527 | ! IERR > 0 means that extrapolation was performed at IERR points |
|---|
| 528 | ! "Recoverable" errors: |
|---|
| 529 | ! IERR = -1 if N < 2 |
|---|
| 530 | ! IERR = -3 if the X-array is not strictly increasing |
|---|
| 531 | ! IERR = -4 if NE < 1 |
|---|
| 532 | ! NOTE: The above errors are checked in the order listed, and |
|---|
| 533 | ! following arguments have **NOT** been validated. |
|---|
| 534 | |
|---|
| 535 | ! Variables local to the procedure: |
|---|
| 536 | |
|---|
| 537 | INTEGER N, NE |
|---|
| 538 | |
|---|
| 539 | !--------------------------------------- |
|---|
| 540 | |
|---|
| 541 | n = assert_eq(size(x), size(f), size(d), "PCHFE_95 n") |
|---|
| 542 | ne = assert_eq(size(xe), size(fe), "PCHFE_95 ne") |
|---|
| 543 | CALL PCHFE(N, X, F, D, 1, SKIP, NE, XE, FE, IERR) |
|---|
| 544 | |
|---|
| 545 | END SUBROUTINE PCHFE_95 |
|---|
| 546 | |
|---|
| 547 | FUNCTION pchsp_95(x, f, ibeg, iend, vc_beg, vc_end) |
|---|
| 548 | |
|---|
| 549 | ! PURPOSE: Set derivatives needed to determine the Hermite |
|---|
| 550 | ! representation of the cubic spline interpolant to given data, |
|---|
| 551 | ! with specified boundary conditions. |
|---|
| 552 | |
|---|
| 553 | ! Part of the "pchip" package. |
|---|
| 554 | |
|---|
| 555 | ! CATEGORY: E1A |
|---|
| 556 | |
|---|
| 557 | ! KEYWORDS: cubic hermite interpolation, piecewise cubic |
|---|
| 558 | ! interpolation, spline interpolation |
|---|
| 559 | |
|---|
| 560 | ! DESCRIPTION: "pchsp" stands for "Piecewise Cubic Hermite Spline" |
|---|
| 561 | ! Computes the Hermite representation of the cubic spline |
|---|
| 562 | ! interpolant to the data given in X and F satisfying the boundary |
|---|
| 563 | ! conditions specified by Ibeg, iend, vc_beg and VC_end. |
|---|
| 564 | |
|---|
| 565 | ! The resulting piecewise cubic Hermite function may be evaluated |
|---|
| 566 | ! by "pchfe" or "pchfd". |
|---|
| 567 | |
|---|
| 568 | ! NOTE: This is a modified version of C. de Boor's cubic spline |
|---|
| 569 | ! routine "cubspl". |
|---|
| 570 | |
|---|
| 571 | ! REFERENCE: Carl de Boor, A Practical Guide to Splines, Springer, |
|---|
| 572 | ! 2001, pages 43-47 |
|---|
| 573 | |
|---|
| 574 | USE lmdz_assert_eq, ONLY: assert_eq |
|---|
| 575 | |
|---|
| 576 | REAL, INTENT(IN) :: x(:) |
|---|
| 577 | ! independent variable values |
|---|
| 578 | ! The elements of X must be strictly increasing: |
|---|
| 579 | ! X(I-1) < X(I), I = 2...N. |
|---|
| 580 | ! (Error return if not.) |
|---|
| 581 | ! (error if size(x) < 2) |
|---|
| 582 | |
|---|
| 583 | REAL, INTENT(IN) :: f(:) |
|---|
| 584 | ! dependent variable values to be interpolated |
|---|
| 585 | ! F(I) is value corresponding to X(I). |
|---|
| 586 | |
|---|
| 587 | INTEGER, INTENT(IN) :: ibeg |
|---|
| 588 | ! desired boundary condition at beginning of data |
|---|
| 589 | |
|---|
| 590 | ! IBEG = 0 to set pchsp_95(1) so that the third derivative is con- |
|---|
| 591 | ! tinuous at X(2). This is the "not a knot" condition |
|---|
| 592 | ! provided by de Boor's cubic spline routine CUBSPL. |
|---|
| 593 | ! This is the default boundary condition. |
|---|
| 594 | ! IBEG = 1 if first derivative at X(1) is given in VC_BEG. |
|---|
| 595 | ! IBEG = 2 if second derivative at X(1) is given in VC_BEG. |
|---|
| 596 | ! IBEG = 3 to use the 3-point difference formula for pchsp_95(1). |
|---|
| 597 | ! (Reverts to the default boundary condition if size(x) < 3 .) |
|---|
| 598 | ! IBEG = 4 to use the 4-point difference formula for pchsp_95(1). |
|---|
