1 | ! $Id$ |
---|
2 | |
---|
3 | MODULE lmdz_filtreg |
---|
4 | USE lmdz_paramet |
---|
5 | IMPLICIT NONE; PRIVATE |
---|
6 | PUBLIC matriceun, matriceus, matricevn, matricevs, matrinvn, matrinvs, & |
---|
7 | inifilr, filtreg |
---|
8 | |
---|
9 | REAL, DIMENSION(:, :, :), ALLOCATABLE :: matriceun, matriceus, matricevn |
---|
10 | REAL, DIMENSION(:, :, :), ALLOCATABLE :: matricevs, matrinvn, matrinvs |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | |
---|
14 | SUBROUTINE filtreg(champ, nlat, nbniv, ifiltre, iaire, & |
---|
15 | griscal, iter) |
---|
16 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
17 | USE lmdz_coefils, ONLY: jfiltnu, jfiltnv, jfiltsu, jfiltsv, sddu, sddv, unsddu, unsddv, modfrstv, modfrstu |
---|
18 | |
---|
19 | !======================================================================= |
---|
20 | |
---|
21 | ! Auteur: P. Le Van 07/10/97 |
---|
22 | ! ------ |
---|
23 | |
---|
24 | ! Objet: filtre matriciel longitudinal ,avec les matrices precalculees |
---|
25 | ! pour l'operateur Filtre . |
---|
26 | ! ------ |
---|
27 | |
---|
28 | ! Arguments: |
---|
29 | ! ---------- |
---|
30 | |
---|
31 | ! nblat nombre de latitudes a filtrer |
---|
32 | ! nbniv nombre de niveaux verticaux a filtrer |
---|
33 | ! champ(iip1,nblat,nbniv) en entree : champ a filtrer |
---|
34 | ! en sortie : champ filtre |
---|
35 | ! ifiltre +1 Transformee directe |
---|
36 | ! -1 Transformee inverse |
---|
37 | ! +2 Filtre directe |
---|
38 | ! -2 Filtre inverse |
---|
39 | |
---|
40 | ! iaire 1 si champ intensif |
---|
41 | ! 2 si champ extensif (pondere par les aires) |
---|
42 | |
---|
43 | ! iter 1 filtre simple |
---|
44 | |
---|
45 | !======================================================================= |
---|
46 | |
---|
47 | |
---|
48 | ! Variable Intensive |
---|
49 | ! ifiltre = 1 filtre directe |
---|
50 | ! ifiltre =-1 filtre inverse |
---|
51 | |
---|
52 | ! Variable Extensive |
---|
53 | ! ifiltre = 2 filtre directe |
---|
54 | ! ifiltre =-2 filtre inverse |
---|
55 | |
---|
56 | ! |
---|
57 | |
---|
58 | |
---|
59 | |
---|
60 | INTEGER :: nlat, nbniv, ifiltre, iter |
---|
61 | INTEGER :: i, j, l, k |
---|
62 | INTEGER :: iim2, immjm |
---|
63 | INTEGER :: jdfil1, jdfil2, jffil1, jffil2, jdfil, jffil |
---|
64 | |
---|
65 | REAL :: champ(iip1, nlat, nbniv) |
---|
66 | |
---|
67 | REAL :: eignq(iim, nlat, nbniv), sdd1(iim), sdd2(iim) |
---|
68 | LOGICAL :: griscal |
---|
69 | INTEGER :: hemisph, iaire |
---|
70 | |
---|
71 | LOGICAL, SAVE :: first = .TRUE. |
---|
72 | |
---|
73 | REAL, SAVE :: sdd12(iim, 4) |
---|
74 | |
---|
75 | INTEGER, PARAMETER :: type_sddu = 1 |
---|
76 | INTEGER, PARAMETER :: type_sddv = 2 |
---|
77 | INTEGER, PARAMETER :: type_unsddu = 3 |
---|
78 | INTEGER, PARAMETER :: type_unsddv = 4 |
---|
79 | |
---|
80 | INTEGER :: sdd1_type, sdd2_type |
---|
81 | |
---|
82 | IF (iim == 1) return ! no filtre in 2D y-z |
---|
83 | |
---|
84 | IF (first) THEN |
---|
85 | sdd12(1:iim, type_sddu) = sddu(1:iim) |
---|
86 | sdd12(1:iim, type_sddv) = sddv(1:iim) |
---|
87 | sdd12(1:iim, type_unsddu) = unsddu(1:iim) |
---|
88 | sdd12(1:iim, type_unsddv) = unsddv(1:iim) |
---|
89 | |
---|
90 | first = .FALSE. |
---|
91 | ENDIF |
---|
92 | |
---|
93 | IF(ifiltre==1.OR.ifiltre==-1) & |
---|
94 | stop 'Pas de transformee simple dans cette version' |
---|
95 | |
---|
96 | IF(iter== 2) THEN |
---|
97 | PRINT *, ' Pas d iteration du filtre dans cette version !'& |
---|
98 | &, ' Utiliser old_filtreg et repasser !' |
---|
99 | STOP |
---|
100 | ENDIF |
---|
101 | |
---|
102 | IF(ifiltre== -2 .AND..NOT.griscal) THEN |
---|
103 | PRINT *, ' Cette routine ne calcule le filtre inverse que ' & |
---|
104 | , ' sur la grille des scalaires !' |
---|
105 | STOP |
---|
106 | ENDIF |
---|
107 | |
---|
108 | IF(ifiltre/=2 .AND.ifiltre/= - 2) THEN |
---|
109 | PRINT *, ' Probleme dans filtreg car ifiltre NE 2 et NE -2' & |
---|
110 | , ' corriger et repasser !' |
---|
111 | STOP |
---|
112 | ENDIF |
---|
113 | |
---|
114 | iim2 = iim * iim |
---|
115 | immjm = iim * jjm |
---|
116 | |
---|
117 | IF(griscal) THEN |
---|
118 | IF(nlat /= jjp1) THEN |
---|
119 | PRINT 1111 |
---|
120 | STOP |
---|
121 | ELSE |
---|
122 | |
---|
123 | IF(iaire==1) THEN |
---|
124 | sdd1_type = type_sddv |
---|
125 | sdd2_type = type_unsddv |
---|
126 | ELSE |
---|
127 | sdd1_type = type_unsddv |
---|
128 | sdd2_type = type_sddv |
---|
129 | ENDIF |
---|
130 | |
---|
131 | ! IF( iaire.EQ.1 ) THEN |
---|
132 | ! CALL SCOPY( iim, sddv, 1, sdd1, 1 ) |
