1 | MODULE lmdz_slopes |
---|
2 | |
---|
3 | ! Author: Lionel GUEZ |
---|
4 | ! Extension / factorisation: David CUGNET |
---|
5 | |
---|
6 | IMPLICIT NONE; PRIVATE |
---|
7 | PUBLIC :: slopes |
---|
8 | |
---|
9 | ! Those generic function computes second order slopes with Van |
---|
10 | ! Leer slope-limiting, given cell averages. Reference: Dukowicz, |
---|
11 | ! 1987, SIAM Journal on Scientific and Statistical Computing, 8, |
---|
12 | ! 305. |
---|
13 | |
---|
14 | ! The only difference between the specific functions is the rank |
---|
15 | ! of the first argument and the equal rank of the result. |
---|
16 | |
---|
17 | ! slope(ix,...) acts on ix th dimension. |
---|
18 | |
---|
19 | ! REAL, INTENT(IN), rank >= 1:: f ! (n, ...) cell averages, n must be >= 1 |
---|
20 | ! REAL, INTENT(IN):: x(:) ! (n + 1) cell edges |
---|
21 | ! real slopes, same shape as f ! (n, ...) |
---|
22 | INTERFACE slopes |
---|
23 | MODULE procedure slopes1, slopes2, slopes3, slopes4, slopes5 |
---|
24 | END INTERFACE |
---|
25 | |
---|
26 | |
---|
27 | |
---|
28 | CONTAINS |
---|
29 | |
---|
30 | !------------------------------------------------------------------------------- |
---|
31 | |
---|
32 | PURE FUNCTION slopes1(ix, f, x) |
---|
33 | |
---|
34 | !------------------------------------------------------------------------------- |
---|
35 | ! Arguments: |
---|
36 | INTEGER, INTENT(IN) :: ix |
---|
37 | REAL, INTENT(IN) :: f(:) |
---|
38 | REAL, INTENT(IN) :: x(:) |
---|
39 | REAL :: slopes1(SIZE(f,1)) |
---|
40 | !------------------------------------------------------------------------------- |
---|
41 | ! Local: |
---|
42 | INTEGER :: n, i |
---|
43 | REAL :: xc(SIZE(f,1)) ! (n) cell centers |
---|
44 | REAL :: h(2:SIZE(f,1)-1), delta_xc(2:SIZE(f,1)-1) ! (2:n-1) |
---|
45 | REAL :: fm, ff, fp |
---|
46 | !------------------------------------------------------------------------------- |
---|
47 | n=SIZE(f,ix) |
---|
48 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
49 | FORALL(i=2:n-1) |
---|
50 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
51 | END FORALL |
---|
52 | slopes1(:)=0. |
---|
53 | DO i=2,n-1 |
---|
54 | ff=f(i); fm=f(i-1); fp=f(i+1) |
---|
55 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
56 | slopes1(i)=0.; CYCLE !--- Local extremum |
---|
57 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
58 | slopes1(i)=(fp-fm)/delta_xc(i) |
---|
59 | !--- Slope limitation |
---|
60 | slopes1(i) = SIGN(MIN(ABS(slopes1(i)), & |
---|
61 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes1(i) ) |
---|
62 | END IF |
---|
63 | END DO |
---|
64 | |
---|
65 | END FUNCTION slopes1 |
---|
66 | |
---|
67 | !------------------------------------------------------------------------------- |
---|
68 | |
---|
69 | |
---|
70 | !------------------------------------------------------------------------------- |
---|
71 | |
---|
72 | PURE FUNCTION slopes2(ix, f, x) |
---|
73 | |
---|
74 | !------------------------------------------------------------------------------- |
---|
75 | ! Arguments: |
---|
76 | INTEGER, INTENT(IN) :: ix |
---|
77 | REAL, INTENT(IN) :: f(:, :) |
---|
78 | REAL, INTENT(IN) :: x(:) |
---|
79 | REAL :: slopes2(SIZE(f,1),SIZE(f,2)) |
---|
80 | !------------------------------------------------------------------------------- |
---|
81 | ! Local: |
---|
82 | INTEGER :: n, i, j, sta(2), sto(2) |
---|
83 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
84 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
85 | REAL :: fm, ff, fp, dx |
---|
86 | !------------------------------------------------------------------------------- |
---|
87 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
88 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
89 | FORALL(i=2:n-1) |
---|
90 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
91 | END FORALL |
---|
92 | slopes2(:,:)=0. |
---|
93 | sta=[1,1]; sta(ix)=2 |
---|
94 | sto=SHAPE(f); sto(ix)=n-1 |
---|
95 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
96 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
97 | ff=f(i,j) |
---|
98 | SELECT CASE(ix) |
---|
