1 | ! $Id: calfis.f90 5182 2024-09-10 14:25:29Z fhourdin $ |
---|
2 | |
---|
3 | |
---|
4 | |
---|
5 | SUBROUTINE calfis(lafin, & |
---|
6 | jD_cur, jH_cur, & |
---|
7 | pucov, & |
---|
8 | pvcov, & |
---|
9 | pteta, & |
---|
10 | pq, & |
---|
11 | pmasse, & |
---|
12 | pps, & |
---|
13 | pp, & |
---|
14 | ppk, & |
---|
15 | pphis, & |
---|
16 | pphi, & |
---|
17 | pducov, & |
---|
18 | pdvcov, & |
---|
19 | pdteta, & |
---|
20 | pdq, & |
---|
21 | flxw, & |
---|
22 | pdufi, & |
---|
23 | pdvfi, & |
---|
24 | pdhfi, & |
---|
25 | pdqfi, & |
---|
26 | pdpsfi) |
---|
27 | |
---|
28 | ! Auteur : P. Le Van, F. Hourdin |
---|
29 | ! ......... |
---|
30 | USE lmdz_infotrac, ONLY: nqtot, tracers |
---|
31 | USE control_mod, ONLY: planet_type, nsplit_phys |
---|
32 | USE callphysiq_mod, ONLY: call_physiq |
---|
33 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_PHYS |
---|
34 | USE comconst_mod, ONLY: cpp, daysec, dtphys, dtvr, kappa, pi |
---|
35 | USE comvert_mod, ONLY: preff, presnivs |
---|
36 | USE lmdz_iniprint, ONLY: lunout, prt_level |
---|
37 | USE lmdz_ssum_scopy, ONLY: scopy, ssum |
---|
38 | USE lmdz_comgeom2 |
---|
39 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
40 | USE lmdz_paramet |
---|
41 | |
---|
42 | IMPLICIT NONE |
---|
43 | !======================================================================= |
---|
44 | |
---|
45 | ! 1. rearrangement des tableaux et transformation |
---|
46 | ! variables dynamiques > variables physiques |
---|
47 | ! 2. calcul des termes physiques |
---|
48 | ! 3. retransformation des tendances physiques en tendances dynamiques |
---|
49 | |
---|
50 | ! remarques: |
---|
51 | ! ---------- |
---|
52 | |
---|
53 | ! - les vents sont donnes dans la physique par leurs composantes |
---|
54 | ! naturelles. |
---|
55 | ! - la variable thermodynamique de la physique est une variable |
---|
56 | ! intensive : T |
---|
57 | ! pour la dynamique on prend T * ( preff / p(l) ) **kappa |
---|
58 | ! - les deux seules variables dependant de la geometrie necessaires |
---|
59 | ! pour la physique sont la latitude pour le rayonnement et |
---|
60 | ! l'aire de la maille quand on veut integrer une grandeur |
---|
61 | ! horizontalement. |
---|
62 | ! - les points de la physique sont les points scalaires de la |
---|
63 | ! la dynamique; numerotation: |
---|
64 | ! 1 pour le pole nord |
---|
65 | ! (jjm-1)*iim pour l'interieur du domaine |
---|
66 | ! ngridmx pour le pole sud |
---|
67 | ! ---> ngridmx=2+(jjm-1)*iim |
---|
68 | |
---|
69 | ! Input : |
---|
70 | ! ------- |
---|
71 | ! pucov covariant zonal velocity |
---|
72 | ! pvcov covariant meridional velocity |
---|
73 | ! pteta potential temperature |
---|
74 | ! pps surface pressure |
---|
