1 | ! $Id$ |
---|
2 | module interpolation |
---|
3 | |
---|
4 | ! From Press et al., 1996, version 2.10a |
---|
5 | ! B3 Interpolation and Extrapolation |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | contains |
---|
10 | |
---|
11 | pure FUNCTION locate(xx,x) |
---|
12 | |
---|
13 | REAL, DIMENSION(:), INTENT(IN) :: xx |
---|
14 | REAL, INTENT(IN) :: x |
---|
15 | INTEGER locate |
---|
16 | |
---|
17 | ! Given an array xx(1:N), and given a value x, returns a value j, |
---|
18 | ! between 0 and N, such that x is between xx(j) and xx(j + 1). xx |
---|
19 | ! must be monotonic, either increasing or decreasing. j = 0 or j = |
---|
20 | ! N is returned to indicate that x is out of range. This |
---|
21 | ! procedure should not be called with a zero-sized array argument. |
---|
22 | ! See notes. |
---|
23 | |
---|
24 | INTEGER n,jl,jm,ju |
---|
25 | LOGICAL ascnd |
---|
26 | |
---|
27 | !---------------------------- |
---|
28 | |
---|
29 | n=size(xx) |
---|
30 | ascnd = (xx(n) >= xx(1)) |
---|
31 | ! (True if ascending order of table, false otherwise.) |
---|
32 | ! Initialize lower and upper limits: |
---|
33 | jl=0 |
---|
34 | ju=n+1 |
---|
35 | do while (ju-jl > 1) |
---|
36 | jm=(ju+jl)/2 ! Compute a midpoint, |
---|
37 | if (ascnd .eqv. (x >= xx(jm))) then |
---|
38 | jl=jm ! and replace either the lower limit |
---|
39 | else |
---|
40 | ju=jm ! or the upper limit, as appropriate. |
---|
41 | end if |
---|
42 | END DO |
---|
43 | ! {ju == jl + 1} |
---|
44 | |
---|
45 | ! {(ascnd .and. xx(jl) <= x < xx(jl+1)) |
---|
46 | ! .neqv. |
---|
47 | ! (.not. ascnd .and. xx(jl+1) <= x < xx(jl))} |
---|
48 | |
---|
49 | ! Then set the output, being careful with the endpoints: |
---|
50 | if (x == xx(1)) then |
---|
51 | locate=1 |
---|
52 | else if (x == xx(n)) then |
---|
53 | locate=n-1 |
---|
54 | else |
---|
55 | locate=jl |
---|
56 | end if |
---|
57 | |
---|
58 | END FUNCTION locate |
---|
59 | |
---|
60 | !*************************** |
---|
61 | |
---|
62 | pure SUBROUTINE hunt(xx,x,jlo) |
---|
63 | |
---|
64 | ! Given an array xx(1:N ), and given a value x, returns a value |
---|
65 | ! jlo such that x is between xx(jlo) and xx(jlo+1). xx must be |
---|
66 | ! monotonic, either increasing or decreasing. jlo = 0 or jlo = N is |
---|
67 | ! returned to indicate that x is out of range. jlo on input is taken as |
---|
68 | ! the initial guess for jlo on output. |
---|
69 | ! Modified so that it uses the information "jlo = 0" on input. |
---|
70 | |
---|
71 | INTEGER, INTENT(INOUT) :: jlo |
---|
72 | REAL, INTENT(IN) :: x |
---|
73 | REAL, DIMENSION(:), INTENT(IN) :: xx |
---|
74 | INTEGER n,inc,jhi,jm |
---|
75 | LOGICAL ascnd, hunt_up |
---|
76 | |
---|
77 | !----------------------------------------------------- |
---|
78 | |
---|
79 | n=size(xx) |
---|
80 | ascnd = (xx(n) >= xx(1)) |
---|
81 | ! (True if ascending order of table, false otherwise.) |
---|
82 | if (jlo < 0 .or. jlo > n) then |
---|
83 | ! Input guess not useful. Go immediately to bisection. |
---|
84 | jlo=0 |
---|
85 | jhi=n+1 |
---|
86 | else |
---|
87 | inc=1 ! Set the hunting increment. |
---|
88 | if (jlo == 0) then |
---|
89 | hunt_up = .TRUE. |
---|
90 | else |
---|
91 | hunt_up = x >= xx(jlo) .eqv. ascnd |
---|
92 | end if |
---|
93 | if (hunt_up) then ! Hunt up: |
---|
94 | do |
---|
95 | jhi=jlo+inc |
---|
96 | if (jhi > n) then ! Done hunting, since off end of table. |
---|
97 | jhi=n+1 |
---|
98 | exit |
---|
99 | else |
---|
100 | if (x < xx(jhi) .eqv. ascnd) exit |
---|
101 | jlo=jhi ! Not done hunting, |
---|
102 | inc=inc+inc ! so double the increment |
---|
103 | end if |
---|
104 | END DO ! and try again. |
---|
105 | else ! Hunt down: |
---|
106 | jhi=jlo |
---|
107 | do |
---|
108 | jlo=jhi-inc |
---|
109 | if (jlo < 1) then ! Done hunting, since off end of table. |
---|
110 | jlo=0 |
---|
111 | exit |
---|
112 | else |
---|
113 | if (x >= xx(jlo) .eqv. ascnd) exit |
---|
114 | jhi=jlo ! Not done hunting, |
---|
115 | inc=inc+inc ! so double the increment |
---|
116 | end if |
---|
117 | END DO ! and try again. |
---|
118 | end if |
---|
119 | end if ! Done hunting, value bracketed. |
---|
120 | |
---|
121 | do ! Hunt is done, so begin the final bisection phase: |
---|
122 | if (jhi-jlo <= 1) then |
---|
123 | if (x == xx(n)) jlo=n-1 |
---|
124 | if (x == xx(1)) jlo=1 |
---|
125 | exit |
---|
126 | else |
---|
127 | jm=(jhi+jlo)/2 |
---|
128 | if (x >= xx(jm) .eqv. ascnd) then |
---|
129 | jlo=jm |
---|
130 | else |
---|
131 | jhi=jm |
---|
132 | end if |
---|
133 | end if |
---|
134 | END DO |
---|
135 | |
---|
136 | END SUBROUTINE hunt |
---|
137 | |
---|
138 | end module interpolation |
---|