[5117] | 1 | MODULE lmdz_slopes |
---|
[2440] | 2 | |
---|
| 3 | ! Author: Lionel GUEZ |
---|
[2788] | 4 | ! Extension / factorisation: David CUGNET |
---|
[2440] | 5 | |
---|
[5119] | 6 | IMPLICIT NONE; PRIVATE |
---|
| 7 | PUBLIC :: slopes |
---|
[2440] | 8 | |
---|
[2788] | 9 | ! Those generic function computes second order slopes with Van |
---|
| 10 | ! Leer slope-limiting, given cell averages. Reference: Dukowicz, |
---|
| 11 | ! 1987, SIAM Journal on Scientific and Statistical Computing, 8, |
---|
| 12 | ! 305. |
---|
[2440] | 13 | |
---|
[2788] | 14 | ! The only difference between the specific functions is the rank |
---|
| 15 | ! of the first argument and the equal rank of the result. |
---|
[2440] | 16 | |
---|
[2788] | 17 | ! slope(ix,...) acts on ix th dimension. |
---|
[2440] | 18 | |
---|
[5117] | 19 | ! REAL, INTENT(IN), rank >= 1:: f ! (n, ...) cell averages, n must be >= 1 |
---|
| 20 | ! REAL, INTENT(IN):: x(:) ! (n + 1) cell edges |
---|
[2788] | 21 | ! real slopes, same shape as f ! (n, ...) |
---|
| 22 | INTERFACE slopes |
---|
| 23 | MODULE procedure slopes1, slopes2, slopes3, slopes4, slopes5 |
---|
| 24 | END INTERFACE |
---|
[2440] | 25 | |
---|
| 26 | |
---|
[5119] | 27 | |
---|
[2788] | 28 | CONTAINS |
---|
[2440] | 29 | |
---|
[2788] | 30 | !------------------------------------------------------------------------------- |
---|
[5099] | 31 | |
---|
[2788] | 32 | PURE FUNCTION slopes1(ix, f, x) |
---|
[5099] | 33 | |
---|
[2788] | 34 | !------------------------------------------------------------------------------- |
---|
| 35 | ! Arguments: |
---|
| 36 | INTEGER, INTENT(IN) :: ix |
---|
| 37 | REAL, INTENT(IN) :: f(:) |
---|
| 38 | REAL, INTENT(IN) :: x(:) |
---|
| 39 | REAL :: slopes1(SIZE(f,1)) |
---|
| 40 | !------------------------------------------------------------------------------- |
---|
| 41 | ! Local: |
---|
| 42 | INTEGER :: n, i, j, sta(2), sto(2) |
---|
| 43 | REAL :: xc(SIZE(f,1)) ! (n) cell centers |
---|
| 44 | REAL :: h(2:SIZE(f,1)-1), delta_xc(2:SIZE(f,1)-1) ! (2:n-1) |
---|
| 45 | REAL :: fm, ff, fp, dx |
---|
| 46 | !------------------------------------------------------------------------------- |
---|
| 47 | n=SIZE(f,ix) |
---|
| 48 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
| 49 | FORALL(i=2:n-1) |
---|
| 50 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
| 51 | END FORALL |
---|
| 52 | slopes1(:)=0. |
---|
| 53 | DO i=2,n-1 |
---|
| 54 | ff=f(i); fm=f(i-1); fp=f(i+1) |
---|
| 55 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
| 56 | slopes1(i)=0.; CYCLE !--- Local extremum |
---|
| 57 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
| 58 | slopes1(i)=(fp-fm)/delta_xc(i) |
---|
| 59 | !--- Slope limitation |
---|
| 60 | slopes1(i) = SIGN(MIN(ABS(slopes1(i)), & |
---|
| 61 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes1(i) ) |
---|
| 62 | END IF |
---|
| 63 | END DO |
---|
[2440] | 64 | |
---|
[2788] | 65 | END FUNCTION slopes1 |
---|
[5099] | 66 | |
---|
[2788] | 67 | !------------------------------------------------------------------------------- |
---|
[2440] | 68 | |
---|
| 69 | |
---|
[2788] | 70 | !------------------------------------------------------------------------------- |
---|
[5099] | 71 | |
---|
[2788] | 72 | PURE FUNCTION slopes2(ix, f, x) |
---|
[5099] | 73 | |
---|