75 | ! pmasse masse d'air dans chaque maille |
---|
76 | ! pts surface temperature (K) |
---|
77 | ! callrad clef d'appel au rayonnement |
---|
78 | |
---|
79 | ! Output : |
---|
80 | ! -------- |
---|
81 | ! pdufi tendency for the natural zonal velocity (ms-1) |
---|
82 | ! pdvfi tendency for the natural meridional velocity |
---|
83 | ! pdhfi tendency for the potential temperature |
---|
84 | ! pdtsfi tendency for the surface temperature |
---|
85 | |
---|
86 | ! pdtrad radiative tendencies \ both input |
---|
87 | ! pfluxrad radiative fluxes / and output |
---|
88 | |
---|
89 | !======================================================================= |
---|
90 | |
---|
91 | !----------------------------------------------------------------------- |
---|
92 | |
---|
93 | ! 0. Declarations : |
---|
94 | ! ------------------ |
---|
95 | |
---|
96 | INTEGER :: ngridmx |
---|
97 | PARAMETER(ngridmx = 2 + (jjm - 1) * iim - 1 / jjm) |
---|
98 | |
---|
99 | ! Arguments : |
---|
100 | ! ----------- |
---|
101 | LOGICAL, INTENT(IN) :: lafin ! .TRUE. for the very last CALL to physics |
---|
102 | REAL, INTENT(IN) :: jD_cur, jH_cur |
---|
103 | REAL, INTENT(IN) :: pvcov(iip1, jjm, llm) ! covariant meridional velocity |
---|
104 | REAL, INTENT(IN) :: pucov(iip1, jjp1, llm) ! covariant zonal velocity |
---|
105 | REAL, INTENT(IN) :: pteta(iip1, jjp1, llm) ! potential temperature |
---|
106 | REAL, INTENT(IN) :: pmasse(iip1, jjp1, llm) ! mass in each cell ! not used |
---|
107 | REAL, INTENT(IN) :: pq(iip1, jjp1, llm, nqtot) ! tracers |
---|
108 | REAL, INTENT(IN) :: pphis(iip1, jjp1) ! surface geopotential |
---|
109 | REAL, INTENT(IN) :: pphi(iip1, jjp1, llm) ! geopotential |
---|
110 | |
---|
111 | REAL, INTENT(IN) :: pdvcov(iip1, jjm, llm) ! dynamical tendency on vcov |
---|
112 | REAL, INTENT(IN) :: pducov(iip1, jjp1, llm) ! dynamical tendency on ucov |
---|
113 | REAL, INTENT(IN) :: pdteta(iip1, jjp1, llm) ! dynamical tendency on teta |
---|
114 | ! NB: pdteta is used only to compute pcvgt which is in fact not used... |
---|
115 | REAL, INTENT(IN) :: pdq(iip1, jjp1, llm, nqtot) ! dynamical tendency on tracers |
---|
116 | ! NB: pdq is only used to compute pcvgq which is in fact not used... |
---|
117 | |
---|
118 | REAL, INTENT(IN) :: pps(iip1, jjp1) ! surface pressure (Pa) |
---|
119 | REAL, INTENT(IN) :: pp(iip1, jjp1, llmp1) ! pressure at mesh interfaces (Pa) |
---|
120 | REAL, INTENT(IN) :: ppk(iip1, jjp1, llm) ! Exner at mid-layer |
---|
121 | REAL, INTENT(IN) :: flxw(iip1, jjp1, llm) ! Vertical mass flux on lower mesh interfaces (kg/s) (on llm because flxw(:,:,llm+1)=0) |
---|
122 | |
---|
123 | ! tendencies (in */s) from the physics |
---|
124 | REAL, INTENT(OUT) :: pdvfi(iip1, jjm, llm) ! tendency on covariant meridional wind |