| 599 | ! (Reverts to the default boundary condition if size(x) < 4 .) |
|---|
| 600 | |
|---|
| 601 | ! NOTES: |
|---|
| 602 | ! 1. An error return is taken if IBEG is out of range. |
|---|
| 603 | ! 2. For the "natural" boundary condition, use IBEG=2 and |
|---|
| 604 | ! VC_BEG=0. |
|---|
| 605 | |
|---|
| 606 | INTEGER, INTENT(IN) :: iend |
|---|
| 607 | ! IC(2) = IEND, desired condition at end of data. |
|---|
| 608 | ! IEND may take on the same values as IBEG, but applied to |
|---|
| 609 | ! derivative at X(N). In case IEND = 1 or 2, The value is given in VC_END. |
|---|
| 610 | |
|---|
| 611 | ! NOTES: |
|---|
| 612 | ! 1. An error return is taken if IEND is out of range. |
|---|
| 613 | ! 2. For the "natural" boundary condition, use IEND=2 and |
|---|
| 614 | ! VC_END=0. |
|---|
| 615 | |
|---|
| 616 | REAL, INTENT(IN), optional :: vc_beg |
|---|
| 617 | ! desired boundary value, as indicated above. |
|---|
| 618 | ! VC_BEG need be set only if IBEG = 1 or 2 . |
|---|
| 619 | |
|---|
| 620 | REAL, INTENT(IN), optional :: vc_end |
|---|
| 621 | ! desired boundary value, as indicated above. |
|---|
| 622 | ! VC_END need be set only if Iend = 1 or 2 . |
|---|
| 623 | |
|---|
| 624 | REAL pchsp_95(size(x)) |
|---|
| 625 | ! derivative values at the data points |
|---|
| 626 | ! These values will determine the cubic spline interpolant |
|---|
| 627 | ! with the requested boundary conditions. |
|---|
| 628 | ! The value corresponding to X(I) is stored in |
|---|
| 629 | ! PCHSP_95(I), I=1...N. |
|---|
| 630 | |
|---|
| 631 | ! LOCAL VARIABLES: |
|---|
| 632 | REAL wk(2, size(x)) ! real array of working storage |
|---|
| 633 | INTEGER n ! number of data points |
|---|
| 634 | INTEGER ierr, ic(2) |
|---|
| 635 | REAL vc(2) |
|---|
| 636 | |
|---|
| 637 | !------------------------------------------------------------------- |
|---|
| 638 | |
|---|
| 639 | n = assert_eq(size(x), size(f), "pchsp_95 n") |
|---|
| 640 | IF ((ibeg == 1 .OR. ibeg == 2) .AND. .NOT. present(vc_beg)) THEN |
|---|
| 641 | PRINT *, "vc_beg required for IBEG = 1 or 2" |
|---|
| 642 | stop 1 |
|---|
| 643 | end if |
|---|
| 644 | IF ((iend == 1 .OR. iend == 2) .AND. .NOT. present(vc_end)) THEN |
|---|
| 645 | PRINT *, "vc_end required for IEND = 1 or 2" |
|---|
| 646 | stop 1 |
|---|
| 647 | end if |
|---|
| 648 | ic = (/ibeg, iend/) |
|---|
| 649 | IF (present(vc_beg)) vc(1) = vc_beg |
|---|
| 650 | IF (present(vc_end)) vc(2) = vc_end |
|---|
| 651 | CALL PCHSP(IC, VC, N, X, F, pchsp_95, 1, WK, size(WK), IERR) |
|---|
| 652 | IF (ierr /= 0) stop 1 |
|---|
| 653 | |
|---|
| 654 | END FUNCTION pchsp_95 |
|---|
| 655 | |
|---|
| 656 | REAL FUNCTION PCHDF(K, X, S, IERR) |
|---|
| 657 | !***BEGIN PROLOGUE PCHDF |
|---|
| 658 | !***SUBSIDIARY |
|---|
| 659 | !***PURPOSE Computes divided differences for PCHCE and PCHSP |
|---|
| 660 | !***LIBRARY SLATEC (PCHIP) |
|---|
| 661 | !***TYPE SINGLE PRECISION (PCHDF-S, DPCHDF-D) |
|---|
| 662 | !***AUTHOR Fritsch, F. N., (LLNL) |
|---|
| 663 | !***DESCRIPTION |
|---|
| 664 | |
|---|
| 665 | ! PCHDF: PCHIP Finite Difference Formula |
|---|
| 666 | |
|---|
| 667 | ! Uses a divided difference formulation to compute a K-point approx- |
|---|
| 668 | ! imation to the derivative at X(K) based on the data in X and S. |
|---|
| 669 | |
|---|
| 670 | ! Called by PCHCE and PCHSP to compute 3- and 4-point boundary |
|---|
| 671 | ! derivative approximations. |
|---|
| 672 | |
|---|
| 673 | ! ---------------------------------------------------------------------- |
|---|
| 674 | |
|---|