[2788] | 74 | !------------------------------------------------------------------------------- |
---|
| 75 | ! Arguments: |
---|
| 76 | INTEGER, INTENT(IN) :: ix |
---|
| 77 | REAL, INTENT(IN) :: f(:, :) |
---|
| 78 | REAL, INTENT(IN) :: x(:) |
---|
| 79 | REAL :: slopes2(SIZE(f,1),SIZE(f,2)) |
---|
| 80 | !------------------------------------------------------------------------------- |
---|
| 81 | ! Local: |
---|
| 82 | INTEGER :: n, i, j, sta(2), sto(2) |
---|
| 83 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
| 84 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
| 85 | REAL :: fm, ff, fp, dx |
---|
| 86 | !------------------------------------------------------------------------------- |
---|
| 87 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
| 88 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
| 89 | FORALL(i=2:n-1) |
---|
| 90 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
| 91 | END FORALL |
---|
| 92 | slopes2(:,:)=0. |
---|
| 93 | sta=[1,1]; sta(ix)=2 |
---|
| 94 | sto=SHAPE(f); sto(ix)=n-1 |
---|
| 95 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
| 96 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
| 97 | ff=f(i,j) |
---|
| 98 | SELECT CASE(ix) |
---|
| 99 | CASE(1); fm=f(i-1,j); fp=f(i+1,j) |
---|
| 100 | CASE(2); fm=f(i,j-1); fp=f(i,j+1) |
---|
| 101 | END SELECT |
---|
| 102 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
| 103 | slopes2(i,j)=0.; CYCLE !--- Local extremum |
---|
| 104 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
| 105 | slopes2(i,j)=(fp-fm)/dx |
---|
| 106 | !--- Slope limitation |
---|
| 107 | slopes2(i,j) = SIGN(MIN(ABS(slopes2(i,j)), & |
---|
| 108 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes2(i,j) ) |
---|
| 109 | END IF |
---|
| 110 | END DO |
---|
| 111 | END DO |
---|
| 112 | DEALLOCATE(xc,h,delta_xc) |
---|
[2440] | 113 | |
---|
[2788] | 114 | END FUNCTION slopes2 |
---|
[5099] | 115 | |
---|
[2788] | 116 | !------------------------------------------------------------------------------- |
---|
[2440] | 117 | |
---|
| 118 | |
---|
[2788] | 119 | !------------------------------------------------------------------------------- |
---|
[5099] | 120 | |
---|
[2788] | 121 | PURE FUNCTION slopes3(ix, f, x) |
---|
[5099] | 122 | |
---|
[2788] | 123 | !------------------------------------------------------------------------------- |
---|
| 124 | ! Arguments: |
---|
| 125 | INTEGER, INTENT(IN) :: ix |
---|
| 126 | REAL, INTENT(IN) :: f(:, :, :) |
---|
| 127 | REAL, INTENT(IN) :: x(:) |
---|
| 128 | REAL :: slopes3(SIZE(f,1),SIZE(f,2),SIZE(f,3)) |
---|
| 129 | !------------------------------------------------------------------------------- |
---|
| 130 | ! Local: |
---|
| 131 | INTEGER :: n, i, j, k, sta(3), sto(3) |
---|
| 132 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
| 133 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
| 134 | REAL :: fm, ff, fp, dx |
---|
| 135 | !------------------------------------------------------------------------------- |
---|
| 136 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
| 137 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
| 138 | FORALL(i=2:n-1) |
---|
| 139 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
| 140 | END FORALL |
---|
| 141 | slopes3(:,:,:)=0. |
---|
| 142 | sta=[1,1,1]; sta(ix)=2 |
---|
| 143 | sto=SHAPE(f); sto(ix)=n-1 |
---|