---|
125 | REAL, INTENT(OUT) :: pdufi(iip1, jjp1, llm) ! tendency on covariant zonal wind |
---|
126 | REAL, INTENT(OUT) :: pdhfi(iip1, jjp1, llm) ! tendency on potential temperature (K/s) |
---|
127 | REAL, INTENT(OUT) :: pdqfi(iip1, jjp1, llm, nqtot) ! tendency on tracers |
---|
128 | REAL, INTENT(OUT) :: pdpsfi(iip1, jjp1) ! tendency on surface pressure (Pa/s) |
---|
129 | |
---|
130 | |
---|
131 | ! Local variables : |
---|
132 | ! ----------------- |
---|
133 | |
---|
134 | INTEGER :: i, j, l, ig0, ig, iq, itr |
---|
135 | REAL :: zpsrf(ngridmx) |
---|
136 | REAL :: zplev(ngridmx, llm + 1), zplay(ngridmx, llm) |
---|
137 | REAL :: zphi(ngridmx, llm), zphis(ngridmx) |
---|
138 | |
---|
139 | REAL :: zrot(iip1, jjm, llm) ! AdlC May 2014 |
---|
140 | REAL :: zufi(ngridmx, llm), zvfi(ngridmx, llm) |
---|
141 | REAL :: zrfi(ngridmx, llm) ! relative wind vorticity |
---|
142 | REAL :: ztfi(ngridmx, llm), zqfi(ngridmx, llm, nqtot) |
---|
143 | REAL :: zpk(ngridmx, llm) |
---|
144 | |
---|
145 | REAL :: pcvgu(ngridmx, llm), pcvgv(ngridmx, llm) |
---|
146 | REAL :: pcvgt(ngridmx, llm), pcvgq(ngridmx, llm, 2) |
---|
147 | |
---|
148 | REAL :: zdufi(ngridmx, llm), zdvfi(ngridmx, llm) |
---|
149 | REAL :: zdtfi(ngridmx, llm), zdqfi(ngridmx, llm, nqtot) |
---|
150 | REAL :: zdpsrf(ngridmx) |
---|
151 | |
---|
152 | REAL :: zdufic(ngridmx, llm), zdvfic(ngridmx, llm) |
---|
153 | REAL :: zdtfic(ngridmx, llm), zdqfic(ngridmx, llm, nqtot) |
---|
154 | REAL :: jH_cur_split, zdt_split |
---|
155 | LOGICAL :: debut_split, lafin_split |
---|
156 | INTEGER :: isplit |
---|
157 | |
---|
158 | REAL :: zsin(iim), zcos(iim), z1(iim) |
---|
159 | REAL :: zsinbis(iim), zcosbis(iim), z1bis(iim) |
---|
160 | REAL :: unskap, pksurcp |
---|
161 | |
---|
162 | REAL :: flxwfi(ngridmx, llm) ! Flux de masse verticale sur la grille physiq |
---|
163 | |
---|
164 | LOGICAL, SAVE :: firstcal = .TRUE., debut = .TRUE. |
---|
165 | ! REAL rdayvrai |
---|
166 | |
---|
167 | |
---|
168 | !----------------------------------------------------------------------- |
---|
169 | |
---|
170 | ! 1. Initialisations : |
---|
171 | ! -------------------- |
---|
172 | |
---|
173 | |
---|
174 | IF (firstcal) THEN |
---|
175 | debut = .TRUE. |
---|
176 | IF (ngridmx/=2 + (jjm - 1) * iim) THEN |
---|
177 | WRITE(lunout, *) 'STOP dans calfis' |
---|
178 | WRITE(lunout, *) & |
---|
179 | 'La dimension ngridmx doit etre egale a 2 + (jjm-1)*iim' |
---|
180 | WRITE(lunout, *) ' ngridmx jjm iim ' |
---|
181 | WRITE(lunout, *) ngridmx, jjm, iim |
---|
182 | CALL abort_gcm("calfis", "", 1) |
---|
183 | ENDIF |
---|
184 | ELSE |
---|
185 | debut = .FALSE. |
---|
186 | ENDIF ! of IF (firstcal) |
---|