---|
133 | ! CALL SCOPY( iim, unsddv, 1, sdd2, 1 ) |
---|
134 | ! ELSE |
---|
135 | ! CALL SCOPY( iim, unsddv, 1, sdd1, 1 ) |
---|
136 | ! CALL SCOPY( iim, sddv, 1, sdd2, 1 ) |
---|
137 | ! END IF |
---|
138 | |
---|
139 | jdfil1 = 2 |
---|
140 | jffil1 = jfiltnu |
---|
141 | jdfil2 = jfiltsu |
---|
142 | jffil2 = jjm |
---|
143 | END IF |
---|
144 | ELSE |
---|
145 | IF(nlat/=jjm) THEN |
---|
146 | PRINT 2222 |
---|
147 | STOP |
---|
148 | ELSE |
---|
149 | |
---|
150 | IF(iaire==1) THEN |
---|
151 | sdd1_type = type_sddu |
---|
152 | sdd2_type = type_unsddu |
---|
153 | ELSE |
---|
154 | sdd1_type = type_unsddu |
---|
155 | sdd2_type = type_sddu |
---|
156 | ENDIF |
---|
157 | |
---|
158 | ! IF( iaire.EQ.1 ) THEN |
---|
159 | ! CALL SCOPY( iim, sddu, 1, sdd1, 1 ) |
---|
160 | ! CALL SCOPY( iim, unsddu, 1, sdd2, 1 ) |
---|
161 | ! ELSE |
---|
162 | ! CALL SCOPY( iim, unsddu, 1, sdd1, 1 ) |
---|
163 | ! CALL SCOPY( iim, sddu, 1, sdd2, 1 ) |
---|
164 | ! END IF |
---|
165 | |
---|
166 | jdfil1 = 1 |
---|
167 | jffil1 = jfiltnv |
---|
168 | jdfil2 = jfiltsv |
---|
169 | jffil2 = jjm |
---|
170 | END IF |
---|
171 | END IF |
---|
172 | |
---|
173 | DO hemisph = 1, 2 |
---|
174 | |
---|
175 | IF (hemisph==1) THEN |
---|
176 | jdfil = jdfil1 |
---|
177 | jffil = jffil1 |
---|
178 | ELSE |
---|
179 | jdfil = jdfil2 |
---|
180 | jffil = jffil2 |
---|
181 | END IF |
---|
182 | |
---|
183 | DO l = 1, nbniv |
---|
184 | DO j = jdfil, jffil |
---|
185 | DO i = 1, iim |
---|
186 | champ(i, j, l) = champ(i, j, l) * sdd12(i, sdd1_type) ! sdd1(i) |
---|
187 | END DO |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | |
---|
191 | IF(hemisph == 1) THEN |
---|
192 | |
---|
193 | IF(ifiltre == -2) THEN |
---|
194 | |
---|
195 | DO j = jdfil, jffil |
---|
196 | #ifdef BLAS |
---|
197 | CALL SGEMM("N", "N", iim, nbniv, iim, 1.0, & |
---|
198 | matrinvn(1,1,j), & |
---|
199 | iim, champ(1,j,1), iip1*nlat, 0.0, & |
---|
200 | eignq(1,j-jdfil+1,1), iim*nlat) |
---|
201 | #else |
---|
202 | eignq(:, j - jdfil + 1, :) & |
---|
203 | = matmul(matrinvn(:, :, j), champ(:iim, j, :)) |
---|
204 | #endif |
---|
205 | END DO |
---|
206 | |
---|
207 | ELSE IF (griscal) THEN |
---|
208 | |
---|
209 | DO j = jdfil, jffil |
---|
210 | #ifdef BLAS |
---|
211 | CALL SGEMM("N", "N", iim, nbniv, iim, 1.0, & |
---|
212 | matriceun(1,1,j), & |
---|
213 | iim, champ(1,j,1), iip1*nlat, 0.0, & |
---|
214 | eignq(1,j-jdfil+1,1), iim*nlat) |
---|
215 | #else |
---|
216 | eignq(:, j - jdfil + 1, :) & |
---|
217 | = matmul(matriceun(:, :, j), champ(:iim, j, :)) |
---|
218 | #endif |
---|
219 | END DO |
---|
220 | |
---|
221 | ELSE |
---|
222 | |
---|
223 | DO j = jdfil, jffil |
---|
224 | #ifdef BLAS |
---|
225 | CALL SGEMM("N", "N", iim, nbniv, iim, 1.0, & |
---|
226 | matricevn(1,1,j), & |
---|
227 | iim, champ(1,j,1), iip1*nlat, 0.0, & |
---|
228 | eignq(1,j-jdfil+1,1), iim*nlat) |
---|
229 | #else |
---|
230 | eignq(:, j - jdfil + 1, :) & |
---|
231 | = matmul(matricevn(:, :, j), champ(:iim, j, :)) |
---|
232 | #endif |
---|
233 | END DO |
---|
234 | |
---|
235 | ENDIF |
---|
236 | |
---|
237 | ELSE |
---|
238 | |
---|
239 | IF(ifiltre == -2) THEN |
---|
240 | |
---|
241 | DO j = jdfil, jffil |
---|
242 | #ifdef BLAS |
---|
243 | CALL SGEMM("N", "N", iim, nbniv, iim, 1.0, & |
---|
244 | matrinvs(1,1,j-jfiltsu+1), & |
---|
245 | iim, champ(1,j,1), iip1*nlat, 0.0, & |
---|
246 | eignq(1,j-jdfil+1,1), iim*nlat) |
---|
247 | #else |
---|
248 | eignq(:, j - jdfil + 1, :) & |
---|
249 | = matmul(matrinvs(:, :, j - jfiltsu + 1), & |
---|
250 | champ(:iim, j, :)) |
---|
251 | #endif |
---|
252 | END DO |
---|
253 | |
---|
254 | ELSE IF (griscal) THEN |
---|
255 | |
---|
256 | DO j = jdfil, jffil |
---|
257 | #ifdef BLAS |
---|
258 | CALL SGEMM("N", "N", iim, nbniv, iim, 1.0, & |
---|
259 | matriceus(1,1,j-jfiltsu+1), & |
---|
260 | iim, champ(1,j,1), iip1*nlat, 0.0, & |
---|
261 | eignq(1,j-jdfil+1,1), iim*nlat) |
---|
262 | #else |
---|
263 | eignq(:, j - jdfil + 1, :) & |
---|
264 | = matmul(matriceus(:, :, j - jfiltsu + 1), & |
---|
265 | champ(:iim, j, :)) |
---|
266 | #endif |
---|
267 | END DO |
---|
268 | |
---|
269 | ELSE |
---|
270 | |
---|
271 | DO j = jdfil, jffil |
---|
272 | #ifdef BLAS |
---|
273 | CALL SGEMM("N", "N", iim, nbniv, iim, 1.0, & |
---|
274 | matricevs(1,1,j-jfiltsv+1), & |
---|
275 | iim, champ(1,j,1), iip1*nlat, 0.0, & |
---|
276 | eignq(1,j-jdfil+1,1), iim*nlat) |
---|
277 | #else |
---|
278 | eignq(:, j - jdfil + 1, :) & |
---|