| 675 | ! On input: |
|---|
| 676 | ! K is the order of the desired derivative approximation. |
|---|
| 677 | ! K must be at least 3 (error return if not). |
|---|
| 678 | ! X contains the K values of the independent variable. |
|---|
| 679 | ! X need not be ordered, but the values **MUST** be |
|---|
| 680 | ! distinct. (Not checked here.) |
|---|
| 681 | ! S contains the associated slope values: |
|---|
| 682 | ! S(I) = (F(I+1)-F(I))/(X(I+1)-X(I)), I=1(1)K-1. |
|---|
| 683 | ! (Note that S need only be of length K-1.) |
|---|
| 684 | |
|---|
| 685 | ! On return: |
|---|
| 686 | ! S will be destroyed. |
|---|
| 687 | ! IERR will be set to -1 if K.LT.2 . |
|---|
| 688 | ! PCHDF will be set to the desired derivative approximation if |
|---|
| 689 | ! IERR=0 or to zero if IERR=-1. |
|---|
| 690 | |
|---|
| 691 | ! ---------------------------------------------------------------------- |
|---|
| 692 | |
|---|
| 693 | !***SEE ALSO PCHCE, PCHSP |
|---|
| 694 | !***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer- |
|---|
| 695 | ! Verlag, New York, 1978, pp. 10-16. |
|---|
| 696 | !***ROUTINES CALLED XERMSG |
|---|
| 697 | !***REVISION HISTORY (YYMMDD) |
|---|
| 698 | ! 820503 DATE WRITTEN |
|---|
| 699 | ! 820805 Converted to SLATEC library version. |
|---|
| 700 | ! 870813 Minor cosmetic changes. |
|---|
| 701 | ! 890411 Added SAVE statements (Vers. 3.2). |
|---|
| 702 | ! 890411 REVISION DATE from Version 3.2 |
|---|
| 703 | ! 891214 Prologue converted to Version 4.0 format. (BAB) |
|---|
| 704 | ! 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
|---|
| 705 | ! 900328 Added TYPE section. (WRB) |
|---|
| 706 | ! 910408 Updated AUTHOR and DATE WRITTEN sections in prologue. (WRB) |
|---|
| 707 | ! 920429 Revised format and order of references. (WRB,FNF) |
|---|
| 708 | ! 930503 Improved purpose. (FNF) |
|---|
| 709 | !***END PROLOGUE PCHDF |
|---|
| 710 | |
|---|
| 711 | !**End |
|---|
| 712 | |
|---|
| 713 | ! DECLARE ARGUMENTS. |
|---|
| 714 | |
|---|
| 715 | INTEGER :: K, IERR |
|---|
| 716 | REAL :: X(K), S(K) |
|---|
| 717 | |
|---|
| 718 | ! DECLARE LOCAL VARIABLES. |
|---|
| 719 | |
|---|
| 720 | INTEGER :: I, J |
|---|
| 721 | REAL :: VALUE, ZERO |
|---|
| 722 | SAVE ZERO |
|---|
| 723 | DATA ZERO /0./ |
|---|
| 724 | |
|---|
| 725 | ! CHECK FOR LEGAL VALUE OF K. |
|---|
| 726 | |
|---|
| 727 | !***FIRST EXECUTABLE STATEMENT PCHDF |
|---|
| 728 | IF (K < 3) GO TO 5001 |
|---|
| 729 | |
|---|
| 730 | ! COMPUTE COEFFICIENTS OF INTERPOLATING POLYNOMIAL. |
|---|
| 731 | |
|---|
| 732 | DO J = 2, K - 1 |
|---|
| 733 | DO I = 1, K - J |
|---|
| 734 | S(I) = (S(I + 1) - S(I)) / (X(I + J) - X(I)) |
|---|
| 735 | END DO |
|---|
| 736 | END DO |
|---|
| 737 | |
|---|
| 738 | ! EVALUATE DERIVATIVE AT X(K). |
|---|
| 739 | |
|---|
| 740 | VALUE = S(1) |
|---|
| 741 | DO I = 2, K - 1 |
|---|
| 742 | VALUE = S(I) + VALUE * (X(K) - X(I)) |
|---|
| 743 | END DO |
|---|
| 744 | |
|---|
| 745 | ! NORMAL RETURN. |
|---|
| 746 | |
|---|
| 747 | IERR = 0 |
|---|
| 748 | PCHDF = VALUE |
|---|
| 749 | RETURN |
|---|
| 750 | |
|---|
| 751 | ! ERROR RETURN. |
|---|
| 752 | |
|---|
| 753 | 5001 CONTINUE |
|---|
| 754 | ! K.LT.3 RETURN. |
|---|
| 755 | IERR = -1 |
|---|
| 756 | CALL XERMSG ('SLATEC', 'PCHDF', 'K LESS THAN THREE', IERR, 1) |
|---|
| 757 | PCHDF = ZERO |
|---|
| 758 | RETURN |
|---|
| 759 | !------------- LAST LINE OF PCHDF FOLLOWS ------------------------------ |
|---|
| 760 | END FUNCTION PCHDF |
|---|
| 761 | |
|---|
| 762 | SUBROUTINE PCHSP(IC, VC, N, X, F, D, INCFD, WK, NWK, IERR) |