99 | CASE(1); fm=f(i-1,j); fp=f(i+1,j) |
---|
100 | CASE(2); fm=f(i,j-1); fp=f(i,j+1) |
---|
101 | END SELECT |
---|
102 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
103 | slopes2(i,j)=0.; CYCLE !--- Local extremum |
---|
104 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
105 | slopes2(i,j)=(fp-fm)/dx |
---|
106 | !--- Slope limitation |
---|
107 | slopes2(i,j) = SIGN(MIN(ABS(slopes2(i,j)), & |
---|
108 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes2(i,j) ) |
---|
109 | END IF |
---|
110 | END DO |
---|
111 | END DO |
---|
112 | DEALLOCATE(xc,h,delta_xc) |
---|
113 | |
---|
114 | END FUNCTION slopes2 |
---|
115 | |
---|
116 | !------------------------------------------------------------------------------- |
---|
117 | |
---|
118 | |
---|
119 | !------------------------------------------------------------------------------- |
---|
120 | |
---|
121 | PURE FUNCTION slopes3(ix, f, x) |
---|
122 | |
---|
123 | !------------------------------------------------------------------------------- |
---|
124 | ! Arguments: |
---|
125 | INTEGER, INTENT(IN) :: ix |
---|
126 | REAL, INTENT(IN) :: f(:, :, :) |
---|
127 | REAL, INTENT(IN) :: x(:) |
---|
128 | REAL :: slopes3(SIZE(f,1),SIZE(f,2),SIZE(f,3)) |
---|
129 | !------------------------------------------------------------------------------- |
---|
130 | ! Local: |
---|
131 | INTEGER :: n, i, j, k, sta(3), sto(3) |
---|
132 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
133 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
134 | REAL :: fm, ff, fp, dx |
---|
135 | !------------------------------------------------------------------------------- |
---|
136 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
137 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
138 | FORALL(i=2:n-1) |
---|
139 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
140 | END FORALL |
---|
141 | slopes3(:,:,:)=0. |
---|
142 | sta=[1,1,1]; sta(ix)=2 |
---|
143 | sto=SHAPE(f); sto(ix)=n-1 |
---|
144 | DO k=sta(3),sto(3); IF(ix==3) dx=delta_xc(k) |
---|
145 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
146 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
147 | ff=f(i,j,k) |
---|
148 | SELECT CASE(ix) |
---|
149 | CASE(1); fm=f(i-1,j,k); fp=f(i+1,j,k) |
---|
150 | CASE(2); fm=f(i,j-1,k); fp=f(i,j+1,k) |
---|
151 | CASE(3); fm=f(i,j,k-1); fp=f(i,j,k+1) |
---|
152 | END SELECT |
---|
153 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
154 | slopes3(i,j,k)=0.; CYCLE !--- Local extremum |
---|
155 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
156 | slopes3(i,j,k)=(fp-fm)/dx |
---|
157 | !--- Slope limitation |
---|
158 | slopes3(i,j,k) = SIGN(MIN(ABS(slopes3(i,j,k)), & |
---|
159 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes3(i,j,k) ) |
---|
160 | END IF |
---|
161 | END DO |
---|
162 | END DO |
---|
163 | END DO |
---|
164 | DEALLOCATE(xc,h,delta_xc) |
---|
165 | |
---|
166 | END FUNCTION slopes3 |
---|
167 | |
---|
168 | !------------------------------------------------------------------------------- |
---|
169 | |
---|
170 | |
---|
171 | !------------------------------------------------------------------------------- |
---|
172 | |
---|
173 | PURE FUNCTION slopes4(ix, f, x) |
---|
174 | |
---|
175 | !------------------------------------------------------------------------------- |
---|
176 | ! Arguments: |
---|
177 | INTEGER, INTENT(IN) :: ix |
---|
178 | REAL, INTENT(IN) :: f(:, :, :, :) |
---|
179 | REAL, INTENT(IN) :: x(:) |
---|
180 | REAL :: slopes4(SIZE(f,1),SIZE(f,2),SIZE(f,3),SIZE(f,4)) |
---|
181 | !------------------------------------------------------------------------------- |
---|
182 | ! Local: |
---|
183 | INTEGER :: n, i, j, k, l, m, sta(4), sto(4) |
---|
184 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
185 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
186 | REAL :: fm, ff, fp, dx |
---|
187 | !------------------------------------------------------------------------------- |
---|
188 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
189 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
190 | FORALL(i=2:n-1) |
---|