279 | = matmul(matricevs(:, :, j - jfiltsv + 1), & |
---|
280 | champ(:iim, j, :)) |
---|
281 | #endif |
---|
282 | END DO |
---|
283 | |
---|
284 | ENDIF |
---|
285 | |
---|
286 | ENDIF |
---|
287 | |
---|
288 | IF(ifiltre== 2) THEN |
---|
289 | |
---|
290 | DO l = 1, nbniv |
---|
291 | DO j = jdfil, jffil |
---|
292 | DO i = 1, iim |
---|
293 | champ(i, j, l) = & |
---|
294 | (champ(i, j, l) + eignq(i, j - jdfil + 1, l)) & |
---|
295 | * sdd12(i, sdd2_type) ! sdd2(i) |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | |
---|
300 | ELSE |
---|
301 | |
---|
302 | DO l = 1, nbniv |
---|
303 | DO j = jdfil, jffil |
---|
304 | DO i = 1, iim |
---|
305 | champ(i, j, l) = & |
---|
306 | (champ(i, j, l) - eignq(i, j - jdfil + 1, l)) & |
---|
307 | * sdd12(i, sdd2_type) ! sdd2(i) |
---|
308 | END DO |
---|
309 | END DO |
---|
310 | END DO |
---|
311 | |
---|
312 | ENDIF |
---|
313 | |
---|
314 | DO l = 1, nbniv |
---|
315 | DO j = jdfil, jffil |
---|
316 | champ(iip1, j, l) = champ(1, j, l) |
---|
317 | END DO |
---|
318 | END DO |
---|
319 | |
---|
320 | ENDDO |
---|
321 | |
---|
322 | 1111 FORMAT(//20x, 'ERREUR dans le dimensionnement du tableau CHAMP a& |
---|
323 | & filtrer, sur la grille des scalaires'/) |
---|
324 | 2222 FORMAT(//20x, 'ERREUR dans le dimensionnement du tableau CHAMP a fi& |
---|
325 | & ltrer, sur la grille de V ou de Z'/) |
---|
326 | RETURN |
---|
327 | END SUBROUTINE filtreg |
---|
328 | |
---|
329 | SUBROUTINE inifgn(dv) |
---|
330 | |
---|
331 | ! ... H.Upadyaya , O.Sharma ... |
---|
332 | |
---|
333 | USE lmdz_coefils, ONLY: sddv, sddu, unsddu, unsddv, eignfnv, eignfnu |
---|
334 | USE lmdz_ssum_scopy, ONLY: ssum |
---|
335 | USE lmdz_comgeom |
---|
336 | |
---|
337 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
338 | USE lmdz_paramet |
---|
339 | IMPLICIT NONE |
---|
340 | |
---|
341 | |
---|
342 | |
---|
343 | |
---|
344 | REAL :: vec(iim, iim), vec1(iim, iim) |
---|
345 | REAL :: dlonu(iim), dlonv(iim) |
---|
346 | REAL :: du(iim), dv(iim), d(iim) |
---|
347 | REAL :: pi |
---|
348 | INTEGER :: i, j, k, imm1, nrot |
---|
349 | ! |
---|
350 | |
---|
351 | imm1 = iim - 1 |
---|
352 | pi = 2. * ASIN(1.) |
---|
353 | |
---|
354 | DO i = 1, iim |
---|
355 | dlonu(i) = xprimu(i) |
---|
356 | dlonv(i) = xprimv(i) |
---|
357 | END DO |
---|
358 | |
---|
359 | DO i = 1, iim |
---|
360 | sddv(i) = SQRT(dlonv(i)) |
---|
361 | sddu(i) = SQRT(dlonu(i)) |
---|
362 | unsddu(i) = 1. / sddu(i) |
---|
363 | unsddv(i) = 1. / sddv(i) |
---|
364 | END DO |
---|
365 | |
---|
366 | DO j = 1, iim |
---|
367 | DO i = 1, iim |
---|
368 | vec(i, j) = 0. |
---|
369 | vec1(i, j) = 0. |
---|
370 | eignfnv(i, j) = 0. |
---|
371 | eignfnu(i, j) = 0. |
---|
372 | END DO |
---|
373 | END DO |
---|
374 | |
---|
375 | |
---|
376 | eignfnv(1, 1) = -1. |
---|
377 | eignfnv(iim, 1) = 1. |
---|
378 | DO i = 1, imm1 |
---|
379 | eignfnv(i + 1, i + 1) = -1. |
---|
380 | eignfnv(i, i + 1) = 1. |
---|
381 | END DO |
---|
382 | DO j = 1, iim |
---|
383 | DO i = 1, iim |
---|
384 | eignfnv(i, j) = eignfnv(i, j) / (sddu(i) * sddv(j)) |
---|
385 | END DO |
---|
386 | END DO |
---|
387 | DO j = 1, iim |
---|
388 | DO i = 1, iim |
---|
389 | eignfnu(i, j) = -eignfnv(j, i) |
---|
390 | END DO |
---|
391 | END DO |
---|
392 | |
---|
393 | DO j = 1, iim |
---|
394 | DO i = 1, iim |
---|
395 | vec (i, j) = 0.0 |
---|
396 | vec1(i, j) = 0.0 |
---|
397 | DO k = 1, iim |
---|
398 | vec (i, j) = vec(i, j) + eignfnu(i, k) * eignfnv(k, j) |
---|
399 | vec1(i, j) = vec1(i, j) + eignfnv(i, k) * eignfnu(k, j) |
---|
400 | ENDDO |
---|
401 | ENDDO |
---|
402 | ENDDO |
---|
403 | |
---|
404 | |
---|
405 | CALL jacobi(vec, iim, iim, dv, eignfnv, nrot) |
---|
406 | CALL acc(eignfnv, d, iim) |
---|
407 | CALL eigen_sort(dv, eignfnv, iim, iim) |
---|
408 | |
---|
409 | CALL jacobi(vec1, iim, iim, du, eignfnu, nrot) |
---|
410 | CALL acc(eignfnu, d, iim) |
---|
411 | CALL eigen_sort(du, eignfnu, iim, iim) |
---|
412 | |
---|
413 | !c ancienne version avec appels IMSL |
---|
414 | |
---|
415 | ! CALL MXM(eignfnu,iim,eignfnv,iim,vec,iim) |
---|
416 | ! CALL MXM(eignfnv,iim,eignfnu,iim,vec1,iim) |
---|
417 | ! CALL EVCSF(iim,vec,iim,dv,eignfnv,iim) |
---|
418 | ! CALL acc(eignfnv,d,iim) |
---|
419 | ! CALL eigen(eignfnv,dv) |
---|
420 | |
---|
421 | ! CALL EVCSF(iim,vec1,iim,du,eignfnu,iim) |
---|
422 | ! CALL acc(eignfnu,d,iim) |
---|
423 | ! CALL eigen(eignfnu,du) |
---|
424 | |
---|
425 | RETURN |
---|
426 | END SUBROUTINE inifgn |
---|
427 | |
---|
428 | SUBROUTINE JACOBI(A, N, NP, D, V, NROT) |