|---|
| 763 | !***BEGIN PROLOGUE PCHSP |
|---|
| 764 | !***PURPOSE Set derivatives needed to determine the Hermite represen- |
|---|
| 765 | ! tation of the cubic spline interpolant to given data, with |
|---|
| 766 | ! specified boundary conditions. |
|---|
| 767 | !***LIBRARY SLATEC (PCHIP) |
|---|
| 768 | !***CATEGORY E1A |
|---|
| 769 | !***TYPE SINGLE PRECISION (PCHSP-S, DPCHSP-D) |
|---|
| 770 | !***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP, |
|---|
| 771 | ! PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION |
|---|
| 772 | !***AUTHOR Fritsch, F. N., (LLNL) |
|---|
| 773 | ! Lawrence Livermore National Laboratory |
|---|
| 774 | ! P.O. Box 808 (L-316) |
|---|
| 775 | ! Livermore, CA 94550 |
|---|
| 776 | ! FTS 532-4275, (510) 422-4275 |
|---|
| 777 | !***DESCRIPTION |
|---|
| 778 | |
|---|
| 779 | ! PCHSP: Piecewise Cubic Hermite Spline |
|---|
| 780 | |
|---|
| 781 | ! Computes the Hermite representation of the cubic spline inter- |
|---|
| 782 | ! polant to the data given in X and F satisfying the boundary |
|---|
| 783 | ! conditions specified by IC and VC. |
|---|
| 784 | |
|---|
| 785 | ! To facilitate two-dimensional applications, includes an increment |
|---|
| 786 | ! between successive values of the F- and D-arrays. |
|---|
| 787 | |
|---|
| 788 | ! The resulting piecewise cubic Hermite function may be evaluated |
|---|
| 789 | ! by PCHFE or PCHFD. |
|---|
| 790 | |
|---|
| 791 | ! NOTE: This is a modified version of C. de Boor's cubic spline |
|---|
| 792 | ! routine CUBSPL. |
|---|
| 793 | |
|---|
| 794 | ! ---------------------------------------------------------------------- |
|---|
| 795 | |
|---|
| 796 | ! Calling sequence: |
|---|
| 797 | |
|---|
| 798 | ! PARAMETER (INCFD = ...) |
|---|
| 799 | ! INTEGER IC(2), N, NWK, IERR |
|---|
| 800 | ! REAL VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK) |
|---|
| 801 | |
|---|
| 802 | ! CALL PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR) |
|---|
| 803 | |
|---|
| 804 | ! Parameters: |
|---|
| 805 | |
|---|
| 806 | ! IC -- (input) integer array of length 2 specifying desired |
|---|
| 807 | ! boundary conditions: |
|---|
| 808 | ! IC(1) = IBEG, desired condition at beginning of data. |
|---|
| 809 | ! IC(2) = IEND, desired condition at end of data. |
|---|
| 810 | |
|---|
| 811 | ! IBEG = 0 to set D(1) so that the third derivative is con- |
|---|
| 812 | ! tinuous at X(2). This is the "not a knot" condition |
|---|
| 813 | ! provided by de Boor's cubic spline routine CUBSPL. |
|---|
| 814 | ! < This is the default boundary condition. > |
|---|
| 815 | ! IBEG = 1 if first derivative at X(1) is given in VC(1). |
|---|
| 816 | ! IBEG = 2 if second derivative at X(1) is given in VC(1). |
|---|
| 817 | ! IBEG = 3 to use the 3-point difference formula for D(1). |
|---|
| 818 | ! (Reverts to the default b.c. if N.LT.3 .) |
|---|
| 819 | ! IBEG = 4 to use the 4-point difference formula for D(1). |
|---|
| 820 | ! (Reverts to the default b.c. if N.LT.4 .) |
|---|
| 821 | ! NOTES: |
|---|
| 822 | ! 1. An error return is taken if IBEG is out of range. |
|---|
| 823 | ! 2. For the "natural" boundary condition, use IBEG=2 and |
|---|
| 824 | ! VC(1)=0. |
|---|
| 825 | |
|---|
| 826 | ! IEND may take on the same values as IBEG, but applied to |
|---|
| 827 | ! derivative at X(N). In case IEND = 1 or 2, the value is |
|---|
| 828 | ! given in VC(2). |
|---|
| 829 | |
|---|
| 830 | ! NOTES: |
|---|
| 831 | ! 1. An error return is taken if IEND is out of range. |
|---|