187 | |
---|
188 | |
---|
189 | |
---|
190 | !----------------------------------------------------------------------- |
---|
191 | ! 40. transformation des variables dynamiques en variables physiques: |
---|
192 | ! --------------------------------------------------------------- |
---|
193 | |
---|
194 | ! 41. pressions au sol (en Pascals) |
---|
195 | ! ---------------------------------- |
---|
196 | |
---|
197 | zpsrf(1) = pps(1, 1) |
---|
198 | |
---|
199 | ig0 = 2 |
---|
200 | DO j = 2, jjm |
---|
201 | CALL SCOPY(iim, pps(1, j), 1, zpsrf(ig0), 1) |
---|
202 | ig0 = ig0 + iim |
---|
203 | ENDDO |
---|
204 | |
---|
205 | zpsrf(ngridmx) = pps(1, jjp1) |
---|
206 | |
---|
207 | |
---|
208 | ! 42. pression intercouches et fonction d'Exner: |
---|
209 | |
---|
210 | ! ----------------------------------------------------------------- |
---|
211 | ! .... zplev definis aux (llm +1) interfaces des couches .... |
---|
212 | ! .... zplay definis aux ( llm ) milieux des couches .... |
---|
213 | ! ----------------------------------------------------------------- |
---|
214 | |
---|
215 | ! ... Exner = cp * ( p(l) / preff ) ** kappa .... |
---|
216 | |
---|
217 | unskap = 1. / kappa |
---|
218 | |
---|
219 | DO l = 1, llm |
---|
220 | zpk(1, l) = ppk(1, 1, l) |
---|
221 | zplev(1, l) = pp(1, 1, l) |
---|
222 | ig0 = 2 |
---|
223 | DO j = 2, jjm |
---|
224 | DO i = 1, iim |
---|
225 | zpk(ig0, l) = ppk(i, j, l) |
---|
226 | zplev(ig0, l) = pp(i, j, l) |
---|
227 | ig0 = ig0 + 1 |
---|
228 | ENDDO |
---|
229 | ENDDO |
---|
230 | zpk(ngridmx, l) = ppk(1, jjp1, l) |
---|
231 | zplev(ngridmx, l) = pp(1, jjp1, l) |
---|
232 | ENDDO |
---|
233 | zplev(1, llmp1) = pp(1, 1, llmp1) |
---|
234 | ig0 = 2 |
---|
235 | DO j = 2, jjm |
---|
236 | DO i = 1, iim |
---|
237 | zplev(ig0, llmp1) = pp(i, j, llmp1) |
---|
238 | ig0 = ig0 + 1 |
---|
239 | ENDDO |
---|
240 | ENDDO |
---|
241 | zplev(ngridmx, llmp1) = pp(1, jjp1, llmp1) |
---|
242 | |
---|
243 | ! |
---|
244 | |
---|
245 | ! 43. temperature naturelle (en K) et pressions milieux couches . |
---|
246 | ! --------------------------------------------------------------- |
---|
247 | |
---|
248 | DO l = 1, llm |
---|
249 | |
---|
250 | pksurcp = ppk(1, 1, l) / cpp |
---|
251 | zplay(1, l) = preff * pksurcp ** unskap |
---|
252 | ztfi(1, l) = pteta(1, 1, l) * pksurcp |
---|
253 | pcvgt(1, l) = pdteta(1, 1, l) * pksurcp / pmasse(1, 1, l) |
---|
254 | ig0 = 2 |
---|
255 | |
---|
256 | DO j = 2, jjm |
---|
257 | DO i = 1, iim |
---|
258 | pksurcp = ppk(i, j, l) / cpp |
---|
259 | zplay(ig0, l) = preff * pksurcp ** unskap |
---|
260 | ztfi(ig0, l) = pteta(i, j, l) * pksurcp |
---|
261 | pcvgt(ig0, l) = pdteta(i, j, l) * pksurcp / pmasse(i, j, l) |
---|