---|
429 | IMPLICIT NONE |
---|
430 | ! Arguments: |
---|
431 | INTEGER, INTENT(IN) :: N |
---|
432 | INTEGER, INTENT(IN) :: NP |
---|
433 | INTEGER, INTENT(OUT) :: NROT |
---|
434 | REAL, INTENT(INOUT) :: A(NP, NP) |
---|
435 | REAL, INTENT(OUT) :: D(NP) |
---|
436 | REAL, INTENT(OUT) :: V(NP, NP) |
---|
437 | |
---|
438 | ! local variables: |
---|
439 | INTEGER :: IP, IQ, I, J |
---|
440 | REAL :: SM, TRESH, G, H, T, THETA, C, S, TAU |
---|
441 | REAL :: B(N) |
---|
442 | REAL :: Z(N) |
---|
443 | |
---|
444 | DO IP = 1, N |
---|
445 | DO IQ = 1, N |
---|
446 | V(IP, IQ) = 0. |
---|
447 | ENDDO |
---|
448 | V(IP, IP) = 1. |
---|
449 | ENDDO |
---|
450 | DO IP = 1, N |
---|
451 | B(IP) = A(IP, IP) |
---|
452 | D(IP) = B(IP) |
---|
453 | Z(IP) = 0. |
---|
454 | ENDDO |
---|
455 | NROT = 0 |
---|
456 | DO I = 1, 50 ! 50? I suspect this should be NP |
---|
457 | ! but convergence is fast enough anyway |
---|
458 | SM = 0. |
---|
459 | DO IP = 1, N - 1 |
---|
460 | DO IQ = IP + 1, N |
---|
461 | SM = SM + ABS(A(IP, IQ)) |
---|
462 | ENDDO |
---|
463 | ENDDO |
---|
464 | IF(SM==0.)RETURN |
---|
465 | IF(I<4)THEN |
---|
466 | TRESH = 0.2 * SM / N**2 |
---|
467 | ELSE |
---|
468 | TRESH = 0. |
---|
469 | ENDIF |
---|
470 | DO IP = 1, N - 1 |
---|
471 | DO IQ = IP + 1, N |
---|
472 | G = 100. * ABS(A(IP, IQ)) |
---|
473 | IF((I>4).AND.(ABS(D(IP)) + G==ABS(D(IP))) & |
---|
474 | .AND.(ABS(D(IQ)) + G==ABS(D(IQ))))THEN |
---|
475 | A(IP, IQ) = 0. |
---|
476 | ELSE IF(ABS(A(IP, IQ))>TRESH)THEN |
---|
477 | H = D(IQ) - D(IP) |
---|
478 | IF(ABS(H) + G==ABS(H))THEN |
---|
479 | T = A(IP, IQ) / H |
---|
480 | ELSE |
---|
481 | THETA = 0.5 * H / A(IP, IQ) |
---|
482 | T = 1. / (ABS(THETA) + SQRT(1. + THETA**2)) |
---|
483 | IF(THETA<0.)T = -T |
---|
484 | ENDIF |
---|
485 | C = 1. / SQRT(1 + T**2) |
---|
486 | S = T * C |
---|
487 | TAU = S / (1. + C) |
---|
488 | H = T * A(IP, IQ) |
---|
489 | Z(IP) = Z(IP) - H |
---|
490 | Z(IQ) = Z(IQ) + H |
---|
491 | D(IP) = D(IP) - H |
---|
492 | D(IQ) = D(IQ) + H |
---|
493 | A(IP, IQ) = 0. |
---|
494 | DO J = 1, IP - 1 |
---|
495 | G = A(J, IP) |
---|
496 | H = A(J, IQ) |
---|
497 | A(J, IP) = G - S * (H + G * TAU) |
---|
498 | A(J, IQ) = H + S * (G - H * TAU) |
---|
499 | ENDDO |
---|
500 | DO J = IP + 1, IQ - 1 |
---|
501 | G = A(IP, J) |
---|
502 | H = A(J, IQ) |
---|
503 | A(IP, J) = G - S * (H + G * TAU) |
---|
504 | A(J, IQ) = H + S * (G - H * TAU) |
---|
505 | ENDDO |
---|
506 | DO J = IQ + 1, N |
---|
507 | G = A(IP, J) |
---|
508 | H = A(IQ, J) |
---|
509 | A(IP, J) = G - S * (H + G * TAU) |
---|
510 | A(IQ, J) = H + S * (G - H * TAU) |
---|
511 | ENDDO |
---|
512 | DO J = 1, N |
---|
513 | G = V(J, IP) |
---|
514 | H = V(J, IQ) |
---|
515 | V(J, IP) = G - S * (H + G * TAU) |
---|
516 | V(J, IQ) = H + S * (G - H * TAU) |
---|
517 | ENDDO |
---|
518 | NROT = NROT + 1 |
---|
519 | ENDIF |
---|
520 | ENDDO |
---|
521 | ENDDO |
---|
522 | DO IP = 1, N |
---|
523 | B(IP) = B(IP) + Z(IP) |
---|
524 | D(IP) = B(IP) |
---|
525 | Z(IP) = 0. |
---|
526 | ENDDO |
---|
527 | ENDDO ! of DO I=1,50 |
---|
528 | STOP 'Jacobi: 50 iterations should never happen' |
---|
529 | |
---|
530 | END SUBROUTINE JACOBI |
---|
531 | |
---|
532 | SUBROUTINE eigen_sort(d, v, n, np) |
---|
533 | INTEGER :: n, np |
---|
534 | REAL :: d(np), v(np, np) |
---|
535 | INTEGER :: i, j, k |
---|
536 | REAL :: p |
---|
537 | |
---|
538 | DO i = 1, n - 1 |
---|
539 | k = i |
---|
540 | p = d(i) |
---|
541 | DO j = i + 1, n |
---|
542 | IF(d(j)>=p) THEN |
---|
543 | k = j |
---|
544 | p = d(j) |
---|
545 | ENDIF |
---|
546 | ENDDO |
---|
547 | |
---|
548 | IF(k/=i) THEN |
---|
549 | d(k) = d(i) |
---|
550 | d(i) = p |
---|
551 | DO j = 1, n |
---|
552 | p = v(j, i) |
---|
553 | v(j, i) = v(j, k) |
---|
554 | v(j, k) = p |
---|
555 | ENDDO |
---|
556 | ENDIF |
---|
557 | ENDDO |
---|
558 | |
---|
559 | RETURN |
---|
560 | END SUBROUTINE eigen_sort |
---|
561 | |
---|
562 | SUBROUTINE acc(vec, d, im) |
---|
563 | USE lmdz_ssum_scopy, ONLY: ssum |
---|
564 | IMPLICIT NONE |
---|
565 | INTEGER :: im |
---|
566 | REAL :: vec(im, im), d(im) |
---|
567 | INTEGER :: i, j |
---|
568 | REAL :: sum |
---|
569 | DO j = 1, im |
---|
570 | DO i = 1, im |
---|
571 | d(i) = vec(i, j) * vec(i, j) |
---|
572 | enddo |
---|
573 | sum = ssum(im, d, 1) |
---|
574 | sum = sqrt(sum) |
---|
575 | DO i = 1, im |
---|
576 | vec(i, j) = vec(i, j) / sum |
---|
577 | enddo |
---|
578 | enddo |
---|
579 | RETURN |
---|
580 | END SUBROUTINE acc |
---|
581 | |
---|