| 144 | DO k=sta(3),sto(3); IF(ix==3) dx=delta_xc(k) |
---|
| 145 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
| 146 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
| 147 | ff=f(i,j,k) |
---|
| 148 | SELECT CASE(ix) |
---|
| 149 | CASE(1); fm=f(i-1,j,k); fp=f(i+1,j,k) |
---|
| 150 | CASE(2); fm=f(i,j-1,k); fp=f(i,j+1,k) |
---|
| 151 | CASE(3); fm=f(i,j,k-1); fp=f(i,j,k+1) |
---|
| 152 | END SELECT |
---|
| 153 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
| 154 | slopes3(i,j,k)=0.; CYCLE !--- Local extremum |
---|
| 155 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
| 156 | slopes3(i,j,k)=(fp-fm)/dx |
---|
| 157 | !--- Slope limitation |
---|
| 158 | slopes3(i,j,k) = SIGN(MIN(ABS(slopes3(i,j,k)), & |
---|
| 159 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes3(i,j,k) ) |
---|
| 160 | END IF |
---|
| 161 | END DO |
---|
| 162 | END DO |
---|
| 163 | END DO |
---|
| 164 | DEALLOCATE(xc,h,delta_xc) |
---|
[2440] | 165 | |
---|
[2788] | 166 | END FUNCTION slopes3 |
---|
[5099] | 167 | |
---|
[2788] | 168 | !------------------------------------------------------------------------------- |
---|
[2440] | 169 | |
---|
| 170 | |
---|
[2788] | 171 | !------------------------------------------------------------------------------- |
---|
[5099] | 172 | |
---|
[2788] | 173 | PURE FUNCTION slopes4(ix, f, x) |
---|
[5099] | 174 | |
---|
[2788] | 175 | !------------------------------------------------------------------------------- |
---|
| 176 | ! Arguments: |
---|
| 177 | INTEGER, INTENT(IN) :: ix |
---|
| 178 | REAL, INTENT(IN) :: f(:, :, :, :) |
---|
| 179 | REAL, INTENT(IN) :: x(:) |
---|
| 180 | REAL :: slopes4(SIZE(f,1),SIZE(f,2),SIZE(f,3),SIZE(f,4)) |
---|
| 181 | !------------------------------------------------------------------------------- |
---|
| 182 | ! Local: |
---|
| 183 | INTEGER :: n, i, j, k, l, m, sta(4), sto(4) |
---|
| 184 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
| 185 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
| 186 | REAL :: fm, ff, fp, dx |
---|
| 187 | !------------------------------------------------------------------------------- |
---|
| 188 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
| 189 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
| 190 | FORALL(i=2:n-1) |
---|
| 191 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
| 192 | END FORALL |
---|
| 193 | slopes4(:,:,:,:)=0. |
---|
| 194 | sta=[1,1,1,1]; sta(ix)=2 |
---|
| 195 | sto=SHAPE(f); sto(ix)=n-1 |
---|
| 196 | DO l=sta(4),sto(4); IF(ix==4) dx=delta_xc(l) |
---|
| 197 | DO k=sta(3),sto(3); IF(ix==3) dx=delta_xc(k) |
---|
| 198 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
| 199 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
| 200 | ff=f(i,j,k,l) |
---|
| 201 | SELECT CASE(ix) |
---|
| 202 | CASE(1); fm=f(i-1,j,k,l); fp=f(i+1,j,k,l) |
---|
| 203 | CASE(2); fm=f(i,j-1,k,l); fp=f(i,j+1,k,l) |
---|
| 204 | CASE(3); fm=f(i,j,k-1,l); fp=f(i,j,k+1,l) |
---|
| 205 | CASE(4); fm=f(i,j,k,l-1); fp=f(i,j,k,l+1) |
---|
| 206 | END SELECT |
---|
| 207 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
| 208 | slopes4(i,j,k,l)=0.; CYCLE !--- Local extremum |
---|
| 209 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
| 210 | slopes4(i,j,k,l)=(fp-fm)/dx |
---|
| 211 | !--- Slope limitation |
---|
| 212 | slopes4(i,j,k,l) = SIGN(MIN(ABS(slopes4(i,j,k,l)), & |