262 | ig0 = ig0 + 1 |
---|
263 | ENDDO |
---|
264 | ENDDO |
---|
265 | |
---|
266 | pksurcp = ppk(1, jjp1, l) / cpp |
---|
267 | zplay(ig0, l) = preff * pksurcp ** unskap |
---|
268 | ztfi (ig0, l) = pteta(1, jjp1, l) * pksurcp |
---|
269 | pcvgt(ig0, l) = pdteta(1, jjp1, l) * pksurcp / pmasse(1, jjp1, l) |
---|
270 | |
---|
271 | ENDDO |
---|
272 | |
---|
273 | ! 43.bis traceurs |
---|
274 | ! --------------- |
---|
275 | |
---|
276 | itr = 0 |
---|
277 | DO iq = 1, nqtot |
---|
278 | IF(.NOT.tracers(iq)%isAdvected) CYCLE |
---|
279 | itr = itr + 1 |
---|
280 | DO l = 1, llm |
---|
281 | zqfi(1, l, itr) = pq(1, 1, l, iq) |
---|
282 | ig0 = 2 |
---|
283 | DO j = 2, jjm |
---|
284 | DO i = 1, iim |
---|
285 | zqfi(ig0, l, itr) = pq(i, j, l, iq) |
---|
286 | ig0 = ig0 + 1 |
---|
287 | ENDDO |
---|
288 | ENDDO |
---|
289 | zqfi(ig0, l, itr) = pq(1, jjp1, l, iq) |
---|
290 | ENDDO |
---|
291 | ENDDO |
---|
292 | |
---|
293 | ! convergence dynamique pour les traceurs "EAU" |
---|
294 | ! Earth-specific treatment of first 2 tracers (water) |
---|
295 | IF (planet_type=="earth") THEN |
---|
296 | DO iq = 1, 2 |
---|
297 | DO l = 1, llm |
---|
298 | pcvgq(1, l, iq) = pdq(1, 1, l, iq) / pmasse(1, 1, l) |
---|
299 | ig0 = 2 |
---|
300 | DO j = 2, jjm |
---|
301 | DO i = 1, iim |
---|
302 | pcvgq(ig0, l, iq) = pdq(i, j, l, iq) / pmasse(i, j, l) |
---|
303 | ig0 = ig0 + 1 |
---|
304 | ENDDO |
---|
305 | ENDDO |
---|
306 | pcvgq(ig0, l, iq) = pdq(1, jjp1, l, iq) / pmasse(1, jjp1, l) |
---|
307 | ENDDO |
---|
308 | ENDDO |
---|
309 | endif ! of if (planet_type=="earth") |
---|
310 | |
---|
311 | |
---|
312 | ! Geopotentiel calcule par rapport a la surface locale: |
---|
313 | ! ----------------------------------------------------- |
---|
314 | |
---|
315 | CALL gr_dyn_fi(llm, iip1, jjp1, ngridmx, pphi, zphi) |
---|
316 | CALL gr_dyn_fi(1, iip1, jjp1, ngridmx, pphis, zphis) |
---|
317 | DO l = 1, llm |
---|
318 | DO ig = 1, ngridmx |
---|
319 | zphi(ig, l) = zphi(ig, l) - zphis(ig) |
---|
320 | ENDDO |
---|
321 | ENDDO |
---|
322 | |
---|
323 | ! .... Calcul de la vitesse verticale ( en Pa*m*s ou Kg/s ) .... |
---|
324 | ! JG : ancien calcule de omega utilise dans physiq.F. Maintenant le flux |
---|
325 | ! de masse est calclue dans advtrac.F |
---|
326 | ! DO l=1,llm |
---|
327 | ! pvervel(1,l)=pw(1,1,l) * g /apoln |
---|
328 | ! ig0=2 |
---|
329 | ! DO j=2,jjm |
---|
330 | ! DO i = 1, iim |
---|
331 | ! pvervel(ig0,l) = pw(i,j,l) * g * unsaire(i,j) |
---|
332 | ! ig0 = ig0 + 1 |
---|
333 | ! ENDDO |
---|
334 | ! ENDDO |
---|
335 | ! pvervel(ig0,l)=pw(1,jjp1,l) * g /apols |
---|
336 | ! ENDDO |
---|
337 | |
---|
338 | |
---|
339 | ! 45. champ u: |
---|
340 | ! ------------ |
---|
341 | |
---|