| 832 | ! 2. For the "natural" boundary condition, use IEND=2 and |
|---|
| 833 | ! VC(2)=0. |
|---|
| 834 | |
|---|
| 835 | ! VC -- (input) real array of length 2 specifying desired boundary |
|---|
| 836 | ! values, as indicated above. |
|---|
| 837 | ! VC(1) need be set only if IC(1) = 1 or 2 . |
|---|
| 838 | ! VC(2) need be set only if IC(2) = 1 or 2 . |
|---|
| 839 | |
|---|
| 840 | ! N -- (input) number of data points. (Error return if N.LT.2 .) |
|---|
| 841 | |
|---|
| 842 | ! X -- (input) real array of independent variable values. The |
|---|
| 843 | ! elements of X must be strictly increasing: |
|---|
| 844 | ! X(I-1) .LT. X(I), I = 2(1)N. |
|---|
| 845 | ! (Error return if not.) |
|---|
| 846 | |
|---|
| 847 | ! F -- (input) real array of dependent variable values to be inter- |
|---|
| 848 | ! polated. F(1+(I-1)*INCFD) is value corresponding to X(I). |
|---|
| 849 | |
|---|
| 850 | ! D -- (output) real array of derivative values at the data points. |
|---|
| 851 | ! These values will determine the cubic spline interpolant |
|---|
| 852 | ! with the requested boundary conditions. |
|---|
| 853 | ! The value corresponding to X(I) is stored in |
|---|
| 854 | ! D(1+(I-1)*INCFD), I=1(1)N. |
|---|
| 855 | ! No other entries in D are changed. |
|---|
| 856 | |
|---|
| 857 | ! INCFD -- (input) increment between successive values in F and D. |
|---|
| 858 | ! This argument is provided primarily for 2-D applications. |
|---|
| 859 | ! (Error return if INCFD.LT.1 .) |
|---|
| 860 | |
|---|
| 861 | ! WK -- (scratch) real array of working storage. |
|---|
| 862 | |
|---|
| 863 | ! NWK -- (input) length of work array. |
|---|
| 864 | ! (Error return if NWK.LT.2*N .) |
|---|
| 865 | |
|---|
| 866 | ! IERR -- (output) error flag. |
|---|
| 867 | ! Normal return: |
|---|
| 868 | ! IERR = 0 (no errors). |
|---|
| 869 | ! "Recoverable" errors: |
|---|
| 870 | ! IERR = -1 if N.LT.2 . |
|---|
| 871 | ! IERR = -2 if INCFD.LT.1 . |
|---|
| 872 | ! IERR = -3 if the X-array is not strictly increasing. |
|---|
| 873 | ! IERR = -4 if IBEG.LT.0 or IBEG.GT.4 . |
|---|
| 874 | ! IERR = -5 if IEND.LT.0 of IEND.GT.4 . |
|---|
| 875 | ! IERR = -6 if both of the above are true. |
|---|
| 876 | ! IERR = -7 if NWK is too small. |
|---|
| 877 | ! NOTE: The above errors are checked in the order listed, |
|---|
| 878 | ! and following arguments have **NOT** been validated. |
|---|
| 879 | ! (The D-array has not been changed in any of these cases.) |
|---|
| 880 | ! IERR = -8 in case of trouble solving the linear system |
|---|
| 881 | ! for the interior derivative values. |
|---|
| 882 | ! (The D-array may have been changed in this case.) |
|---|
| 883 | ! ( Do **NOT** use it! ) |
|---|
| 884 | |
|---|
| 885 | !***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer- |
|---|
| 886 | ! Verlag, New York, 1978, pp. 53-59. |
|---|
| 887 | !***ROUTINES CALLED PCHDF, XERMSG |
|---|
| 888 | !***REVISION HISTORY (YYMMDD) |
|---|
| 889 | ! 820503 DATE WRITTEN |
|---|
| 890 | ! 820804 Converted to SLATEC library version. |
|---|
| 891 | ! 870707 Minor cosmetic changes to prologue. |
|---|
| 892 | ! 890411 Added SAVE statements (Vers. 3.2). |
|---|
| 893 | ! 890703 Corrected category record. (WRB) |
|---|
| 894 | ! 890831 Modified array declarations. (WRB) |
|---|
| 895 | ! 890831 REVISION DATE from Version 3.2 |
|---|
| 896 | ! 891214 Prologue converted to Version 4.0 format. (BAB) |
|---|
| 897 | ! 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
|---|
| 898 | ! 920429 Revised format and order of references. (WRB,FNF) |