582 | |
---|
583 | SUBROUTINE inifilr |
---|
584 | #ifdef CPP_PARA |
---|
585 | USE lmdz_filtre_fft, ONLY: use_filtre_fft,Init_filtre_fft |
---|
586 | USE lmdz_filtre_fft_loc, ONLY: Init_filtre_fft_loc=>Init_filtre_fft ! |
---|
587 | #endif |
---|
588 | USE serre_mod, ONLY: alphax |
---|
589 | USE logic_mod, ONLY: fxyhypb, ysinus |
---|
590 | USE comconst_mod, ONLY: maxlatfilter |
---|
591 | USE lmdz_coefils, ONLY: modfrstv, modfrstu, jfiltnu, jfiltnv, coefilu, coefilv, & |
---|
592 | coefilu2, coefilv2, eignfnv, eignfnu, jfiltsu, jfiltsv |
---|
593 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
594 | USE lmdz_comgeom |
---|
595 | USE lmdz_paramet |
---|
596 | |
---|
597 | ! ... H. Upfiltreg_modadhyaya, O.Sharma ... |
---|
598 | |
---|
599 | ! version 3 ..... |
---|
600 | |
---|
601 | ! Correction le 28/10/97 P. Le Van . |
---|
602 | ! ------------------------------------------------------------------- |
---|
603 | |
---|
604 | REAL dlonu(iim), dlatu(jjm) |
---|
605 | REAL rlamda(iim), eignvl(iim) |
---|
606 | |
---|
607 | REAL lamdamax, pi, cof |
---|
608 | INTEGER i, j, modemax, imx, k, kf, ii |
---|
609 | REAL dymin, dxmin, colat0 |
---|
610 | REAL eignft(iim, iim), coff |
---|
611 | |
---|
612 | LOGICAL, SAVE :: first_call_inifilr = .TRUE. |
---|
613 | |
---|
614 | INTEGER ISMIN |
---|
615 | EXTERNAL ISMIN |
---|
616 | INTEGER iymin |
---|
617 | INTEGER ixmineq |
---|
618 | |
---|
619 | ! ------------------------------------------------------------ |
---|
620 | ! This routine computes the eigenfunctions of the laplacien |
---|
621 | ! on the stretched grid, and the filtering coefficients |
---|
622 | |
---|
623 | ! We designate: |
---|
624 | ! eignfn eigenfunctions of the discrete laplacien |
---|
625 | ! eigenvl eigenvalues |
---|
626 | ! jfiltn indexof the last scalar line filtered in NH |
---|
627 | ! jfilts index of the first line filtered in SH |
---|
628 | ! modfrst index of the mode from WHERE modes are filtered |
---|
629 | ! modemax maximum number of modes ( im ) |
---|
630 | ! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) |
---|
631 | ! sdd SQRT( dx ) |
---|
632 | |
---|
633 | ! the modes are filtered from modfrst to modemax |
---|
634 | |
---|
635 | !----------------------------------------------------------- |
---|
636 | |
---|
637 | IF (iim == 1) return ! No filtre in 2D y-z |
---|
638 | |
---|
639 | pi = 2. * ASIN(1.) |
---|
640 | |
---|
641 | DO i = 1, iim |
---|
642 | dlonu(i) = xprimu(i) |
---|
643 | ENDDO |
---|
644 | |
---|
645 | CALL inifgn(eignvl) |
---|
646 | |
---|
647 | PRINT *, 'inifilr: EIGNVL ' |
---|
648 | PRINT 250, eignvl |
---|
649 | 250 FORMAT(1x, 5e14.6) |
---|
650 | |
---|
651 | ! compute eigenvalues and eigenfunctions |
---|
652 | |
---|
653 | |
---|
654 | !................................................................. |
---|
655 | |
---|
656 | ! compute the filtering coefficients for scalar lines and |
---|
657 | ! meridional wind v-lines |
---|
658 | |
---|
659 | ! we filter all those latitude lines WHERE coefil < 1 |
---|
660 | ! NO FILTERING AT POLES |
---|
661 | |
---|
662 | ! colat0 is to be used when alpha (stretching coefficient) |
---|
663 | ! is set equal to zero for the regular grid CASE |
---|
664 | |
---|
665 | ! ....... Calcul de colat0 ......... |
---|
666 | ! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... |
---|
667 | |
---|
668 | DO j = 1, jjm |
---|
669 | dlatu(j) = rlatu(j) - rlatu(j + 1) |
---|
670 | ENDDO |
---|
671 | |
---|
672 | dxmin = dlonu(1) |
---|
673 | DO i = 2, iim |
---|
674 | dxmin = MIN(dxmin, dlonu(i)) |
---|
675 | ENDDO |
---|
676 | dymin = dlatu(1) |
---|
677 | DO j = 2, jjm |
---|
678 | dymin = MIN(dymin, dlatu(j)) |
---|
679 | ENDDO |
---|
680 | |
---|
681 | ! For a regular grid, we want the filter to start at latitudes |
---|
682 | ! corresponding to lengths dx of the same size as dy (in terms |
---|
683 | ! of angles: dx=2*dy) => at colat0=0.5 (i.e. colatitude=30 degrees |
---|
684 | ! <=> latitude=60 degrees). |
---|
685 | ! Same idea for the zoomed grid: start filtering polewards as soon |
---|
686 | ! as length dx becomes of the same size as dy |
---|
687 | |
---|
688 | ! if maxlatfilter >0, prescribe the colat0 value from the .def files |
---|
689 | |
---|
690 | IF (maxlatfilter < 0.) THEN |
---|
691 | |
---|
692 | colat0 = MIN(0.5, dymin / dxmin) |
---|
693 | ! colat0 = 1. |
---|
694 | |
---|
695 | IF(.NOT.fxyhypb.AND.ysinus) THEN |
---|
696 | colat0 = 0.6 |
---|
697 | ! ...... a revoir pour ysinus ! ....... |
---|
698 | alphax = 0. |