342 | DO l = 1, llm |
---|
343 | |
---|
344 | DO j = 2, jjm |
---|
345 | ig0 = 1 + (j - 2) * iim |
---|
346 | zufi(ig0 + 1, l) = 0.5 * & |
---|
347 | (pucov(iim, j, l) / cu(iim, j) + pucov(1, j, l) / cu(1, j)) |
---|
348 | pcvgu(ig0 + 1, l) = 0.5 * & |
---|
349 | (pducov(iim, j, l) / cu(iim, j) + pducov(1, j, l) / cu(1, j)) |
---|
350 | DO i = 2, iim |
---|
351 | zufi(ig0 + i, l) = 0.5 * & |
---|
352 | (pucov(i - 1, j, l) / cu(i - 1, j) + pucov(i, j, l) / cu(i, j)) |
---|
353 | pcvgu(ig0 + i, l) = 0.5 * & |
---|
354 | (pducov(i - 1, j, l) / cu(i - 1, j) + pducov(i, j, l) / cu(i, j)) |
---|
355 | END DO |
---|
356 | END DO |
---|
357 | |
---|
358 | END DO |
---|
359 | |
---|
360 | |
---|
361 | ! Alvaro de la Camara (May 2014) |
---|
362 | ! 46.1 Calcul de la vorticite et passage sur la grille physique |
---|
363 | ! -------------------------------------------------------------- |
---|
364 | DO l = 1, llm |
---|
365 | DO i = 1, iim |
---|
366 | DO j = 1, jjm |
---|
367 | zrot(i, j, l) = (pvcov(i + 1, j, l) - pvcov(i, j, l) & |
---|
368 | + pucov(i, j + 1, l) - pucov(i, j, l)) & |
---|
369 | / (cu(i, j) + cu(i, j + 1)) & |
---|
370 | / (cv(i + 1, j) + cv(i, j)) * 4 |
---|
371 | enddo |
---|
372 | enddo |
---|
373 | ENDDO |
---|
374 | |
---|
375 | ! 46.champ v: |
---|
376 | ! ----------- |
---|
377 | |
---|
378 | DO l = 1, llm |
---|
379 | DO j = 2, jjm |
---|
380 | ig0 = 1 + (j - 2) * iim |
---|
381 | DO i = 1, iim |
---|
382 | zvfi(ig0 + i, l) = 0.5 * & |
---|
383 | (pvcov(i, j - 1, l) / cv(i, j - 1) + pvcov(i, j, l) / cv(i, j)) |
---|
384 | pcvgv(ig0 + i, l) = 0.5 * & |
---|
385 | (pdvcov(i, j - 1, l) / cv(i, j - 1) + pdvcov(i, j, l) / cv(i, j)) |
---|
386 | ENDDO |
---|
387 | zrfi(ig0 + 1, l) = 0.25 * (zrot(iim, j - 1, l) + zrot(iim, j, l) & |
---|
388 | + zrot(1, j - 1, l) + zrot(1, j, l)) |
---|
389 | DO i = 2, iim |
---|
390 | zrfi(ig0 + i, l) = 0.25 * (zrot(i - 1, j - 1, l) + zrot(i - 1, j, l) & |
---|
391 | + zrot(i, j - 1, l) + zrot(i, j, l)) ! AdlC MAY 2014 |
---|
392 | ENDDO |
---|
393 | ENDDO |
---|
394 | ENDDO |
---|
395 | |
---|
396 | |
---|
397 | ! 47. champs de vents aux pole nord |
---|
398 | ! ------------------------------ |
---|
399 | ! U = 1 / pi * integrale [ v * cos(long) * d long ] |
---|
400 | ! V = 1 / pi * integrale [ v * sin(long) * d long ] |
---|
401 | |
---|
402 | DO l = 1, llm |
---|
403 | |
---|
404 | z1(1) = (rlonu(1) - rlonu(iim) + 2. * pi) * pvcov(1, 1, l) / cv(1, 1) |
---|
405 | z1bis(1) = (rlonu(1) - rlonu(iim) + 2. * pi) * pdvcov(1, 1, l) / cv(1, 1) |
---|
406 | DO i = 2, iim |
---|
407 | z1(i) = (rlonu(i) - rlonu(i - 1)) * pvcov(i, 1, l) / cv(i, 1) |
---|
408 | z1bis(i) = (rlonu(i) - rlonu(i - 1)) * pdvcov(i, 1, l) / cv(i, 1) |
---|
409 | ENDDO |
---|