|---|
| 899 | !***END PROLOGUE PCHSP |
|---|
| 900 | ! Programming notes: |
|---|
| 901 | |
|---|
| 902 | ! To produce a double precision version, simply: |
|---|
| 903 | ! a. Change PCHSP to DPCHSP wherever it occurs, |
|---|
| 904 | ! b. Change the real declarations to double precision, and |
|---|
| 905 | ! c. Change the constants ZERO, HALF, ... to double precision. |
|---|
| 906 | |
|---|
| 907 | ! DECLARE ARGUMENTS. |
|---|
| 908 | |
|---|
| 909 | INTEGER :: IC(2), N, INCFD, NWK, IERR |
|---|
| 910 | REAL :: VC(2), X(*), F(INCFD, *), D(INCFD, *), WK(2, *) |
|---|
| 911 | |
|---|
| 912 | ! DECLARE LOCAL VARIABLES. |
|---|
| 913 | |
|---|
| 914 | INTEGER :: IBEG, IEND, INDEX, J, NM1 |
|---|
| 915 | REAL :: G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO |
|---|
| 916 | SAVE ZERO, HALF, ONE, TWO, THREE |
|---|
| 917 | |
|---|
| 918 | DATA ZERO /0./, HALF /0.5/, ONE /1./, TWO /2./, THREE /3./ |
|---|
| 919 | |
|---|
| 920 | ! VALIDITY-CHECK ARGUMENTS. |
|---|
| 921 | |
|---|
| 922 | !***FIRST EXECUTABLE STATEMENT PCHSP |
|---|
| 923 | IF (N<2) GO TO 5001 |
|---|
| 924 | IF (INCFD<1) GO TO 5002 |
|---|
| 925 | DO J = 2, N |
|---|
| 926 | IF (X(J)<=X(J - 1)) GO TO 5003 |
|---|
| 927 | END DO |
|---|
| 928 | |
|---|
| 929 | IBEG = IC(1) |
|---|
| 930 | IEND = IC(2) |
|---|
| 931 | IERR = 0 |
|---|
| 932 | IF ((IBEG<0).OR.(IBEG>4)) IERR = IERR - 1 |
|---|
| 933 | IF ((IEND<0).OR.(IEND>4)) IERR = IERR - 2 |
|---|
| 934 | IF (IERR<0) GO TO 5004 |
|---|
| 935 | |
|---|
| 936 | ! FUNCTION DEFINITION IS OK -- GO ON. |
|---|
| 937 | |
|---|
| 938 | IF (NWK < 2 * N) GO TO 5007 |
|---|
| 939 | |
|---|
| 940 | ! COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO, |
|---|
| 941 | ! COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.). |
|---|
| 942 | DO J = 2, N |
|---|
| 943 | WK(1, J) = X(J) - X(J - 1) |
|---|
| 944 | WK(2, J) = (F(1, J) - F(1, J - 1)) / WK(1, J) |
|---|
| 945 | END DO |
|---|
| 946 | |
|---|
| 947 | ! SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL. |
|---|
| 948 | |
|---|
| 949 | IF (IBEG>N) IBEG = 0 |
|---|
| 950 | IF (IEND>N) IEND = 0 |
|---|
| 951 | |
|---|
| 952 | ! SET UP FOR BOUNDARY CONDITIONS. |
|---|
| 953 | |
|---|
| 954 | IF ((IBEG==1).OR.(IBEG==2)) THEN |
|---|
| 955 | D(1, 1) = VC(1) |
|---|
| 956 | ELSE IF (IBEG > 2) THEN |
|---|
| 957 | ! PICK UP FIRST IBEG POINTS, IN REVERSE ORDER. |
|---|
| 958 | DO J = 1, IBEG |
|---|
| 959 | INDEX = IBEG - J + 1 |
|---|
| 960 | ! INDEX RUNS FROM IBEG DOWN TO 1. |
|---|
| 961 | XTEMP(J) = X(INDEX) |
|---|
| 962 | IF (J < IBEG) STEMP(J) = WK(2, INDEX) |
|---|
| 963 | END DO |
|---|
| 964 | ! -------------------------------- |
|---|
| 965 | D(1, 1) = PCHDF (IBEG, XTEMP, STEMP, IERR) |
|---|
| 966 | ! -------------------------------- |
|---|
| 967 | IF (IERR /= 0) GO TO 5009 |
|---|
| 968 | IBEG = 1 |
|---|
| 969 | ENDIF |
|---|
| 970 | |
|---|
| 971 | IF ((IEND==1).OR.(IEND==2)) THEN |
|---|
| 972 | D(1, N) = VC(2) |
|---|
| 973 | ELSE IF (IEND > 2) THEN |
|---|
| 974 | ! PICK UP LAST IEND POINTS. |
|---|
| 975 | DO J = 1, IEND |
|---|
| 976 | INDEX = N - IEND + J |
|---|
| 977 | ! INDEX RUNS FROM N+1-IEND UP TO N. |
|---|
| 978 | XTEMP(J) = X(INDEX) |
|---|
| 979 | IF (J < IEND) STEMP(J) = WK(2, INDEX + 1) |
|---|
| 980 | END DO |
|---|
| 981 | ! -------------------------------- |
|---|
| 982 | D(1, N) = PCHDF (IEND, XTEMP, STEMP, IERR) |
|---|
| 983 | ! -------------------------------- |
|---|
| 984 | IF (IERR /= 0) GO TO 5009 |
|---|
| 985 | IEND = 1 |
|---|
| 986 | ENDIF |