191 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
192 | END FORALL |
---|
193 | slopes4(:,:,:,:)=0. |
---|
194 | sta=[1,1,1,1]; sta(ix)=2 |
---|
195 | sto=SHAPE(f); sto(ix)=n-1 |
---|
196 | DO l=sta(4),sto(4); IF(ix==4) dx=delta_xc(l) |
---|
197 | DO k=sta(3),sto(3); IF(ix==3) dx=delta_xc(k) |
---|
198 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
199 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
200 | ff=f(i,j,k,l) |
---|
201 | SELECT CASE(ix) |
---|
202 | CASE(1); fm=f(i-1,j,k,l); fp=f(i+1,j,k,l) |
---|
203 | CASE(2); fm=f(i,j-1,k,l); fp=f(i,j+1,k,l) |
---|
204 | CASE(3); fm=f(i,j,k-1,l); fp=f(i,j,k+1,l) |
---|
205 | CASE(4); fm=f(i,j,k,l-1); fp=f(i,j,k,l+1) |
---|
206 | END SELECT |
---|
207 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
208 | slopes4(i,j,k,l)=0.; CYCLE !--- Local extremum |
---|
209 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
210 | slopes4(i,j,k,l)=(fp-fm)/dx |
---|
211 | !--- Slope limitation |
---|
212 | slopes4(i,j,k,l) = SIGN(MIN(ABS(slopes4(i,j,k,l)), & |
---|
213 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes4(i,j,k,l) ) |
---|
214 | END IF |
---|
215 | END DO |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | DEALLOCATE(xc,h,delta_xc) |
---|
220 | |
---|
221 | END FUNCTION slopes4 |
---|
222 | |
---|
223 | !------------------------------------------------------------------------------- |
---|
224 | |
---|
225 | |
---|
226 | !------------------------------------------------------------------------------- |
---|
227 | |
---|
228 | PURE FUNCTION slopes5(ix, f, x) |
---|
229 | |
---|
230 | !------------------------------------------------------------------------------- |
---|
231 | ! Arguments: |
---|
232 | INTEGER, INTENT(IN) :: ix |
---|
233 | REAL, INTENT(IN) :: f(:, :, :, :, :) |
---|
234 | REAL, INTENT(IN) :: x(:) |
---|
235 | REAL :: slopes5(SIZE(f,1),SIZE(f,2),SIZE(f,3),SIZE(f,4),SIZE(f,5)) |
---|
236 | !------------------------------------------------------------------------------- |
---|
237 | ! Local: |
---|
238 | INTEGER :: n, i, j, k, l, m, sta(5), sto(5) |
---|
239 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
240 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
241 | REAL :: fm, ff, fp, dx |
---|
242 | !------------------------------------------------------------------------------- |
---|
243 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
244 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
245 | FORALL(i=2:n-1) |
---|
246 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
247 | END FORALL |
---|
248 | slopes5(:,:,:,:,:)=0. |
---|
249 | sta=[1,1,1,1,1]; sta(ix)=2 |
---|
250 | sto=SHAPE(f); sto(ix)=n-1 |
---|
251 | DO m=sta(5),sto(5); IF(ix==5) dx=delta_xc(m) |
---|
252 | DO l=sta(4),sto(4); IF(ix==4) dx=delta_xc(l) |
---|
253 | DO k=sta(3),sto(3); IF(ix==3) dx=delta_xc(k) |
---|
254 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
255 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
256 | ff=f(i,j,k,l,m) |
---|
257 | SELECT CASE(ix) |
---|
258 | CASE(1); fm=f(i-1,j,k,l,m); fp=f(i+1,j,k,l,m) |
---|
259 | CASE(2); fm=f(i,j-1,k,l,m); fp=f(i,j+1,k,l,m) |
---|
260 | CASE(3); fm=f(i,j,k-1,l,m); fp=f(i,j,k+1,l,m) |
---|
261 | CASE(4); fm=f(i,j,k,l-1,m); fp=f(i,j,k,l+1,m) |
---|
262 | CASE(5); fm=f(i,j,k,l,m-1); fp=f(i,j,k,l,m+1) |
---|
263 | END SELECT |
---|
264 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
265 | slopes5(i,j,k,l,m)=0.; CYCLE !--- Local extremum |
---|
266 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
267 | slopes5(i,j,k,l,m)=(fp-fm)/dx |
---|
268 | !--- Slope limitation |
---|
269 | slopes5(i,j,k,l,m) = SIGN(MIN(ABS(slopes5(i,j,k,l,m)), & |
---|
270 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes5(i,j,k,l,m) ) |
---|
271 | END IF |
---|
272 | END DO |
---|
273 | END DO |
---|
274 | END DO |
---|
275 | END DO |
---|
276 | END DO |
---|
277 | DEALLOCATE(xc,h,delta_xc) |
---|
278 | |
---|
279 | END FUNCTION slopes5 |
---|
280 | |
---|
281 | !------------------------------------------------------------------------------- |
---|
282 | |
---|
283 | END MODULE lmdz_slopes |
---|