410 | |
---|
411 | DO i = 1, iim |
---|
412 | zcos(i) = COS(rlonv(i)) * z1(i) |
---|
413 | zcosbis(i) = COS(rlonv(i)) * z1bis(i) |
---|
414 | zsin(i) = SIN(rlonv(i)) * z1(i) |
---|
415 | zsinbis(i) = SIN(rlonv(i)) * z1bis(i) |
---|
416 | ENDDO |
---|
417 | |
---|
418 | zufi(1, l) = SSUM(iim, zcos, 1) / pi |
---|
419 | pcvgu(1, l) = SSUM(iim, zcosbis, 1) / pi |
---|
420 | zvfi(1, l) = SSUM(iim, zsin, 1) / pi |
---|
421 | pcvgv(1, l) = SSUM(iim, zsinbis, 1) / pi |
---|
422 | zrfi(1, l) = 0. |
---|
423 | ENDDO |
---|
424 | |
---|
425 | |
---|
426 | ! 48. champs de vents aux pole sud: |
---|
427 | ! --------------------------------- |
---|
428 | ! U = 1 / pi * integrale [ v * cos(long) * d long ] |
---|
429 | ! V = 1 / pi * integrale [ v * sin(long) * d long ] |
---|
430 | |
---|
431 | DO l = 1, llm |
---|
432 | |
---|
433 | z1(1) = (rlonu(1) - rlonu(iim) + 2. * pi) * pvcov(1, jjm, l) / cv(1, jjm) |
---|
434 | z1bis(1) = (rlonu(1) - rlonu(iim) + 2. * pi) * pdvcov(1, jjm, l) / cv(1, jjm) |
---|
435 | DO i = 2, iim |
---|
436 | z1(i) = (rlonu(i) - rlonu(i - 1)) * pvcov(i, jjm, l) / cv(i, jjm) |
---|
437 | z1bis(i) = (rlonu(i) - rlonu(i - 1)) * pdvcov(i, jjm, l) / cv(i, jjm) |
---|
438 | ENDDO |
---|
439 | |
---|
440 | DO i = 1, iim |
---|
441 | zcos(i) = COS(rlonv(i)) * z1(i) |
---|
442 | zcosbis(i) = COS(rlonv(i)) * z1bis(i) |
---|
443 | zsin(i) = SIN(rlonv(i)) * z1(i) |
---|
444 | zsinbis(i) = SIN(rlonv(i)) * z1bis(i) |
---|
445 | ENDDO |
---|
446 | |
---|
447 | zufi(ngridmx, l) = SSUM(iim, zcos, 1) / pi |
---|
448 | pcvgu(ngridmx, l) = SSUM(iim, zcosbis, 1) / pi |
---|
449 | zvfi(ngridmx, l) = SSUM(iim, zsin, 1) / pi |
---|
450 | pcvgv(ngridmx, l) = SSUM(iim, zsinbis, 1) / pi |
---|
451 | zrfi(ngridmx, l) = 0. |
---|
452 | ENDDO |
---|
453 | |
---|
454 | ! On change de grille, dynamique vers physiq, pour le flux de masse verticale |
---|
455 | CALL gr_dyn_fi(llm, iip1, jjp1, ngridmx, flxw, flxwfi) |
---|
456 | |
---|
457 | !----------------------------------------------------------------------- |
---|
458 | ! Appel de la physique: |
---|
459 | ! --------------------- |
---|
460 | |
---|
461 | |
---|
462 | |
---|
463 | ! WRITE(lunout,*) 'PHYSIQUE AVEC NSPLIT_PHYS=',nsplit_phys |
---|
464 | zdt_split = dtphys / nsplit_phys |
---|
465 | zdufic(:, :) = 0. |
---|
466 | zdvfic(:, :) = 0. |
---|
467 | zdtfic(:, :) = 0. |
---|
468 | zdqfic(:, :, :) = 0. |
---|
469 | |
---|
470 | IF (CPPKEY_PHYS) THEN |
---|
471 | |
---|
472 | DO isplit = 1, nsplit_phys |
---|
473 | |
---|
474 | jH_cur_split = jH_cur + (isplit - 1) * dtvr / (daysec * nsplit_phys) |
---|
475 | debut_split = debut.AND.isplit==1 |
---|
476 | lafin_split = lafin.AND.isplit==nsplit_phys |
---|
477 | |
---|
478 | ! if (planet_type=="earth") THEN |