---|
699 | ENDIF |
---|
700 | |
---|
701 | ELSE |
---|
702 | |
---|
703 | colat0 = (90.0 - maxlatfilter) / 180.0 * pi |
---|
704 | |
---|
705 | ENDIF |
---|
706 | |
---|
707 | PRINT 50, colat0, alphax |
---|
708 | 50 FORMAT(/15x, ' Inifilr colat0 alphax ', 2e16.7) |
---|
709 | |
---|
710 | IF(alphax==1.) THEN |
---|
711 | PRINT *, ' Inifilr alphax doit etre < a 1. Corriger ' |
---|
712 | STOP |
---|
713 | ENDIF |
---|
714 | |
---|
715 | lamdamax = iim / (pi * colat0 * (1. - alphax)) |
---|
716 | |
---|
717 | ! ... Correction le 28/10/97 ( P.Le Van ) .. |
---|
718 | |
---|
719 | DO i = 2, iim |
---|
720 | rlamda(i) = lamdamax / SQRT(ABS(eignvl(i))) |
---|
721 | ENDDO |
---|
722 | |
---|
723 | DO j = 1, jjm |
---|
724 | DO i = 1, iim |
---|
725 | coefilu(i, j) = 0.0 |
---|
726 | coefilv(i, j) = 0.0 |
---|
727 | coefilu2(i, j) = 0.0 |
---|
728 | coefilv2(i, j) = 0.0 |
---|
729 | ENDDO |
---|
730 | ENDDO |
---|
731 | |
---|
732 | ! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... |
---|
733 | ! ......................................................... |
---|
734 | |
---|
735 | modemax = iim |
---|
736 | |
---|
737 | !!!! imx = modemax - 4 * (modemax/iim) |
---|
738 | |
---|
739 | imx = iim |
---|
740 | |
---|
741 | PRINT *, 'inifilr: TRUNCATION AT ', imx |
---|
742 | |
---|
743 | ! Ehouarn: set up some defaults |
---|
744 | jfiltnu = 2 ! avoid north pole |
---|
745 | jfiltsu = jjm ! avoid south pole (which is at jjm+1) |
---|
746 | jfiltnv = 1 ! NB: no poles on the V grid |
---|
747 | jfiltsv = jjm |
---|
748 | |
---|
749 | DO j = 2, jjm / 2 + 1 |
---|
750 | cof = COS(rlatu(j)) / colat0 |
---|
751 | IF (cof < 1.) THEN |
---|
752 | IF(rlamda(imx) * COS(rlatu(j))<1.) THEN |
---|
753 | jfiltnu = j |
---|
754 | ENDIF |
---|
755 | ENDIF |
---|
756 | |
---|
757 | cof = COS(rlatu(jjp1 - j + 1)) / colat0 |
---|
758 | IF (cof < 1.) THEN |
---|
759 | IF(rlamda(imx) * COS(rlatu(jjp1 - j + 1))<1.) THEN |
---|
760 | jfiltsu = jjp1 - j + 1 |
---|
761 | ENDIF |
---|
762 | ENDIF |
---|
763 | ENDDO |
---|
764 | |
---|
765 | DO j = 1, jjm / 2 |
---|
766 | cof = COS(rlatv(j)) / colat0 |
---|
767 | IF (cof < 1.) THEN |
---|
768 | IF(rlamda(imx) * COS(rlatv(j))<1.) THEN |
---|
769 | jfiltnv = j |
---|
770 | ENDIF |
---|
771 | ENDIF |
---|
772 | |
---|
773 | cof = COS(rlatv(jjm - j + 1)) / colat0 |
---|
774 | IF (cof < 1.) THEN |
---|
775 | IF(rlamda(imx) * COS(rlatv(jjm - j + 1))<1.) THEN |
---|
776 | jfiltsv = jjm - j + 1 |
---|
777 | ENDIF |
---|
778 | ENDIF |
---|
779 | ENDDO |
---|
780 | |
---|
781 | IF(jfiltnu> jjm / 2 + 1) THEN |
---|
782 | PRINT *, ' jfiltnu en dehors des valeurs acceptables ', jfiltnu |
---|
783 | STOP |
---|
784 | ENDIF |
---|
785 | |
---|
786 | IF(jfiltsu> jjm + 1) THEN |
---|
787 | PRINT *, ' jfiltsu en dehors des valeurs acceptables ', jfiltsu |
---|
788 | STOP |
---|
789 | ENDIF |
---|
790 | |
---|
791 | IF(jfiltnv> jjm / 2) THEN |
---|
792 | PRINT *, ' jfiltnv en dehors des valeurs acceptables ', jfiltnv |
---|
793 | STOP |
---|
794 | ENDIF |
---|
795 | |
---|
796 | IF(jfiltsv> jjm) THEN |
---|
797 | PRINT *, ' jfiltsv en dehors des valeurs acceptables ', jfiltsv |
---|
798 | STOP |
---|
799 | ENDIF |
---|
800 | |
---|
801 | PRINT *, 'inifilr: jfiltnv jfiltsv jfiltnu jfiltsu ', & |
---|
802 | jfiltnv, jfiltsv, jfiltnu, jfiltsu |
---|
803 | |
---|
804 | IF(first_call_inifilr) THEN |
---|
805 | ALLOCATE(matriceun(iim, iim, jfiltnu)) |
---|
806 | ALLOCATE(matriceus(iim, iim, jjm - jfiltsu + 1)) |
---|
807 | ALLOCATE(matricevn(iim, iim, jfiltnv)) |
---|
808 | ALLOCATE(matricevs(iim, iim, jjm - jfiltsv + 1)) |
---|
809 | ALLOCATE(matrinvn(iim, iim, jfiltnu)) |
---|
810 | ALLOCATE(matrinvs(iim, iim, jjm - jfiltsu + 1)) |
---|
811 | first_call_inifilr = .FALSE. |
---|
812 | ENDIF |
---|
813 | |
---|
814 | ! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... |
---|
815 | !................................................................ |
---|
816 | |
---|
817 | DO j = 1, jjm |
---|
818 | !default initialization: all modes are retained (i.e. no filtering) |
---|
819 | modfrstu(j) = iim |
---|
820 | modfrstv(j) = iim |
---|
821 | ENDDO |
---|
822 | |
---|
823 | DO j = 2, jfiltnu |
---|
824 | DO k = 2, modemax |
---|
825 | cof = rlamda(k) * COS(rlatu(j)) |
---|
826 | IF (cof < 1.) GOTO 82 |
---|
827 | ENDDO |
---|
828 | GOTO 84 |
---|
829 | 82 modfrstu(j) = k |
---|
830 | |
---|
831 | kf = modfrstu(j) |
---|
832 | DO k = kf, modemax |
---|
833 | cof = rlamda(k) * COS(rlatu(j)) |
---|
834 | coefilu(k, j) = cof - 1. |
---|