|---|
| 987 | |
|---|
| 988 | ! --------------------( BEGIN CODING FROM CUBSPL )-------------------- |
|---|
| 989 | |
|---|
| 990 | ! **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF |
|---|
| 991 | ! F AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM- |
|---|
| 992 | ! INATION, WITH S(J) ENDING UP IN D(1,J), ALL J. |
|---|
| 993 | ! WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE. |
|---|
| 994 | |
|---|
| 995 | ! CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM |
|---|
| 996 | ! WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1) |
|---|
| 997 | |
|---|
| 998 | IF (IBEG == 0) THEN |
|---|
| 999 | IF (N == 2) THEN |
|---|
| 1000 | ! NO CONDITION AT LEFT END AND N = 2. |
|---|
| 1001 | WK(2, 1) = ONE |
|---|
| 1002 | WK(1, 1) = ONE |
|---|
| 1003 | D(1, 1) = TWO * WK(2, 2) |
|---|
| 1004 | ELSE |
|---|
| 1005 | ! NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2. |
|---|
| 1006 | WK(2, 1) = WK(1, 3) |
|---|
| 1007 | WK(1, 1) = WK(1, 2) + WK(1, 3) |
|---|
| 1008 | D(1, 1) = ((WK(1, 2) + TWO * WK(1, 1)) * WK(2, 2) * WK(1, 3) & |
|---|
| 1009 | + WK(1, 2)**2 * WK(2, 3)) / WK(1, 1) |
|---|
| 1010 | ENDIF |
|---|
| 1011 | ELSE IF (IBEG == 1) THEN |
|---|
| 1012 | ! SLOPE PRESCRIBED AT LEFT END. |
|---|
| 1013 | WK(2, 1) = ONE |
|---|
| 1014 | WK(1, 1) = ZERO |
|---|
| 1015 | ELSE |
|---|
| 1016 | ! SECOND DERIVATIVE PRESCRIBED AT LEFT END. |
|---|
| 1017 | WK(2, 1) = TWO |
|---|
| 1018 | WK(1, 1) = ONE |
|---|
| 1019 | D(1, 1) = THREE * WK(2, 2) - HALF * WK(1, 2) * D(1, 1) |
|---|
| 1020 | ENDIF |
|---|
| 1021 | |
|---|
| 1022 | ! IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND |
|---|
| 1023 | ! CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH |
|---|
| 1024 | ! EQUATION READS WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J). |
|---|
| 1025 | |
|---|
| 1026 | NM1 = N - 1 |
|---|
| 1027 | IF (NM1 > 1) THEN |
|---|
| 1028 | DO J = 2, NM1 |
|---|
| 1029 | IF (WK(2, J - 1) == ZERO) GO TO 5008 |
|---|
| 1030 | G = -WK(1, J + 1) / WK(2, J - 1) |
|---|
| 1031 | D(1, J) = G * D(1, J - 1) & |
|---|
| 1032 | + THREE * (WK(1, J) * WK(2, J + 1) + WK(1, J + 1) * WK(2, J)) |
|---|
| 1033 | WK(2, J) = G * WK(1, J - 1) + TWO * (WK(1, J) + WK(1, J + 1)) |
|---|
| 1034 | END DO |
|---|
| 1035 | ENDIF |
|---|
| 1036 | |
|---|
| 1037 | ! CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM |
|---|
| 1038 | ! (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N) |
|---|
| 1039 | |
|---|
| 1040 | ! IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK- |
|---|
| 1041 | ! SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT |
|---|
| 1042 | ! AT THIS POINT. |
|---|
| 1043 | IF (IEND == 1) GO TO 30 |
|---|
| 1044 | |
|---|
| 1045 | IF (IEND == 0) THEN |
|---|
| 1046 | IF (N==2 .AND. IBEG==0) THEN |
|---|
| 1047 | ! NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2. |
|---|
| 1048 | D(1, 2) = WK(2, 2) |
|---|
| 1049 | GO TO 30 |
|---|
| 1050 | ELSE IF ((N==2) .OR. (N==3 .AND. IBEG==0)) THEN |
|---|
| 1051 | ! EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT* |
|---|
| 1052 | ! NOT-A-KNOT AT LEFT END POINT). |
|---|
| 1053 | D(1, N) = TWO * WK(2, N) |
|---|
| 1054 | WK(2, N) = ONE |
|---|
| 1055 | IF (WK(2, N - 1) == ZERO) GO TO 5008 |
|---|
| 1056 | G = -ONE / WK(2, N - 1) |
|---|
| 1057 | ELSE |
|---|
| 1058 | ! NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR ALSO NOT-A- |
|---|
| 1059 | ! KNOT AT LEFT END POINT. |
|---|
| 1060 | G = WK(1, N - 1) + WK(1, N) |
|---|
| 1061 | ! DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES). |