---|
| 213 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes4(i,j,k,l) ) |
---|
| 214 | END IF |
---|
| 215 | END DO |
---|
| 216 | END DO |
---|
| 217 | END DO |
---|
| 218 | END DO |
---|
| 219 | DEALLOCATE(xc,h,delta_xc) |
---|
[2440] | 220 | |
---|
[2788] | 221 | END FUNCTION slopes4 |
---|
[5099] | 222 | |
---|
[2788] | 223 | !------------------------------------------------------------------------------- |
---|
[2440] | 224 | |
---|
| 225 | |
---|
[2788] | 226 | !------------------------------------------------------------------------------- |
---|
[5099] | 227 | |
---|
[2788] | 228 | PURE FUNCTION slopes5(ix, f, x) |
---|
[5099] | 229 | |
---|
[2788] | 230 | !------------------------------------------------------------------------------- |
---|
| 231 | ! Arguments: |
---|
| 232 | INTEGER, INTENT(IN) :: ix |
---|
| 233 | REAL, INTENT(IN) :: f(:, :, :, :, :) |
---|
| 234 | REAL, INTENT(IN) :: x(:) |
---|
| 235 | REAL :: slopes5(SIZE(f,1),SIZE(f,2),SIZE(f,3),SIZE(f,4),SIZE(f,5)) |
---|
| 236 | !------------------------------------------------------------------------------- |
---|
| 237 | ! Local: |
---|
| 238 | INTEGER :: n, i, j, k, l, m, sta(5), sto(5) |
---|
| 239 | REAL, ALLOCATABLE :: xc(:) ! (n) cell centers |
---|
| 240 | REAL, ALLOCATABLE :: h(:), delta_xc(:) ! (2:n-1) |
---|
| 241 | REAL :: fm, ff, fp, dx |
---|
| 242 | !------------------------------------------------------------------------------- |
---|
| 243 | n=SIZE(f,ix); ALLOCATE(xc(n),h(2:n-1),delta_xc(2:n-1)) |
---|
| 244 | FORALL(i=1:n) xc(i)=(x(i)+x(i+1))/2. |
---|
| 245 | FORALL(i=2:n-1) |
---|
| 246 | h(i)=ABS(x(i+1)-xc(i)) ; delta_xc(i)=xc(i+1)-xc(i-1) |
---|
| 247 | END FORALL |
---|
| 248 | slopes5(:,:,:,:,:)=0. |
---|
| 249 | sta=[1,1,1,1,1]; sta(ix)=2 |
---|
| 250 | sto=SHAPE(f); sto(ix)=n-1 |
---|
| 251 | DO m=sta(5),sto(5); IF(ix==5) dx=delta_xc(m) |
---|
| 252 | DO l=sta(4),sto(4); IF(ix==4) dx=delta_xc(l) |
---|
| 253 | DO k=sta(3),sto(3); IF(ix==3) dx=delta_xc(k) |
---|
| 254 | DO j=sta(2),sto(2); IF(ix==2) dx=delta_xc(j) |
---|
| 255 | DO i=sta(1),sto(1); IF(ix==1) dx=delta_xc(i) |
---|
| 256 | ff=f(i,j,k,l,m) |
---|
| 257 | SELECT CASE(ix) |
---|
| 258 | CASE(1); fm=f(i-1,j,k,l,m); fp=f(i+1,j,k,l,m) |
---|
| 259 | CASE(2); fm=f(i,j-1,k,l,m); fp=f(i,j+1,k,l,m) |
---|
| 260 | CASE(3); fm=f(i,j,k-1,l,m); fp=f(i,j,k+1,l,m) |
---|
| 261 | CASE(4); fm=f(i,j,k,l-1,m); fp=f(i,j,k,l+1,m) |
---|
| 262 | CASE(5); fm=f(i,j,k,l,m-1); fp=f(i,j,k,l,m+1) |
---|
| 263 | END SELECT |
---|
| 264 | IF(ff>=MAX(fm,fp).OR.ff<=MIN(fm,fp)) THEN |
---|
| 265 | slopes5(i,j,k,l,m)=0.; CYCLE !--- Local extremum |
---|
| 266 | !--- 2nd order slope ; (fm, ff, fp) strictly monotonous |
---|
| 267 | slopes5(i,j,k,l,m)=(fp-fm)/dx |
---|
| 268 | !--- Slope limitation |
---|
| 269 | slopes5(i,j,k,l,m) = SIGN(MIN(ABS(slopes5(i,j,k,l,m)), & |
---|
| 270 | ABS(fp-ff)/h(i),ABS(ff-fm)/h(i)),slopes5(i,j,k,l,m) ) |
---|
| 271 | END IF |
---|
| 272 | END DO |
---|
| 273 | END DO |
---|
| 274 | END DO |
---|
| 275 | END DO |
---|
| 276 | END DO |
---|
| 277 | DEALLOCATE(xc,h,delta_xc) |
---|
[2440] | 278 | |
---|
[2788] | 279 | END FUNCTION slopes5 |
---|
[5099] | 280 | |
---|
[2788] | 281 | !------------------------------------------------------------------------------- |
---|
[2440] | 282 | |
---|
[5117] | 283 | END MODULE lmdz_slopes |
---|