835 | coefilu2(k, j) = cof * cof - 1. |
---|
836 | ENDDO |
---|
837 | 84 CONTINUE |
---|
838 | ENDDO |
---|
839 | |
---|
840 | DO j = 1, jfiltnv |
---|
841 | |
---|
842 | DO k = 2, modemax |
---|
843 | cof = rlamda(k) * COS(rlatv(j)) |
---|
844 | IF (cof < 1.) GOTO 87 |
---|
845 | ENDDO |
---|
846 | GOTO 89 |
---|
847 | 87 modfrstv(j) = k |
---|
848 | |
---|
849 | kf = modfrstv(j) |
---|
850 | DO k = kf, modemax |
---|
851 | cof = rlamda(k) * COS(rlatv(j)) |
---|
852 | coefilv(k, j) = cof - 1. |
---|
853 | coefilv2(k, j) = cof * cof - 1. |
---|
854 | ENDDO |
---|
855 | 89 CONTINUE |
---|
856 | ENDDO |
---|
857 | |
---|
858 | DO j = jfiltsu, jjm |
---|
859 | DO k = 2, modemax |
---|
860 | cof = rlamda(k) * COS(rlatu(j)) |
---|
861 | IF (cof < 1.) GOTO 92 |
---|
862 | ENDDO |
---|
863 | GOTO 94 |
---|
864 | 92 modfrstu(j) = k |
---|
865 | |
---|
866 | kf = modfrstu(j) |
---|
867 | DO k = kf, modemax |
---|
868 | cof = rlamda(k) * COS(rlatu(j)) |
---|
869 | coefilu(k, j) = cof - 1. |
---|
870 | coefilu2(k, j) = cof * cof - 1. |
---|
871 | ENDDO |
---|
872 | 94 CONTINUE |
---|
873 | ENDDO |
---|
874 | |
---|
875 | DO j = jfiltsv, jjm |
---|
876 | DO k = 2, modemax |
---|
877 | cof = rlamda(k) * COS(rlatv(j)) |
---|
878 | IF (cof < 1.) GOTO 97 |
---|
879 | ENDDO |
---|
880 | GOTO 99 |
---|
881 | 97 modfrstv(j) = k |
---|
882 | |
---|
883 | kf = modfrstv(j) |
---|
884 | DO k = kf, modemax |
---|
885 | cof = rlamda(k) * COS(rlatv(j)) |
---|
886 | coefilv(k, j) = cof - 1. |
---|
887 | coefilv2(k, j) = cof * cof - 1. |
---|
888 | ENDDO |
---|
889 | 99 CONTINUE |
---|
890 | ENDDO |
---|
891 | |
---|
892 | IF(jfiltnv>=jjm / 2 .OR. jfiltnu>=jjm / 2)THEN |
---|
893 | ! Ehouarn: and what are these for??? Trying to handle a limit case |
---|
894 | ! where filters extend to and meet at the equator? |
---|
895 | IF(jfiltnv==jfiltsv)jfiltsv = 1 + jfiltnv |
---|
896 | IF(jfiltnu==jfiltsu)jfiltsu = 1 + jfiltnu |
---|
897 | |
---|
898 | PRINT *, 'jfiltnv jfiltsv jfiltnu jfiltsu', & |
---|
899 | jfiltnv, jfiltsv, jfiltnu, jfiltsu |
---|
900 | ENDIF |
---|
901 | |
---|
902 | PRINT *, ' Modes premiers v ' |
---|
903 | PRINT 334, modfrstv |
---|
904 | PRINT *, ' Modes premiers u ' |
---|
905 | PRINT 334, modfrstu |
---|
906 | |
---|
907 | ! ................................................................... |
---|
908 | |
---|
909 | ! ... Calcul de la matrice filtre 'matriceu' pour les champs situes |
---|
910 | ! sur la grille scalaire ........ |
---|
911 | ! ................................................................... |
---|
912 | |
---|
913 | DO j = 2, jfiltnu |
---|
914 | |
---|
915 | DO i = 1, iim |
---|
916 | coff = coefilu(i, j) |
---|
917 | IF(i<modfrstu(j)) coff = 0. |
---|
918 | DO k = 1, iim |
---|
919 | eignft(i, k) = eignfnv(k, i) * coff |
---|
920 | ENDDO |
---|
921 | ENDDO ! of DO i=1,iim |
---|
922 | |
---|
923 | #ifdef BLAS |
---|
924 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
925 | eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) |
---|
926 | #else |
---|
927 | DO k = 1, iim |
---|
928 | DO i = 1, iim |
---|
929 | matriceun(i, k, j) = 0.0 |
---|
930 | DO ii = 1, iim |
---|
931 | matriceun(i, k, j) = matriceun(i, k, j) & |
---|
932 | + eignfnv(i, ii) * eignft(ii, k) |
---|
933 | ENDDO |
---|
934 | ENDDO |
---|
935 | ENDDO ! of DO k = 1, iim |
---|
936 | #endif |
---|
937 | |
---|
938 | ENDDO ! of DO j = 2, jfiltnu |
---|
939 | |
---|
940 | DO j = jfiltsu, jjm |
---|
941 | |
---|
942 | DO i = 1, iim |
---|
943 | coff = coefilu(i, j) |
---|
944 | IF(i<modfrstu(j)) coff = 0. |
---|
945 | DO k = 1, iim |
---|
946 | eignft(i, k) = eignfnv(k, i) * coff |
---|
947 | ENDDO |
---|
948 | ENDDO ! of DO i=1,iim |
---|
949 | #ifdef BLAS |
---|
950 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
951 | eignfnv, iim, eignft, iim, 0.0, & |
---|
952 | matriceus(1,1,j-jfiltsu+1), iim) |
---|
953 | #else |
---|
954 | DO k = 1, iim |
---|
955 | DO i = 1, iim |
---|
956 | matriceus(i, k, j - jfiltsu + 1) = 0.0 |
---|
957 | DO ii = 1, iim |
---|
958 | matriceus(i, k, j - jfiltsu + 1) = matriceus(i, k, j - jfiltsu + 1) & |
---|
959 | + eignfnv(i, ii) * eignft(ii, k) |
---|
960 | ENDDO |
---|
961 | ENDDO |
---|
962 | ENDDO ! of DO k = 1, iim |
---|
963 | #endif |
---|
964 | |
---|
965 | ENDDO ! of DO j = jfiltsu, jjm |
---|
966 | |
---|
967 | ! ................................................................... |
---|
968 | |
---|
969 | ! ... Calcul de la matrice filtre 'matricev' pour les champs situes |
---|
970 | ! sur la grille de V ou de Z ........ |