|---|
| 1062 | D(1, N) = ((WK(1, N) + TWO * G) * WK(2, N) * WK(1, N - 1) & |
|---|
| 1063 | + WK(1, N)**2 * (F(1, N - 1) - F(1, N - 2)) / WK(1, N - 1)) / G |
|---|
| 1064 | IF (WK(2, N - 1) == ZERO) GO TO 5008 |
|---|
| 1065 | G = -G / WK(2, N - 1) |
|---|
| 1066 | WK(2, N) = WK(1, N - 1) |
|---|
| 1067 | ENDIF |
|---|
| 1068 | ELSE |
|---|
| 1069 | ! SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT. |
|---|
| 1070 | D(1, N) = THREE * WK(2, N) + HALF * WK(1, N) * D(1, N) |
|---|
| 1071 | WK(2, N) = TWO |
|---|
| 1072 | IF (WK(2, N - 1) == ZERO) GO TO 5008 |
|---|
| 1073 | G = -ONE / WK(2, N - 1) |
|---|
| 1074 | ENDIF |
|---|
| 1075 | |
|---|
| 1076 | ! COMPLETE FORWARD PASS OF GAUSS ELIMINATION. |
|---|
| 1077 | |
|---|
| 1078 | WK(2, N) = G * WK(1, N - 1) + WK(2, N) |
|---|
| 1079 | IF (WK(2, N) == ZERO) GO TO 5008 |
|---|
| 1080 | D(1, N) = (G * D(1, N - 1) + D(1, N)) / WK(2, N) |
|---|
| 1081 | |
|---|
| 1082 | ! CARRY OUT BACK SUBSTITUTION |
|---|
| 1083 | |
|---|
| 1084 | 30 CONTINUE |
|---|
| 1085 | DO J = NM1, 1, -1 |
|---|
| 1086 | IF (WK(2, J) == ZERO) GO TO 5008 |
|---|
| 1087 | D(1, J) = (D(1, J) - WK(1, J) * D(1, J + 1)) / WK(2, J) |
|---|
| 1088 | END DO |
|---|
| 1089 | ! --------------------( END CODING FROM CUBSPL )-------------------- |
|---|
| 1090 | |
|---|
| 1091 | ! NORMAL RETURN. |
|---|
| 1092 | |
|---|
| 1093 | RETURN |
|---|
| 1094 | |
|---|
| 1095 | ! ERROR RETURNS. |
|---|
| 1096 | |
|---|
| 1097 | 5001 CONTINUE |
|---|
| 1098 | ! N.LT.2 RETURN. |
|---|
| 1099 | IERR = -1 |
|---|
| 1100 | CALL XERMSG ('SLATEC', 'PCHSP', & |
|---|
| 1101 | 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1) |
|---|
| 1102 | RETURN |
|---|
| 1103 | |
|---|
| 1104 | 5002 CONTINUE |
|---|
| 1105 | ! INCFD.LT.1 RETURN. |
|---|
| 1106 | IERR = -2 |
|---|
| 1107 | CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR, & |
|---|
| 1108 | 1) |
|---|
| 1109 | RETURN |
|---|
| 1110 | |
|---|
| 1111 | 5003 CONTINUE |
|---|
| 1112 | ! X-ARRAY NOT STRICTLY INCREASING. |
|---|
| 1113 | IERR = -3 |
|---|
| 1114 | CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING' & |
|---|
| 1115 | , IERR, 1) |
|---|
| 1116 | RETURN |
|---|
| 1117 | |
|---|
| 1118 | 5004 CONTINUE |
|---|
| 1119 | ! IC OUT OF RANGE RETURN. |
|---|
| 1120 | IERR = IERR - 3 |
|---|
| 1121 | CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1) |
|---|
| 1122 | RETURN |
|---|
| 1123 | |
|---|
| 1124 | 5007 CONTINUE |
|---|
| 1125 | ! NWK TOO SMALL RETURN. |
|---|
| 1126 | IERR = -7 |
|---|
| 1127 | CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1) |
|---|
| 1128 | RETURN |
|---|
| 1129 | |
|---|
| 1130 | 5008 CONTINUE |
|---|
| 1131 | ! SINGULAR SYSTEM. |
|---|
| 1132 | ! *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES *** |
|---|
| 1133 | ! *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). *** |
|---|
| 1134 | IERR = -8 |
|---|
| 1135 | CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR, & |
|---|
| 1136 | 1) |
|---|
| 1137 | RETURN |
|---|
| 1138 | |
|---|
| 1139 | 5009 CONTINUE |
|---|
| 1140 | ! ERROR RETURN FROM PCHDF. |
|---|
| 1141 | ! *** THIS CASE SHOULD NEVER OCCUR *** |
|---|
| 1142 | IERR = -9 |
|---|
| 1143 | CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR, & |
|---|
| 1144 | 1) |
|---|
| 1145 | RETURN |
|---|
| 1146 | !------------- LAST LINE OF PCHSP FOLLOWS ------------------------------ |
|---|
| 1147 | END SUBROUTINE PCHSP |
|---|
| 1148 | |
|---|
| 1149 | |
|---|
| 1150 | END MODULE lmdz_libmath_pch |
|---|