---|
971 | ! ................................................................... |
---|
972 | |
---|
973 | DO j = 1, jfiltnv |
---|
974 | |
---|
975 | DO i = 1, iim |
---|
976 | coff = coefilv(i, j) |
---|
977 | IF(i<modfrstv(j)) coff = 0. |
---|
978 | DO k = 1, iim |
---|
979 | eignft(i, k) = eignfnu(k, i) * coff |
---|
980 | ENDDO |
---|
981 | ENDDO |
---|
982 | |
---|
983 | #ifdef BLAS |
---|
984 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
985 | eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) |
---|
986 | #else |
---|
987 | DO k = 1, iim |
---|
988 | DO i = 1, iim |
---|
989 | matricevn(i, k, j) = 0.0 |
---|
990 | DO ii = 1, iim |
---|
991 | matricevn(i, k, j) = matricevn(i, k, j) & |
---|
992 | + eignfnu(i, ii) * eignft(ii, k) |
---|
993 | ENDDO |
---|
994 | ENDDO |
---|
995 | ENDDO |
---|
996 | #endif |
---|
997 | |
---|
998 | ENDDO ! of DO j = 1, jfiltnv |
---|
999 | |
---|
1000 | DO j = jfiltsv, jjm |
---|
1001 | |
---|
1002 | DO i = 1, iim |
---|
1003 | coff = coefilv(i, j) |
---|
1004 | IF(i<modfrstv(j)) coff = 0. |
---|
1005 | DO k = 1, iim |
---|
1006 | eignft(i, k) = eignfnu(k, i) * coff |
---|
1007 | ENDDO |
---|
1008 | ENDDO |
---|
1009 | |
---|
1010 | #ifdef BLAS |
---|
1011 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
1012 | eignfnu, iim, eignft, iim, 0.0, & |
---|
1013 | matricevs(1,1,j-jfiltsv+1), iim) |
---|
1014 | #else |
---|
1015 | DO k = 1, iim |
---|
1016 | DO i = 1, iim |
---|
1017 | matricevs(i, k, j - jfiltsv + 1) = 0.0 |
---|
1018 | DO ii = 1, iim |
---|
1019 | matricevs(i, k, j - jfiltsv + 1) = matricevs(i, k, j - jfiltsv + 1) & |
---|
1020 | + eignfnu(i, ii) * eignft(ii, k) |
---|
1021 | ENDDO |
---|
1022 | ENDDO |
---|
1023 | ENDDO |
---|
1024 | #endif |
---|
1025 | |
---|
1026 | ENDDO ! of DO j = jfiltsv, jjm |
---|
1027 | |
---|
1028 | ! ................................................................... |
---|
1029 | |
---|
1030 | ! ... Calcul de la matrice filtre 'matrinv' pour les champs situes |
---|
1031 | ! sur la grille scalaire , pour le filtre inverse ........ |
---|
1032 | ! ................................................................... |
---|
1033 | |
---|
1034 | DO j = 2, jfiltnu |
---|
1035 | |
---|
1036 | DO i = 1, iim |
---|
1037 | coff = coefilu(i, j) / (1. + coefilu(i, j)) |
---|
1038 | IF(i<modfrstu(j)) coff = 0. |
---|
1039 | DO k = 1, iim |
---|
1040 | eignft(i, k) = eignfnv(k, i) * coff |
---|
1041 | ENDDO |
---|
1042 | ENDDO |
---|
1043 | |
---|
1044 | #ifdef BLAS |
---|
1045 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
1046 | eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) |
---|
1047 | #else |
---|
1048 | DO k = 1, iim |
---|
1049 | DO i = 1, iim |
---|
1050 | matrinvn(i, k, j) = 0.0 |
---|
1051 | DO ii = 1, iim |
---|
1052 | matrinvn(i, k, j) = matrinvn(i, k, j) & |
---|
1053 | + eignfnv(i, ii) * eignft(ii, k) |
---|
1054 | ENDDO |
---|
1055 | ENDDO |
---|
1056 | ENDDO |
---|
1057 | #endif |
---|
1058 | |
---|
1059 | ENDDO ! of DO j = 2, jfiltnu |
---|
1060 | |
---|
1061 | DO j = jfiltsu, jjm |
---|
1062 | |
---|
1063 | DO i = 1, iim |
---|
1064 | coff = coefilu(i, j) / (1. + coefilu(i, j)) |
---|
1065 | IF(i<modfrstu(j)) coff = 0. |
---|
1066 | DO k = 1, iim |
---|
1067 | eignft(i, k) = eignfnv(k, i) * coff |
---|
1068 | ENDDO |
---|
1069 | ENDDO |
---|
1070 | #ifdef BLAS |
---|
1071 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
1072 | eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) |
---|
1073 | #else |
---|
1074 | DO k = 1, iim |
---|
1075 | DO i = 1, iim |
---|
1076 | matrinvs(i, k, j - jfiltsu + 1) = 0.0 |
---|
1077 | DO ii = 1, iim |
---|
1078 | matrinvs(i, k, j - jfiltsu + 1) = matrinvs(i, k, j - jfiltsu + 1) & |
---|
1079 | + eignfnv(i, ii) * eignft(ii, k) |
---|
1080 | ENDDO |
---|
1081 | ENDDO |
---|
1082 | ENDDO |
---|
1083 | #endif |
---|
1084 | |
---|
1085 | ENDDO ! of DO j = jfiltsu, jjm |
---|
1086 | |
---|
1087 | #ifdef CPP_PARA |
---|
1088 | IF (use_filtre_fft) THEN |
---|
1089 | CALL Init_filtre_fft(coefilu,modfrstu,jfiltnu,jfiltsu, & |
---|
1090 | coefilv,modfrstv,jfiltnv,jfiltsv) |
---|
1091 | CALL Init_filtre_fft_loc(coefilu,modfrstu,jfiltnu,jfiltsu, & |
---|
1092 | coefilv,modfrstv,jfiltnv,jfiltsv) |
---|
1093 | ENDIF |
---|
1094 | #endif |
---|
1095 | ! ................................................................... |
---|
1096 | |
---|
1097 | 334 FORMAT(1x, 24i3) |
---|
1098 | |
---|
1099 | END SUBROUTINE inifilr |
---|
1100 | |
---|
1101 | END MODULE lmdz_filtreg |
---|