---|
479 | CALL call_physiq(ngridmx, llm, nqtot, tracers(:)%name, & |
---|
480 | debut_split, lafin_split, & |
---|
481 | jD_cur, jH_cur_split, zdt_split, & |
---|
482 | zplev, zplay, & |
---|
483 | zpk, zphi, zphis, & |
---|
484 | presnivs, & |
---|
485 | zufi, zvfi, zrfi, ztfi, zqfi, & |
---|
486 | flxwfi, pducov, & |
---|
487 | zdufi, zdvfi, zdtfi, zdqfi, zdpsrf) |
---|
488 | |
---|
489 | ! ELSE IF ( planet_type=="generic" ) THEN |
---|
490 | ! CALL physiq (ngridmx, !! ngrid |
---|
491 | ! . llm, !! nlayer |
---|
492 | ! . nqtot, !! nq |
---|
493 | ! . tracers(:)%name,!! tracer names from dynamical core (given in infotrac) |
---|
494 | ! . debut_split, !! firstcall |
---|
495 | ! . lafin_split, !! lastcall |
---|
496 | ! . jD_cur, !! pday. see leapfrog |
---|
497 | ! . jH_cur_split, !! ptime "fraction of day" |
---|
498 | ! . zdt_split, !! ptimestep |
---|
499 | ! . zplev, !! pplev |
---|
500 | ! . zplay, !! pplay |
---|
501 | ! . zphi, !! pphi |
---|
502 | ! . zufi, !! pu |
---|
503 | ! . zvfi, !! pv |
---|
504 | ! . ztfi, !! pt |
---|
505 | ! . zqfi, !! pq |
---|
506 | ! . flxwfi, !! pw !! or 0. anyway this is for diagnostic. not used in physiq. |
---|
507 | ! . zdufi, !! pdu |
---|
508 | ! . zdvfi, !! pdv |
---|
509 | ! . zdtfi, !! pdt |
---|
510 | ! . zdqfi, !! pdq |
---|
511 | ! . zdpsrf, !! pdpsrf |
---|
512 | ! . tracerdyn) !! tracerdyn <-- utilite ??? |
---|
513 | |
---|
514 | ! ENDIF ! of if (planet_type=="earth") |
---|
515 | |
---|
516 | zufi(:, :) = zufi(:, :) + zdufi(:, :) * zdt_split |
---|
517 | zvfi(:, :) = zvfi(:, :) + zdvfi(:, :) * zdt_split |
---|
518 | ztfi(:, :) = ztfi(:, :) + zdtfi(:, :) * zdt_split |
---|
519 | zqfi(:, :, :) = zqfi(:, :, :) + zdqfi(:, :, :) * zdt_split |
---|
520 | |
---|
521 | zdufic(:, :) = zdufic(:, :) + zdufi(:, :) |
---|
522 | zdvfic(:, :) = zdvfic(:, :) + zdvfi(:, :) |
---|
523 | zdtfic(:, :) = zdtfic(:, :) + zdtfi(:, :) |
---|
524 | zdqfic(:, :, :) = zdqfic(:, :, :) + zdqfi(:, :, :) |
---|
525 | |
---|
526 | enddo ! of do isplit=1,nsplit_phys |
---|
527 | |
---|
528 | END IF |
---|
529 | |
---|
530 | zdufi(:, :) = zdufic(:, :) / nsplit_phys |
---|
531 | zdvfi(:, :) = zdvfic(:, :) / nsplit_phys |
---|
532 | zdtfi(:, :) = zdtfic(:, :) / nsplit_phys |
---|
533 | zdqfi(:, :, :) = zdqfic(:, :, :) / nsplit_phys |
---|
534 | |
---|
535 | !----------------------------------------------------------------------- |
---|
536 | ! transformation des tendances physiques en tendances dynamiques: |
---|
537 | ! --------------------------------------------------------------- |
---|
538 | |
---|
539 | ! tendance sur la pression : |
---|
540 | ! ----------------------------------- |
---|
541 | |
---|
542 | CALL gr_fi_dyn(1, ngridmx, iip1, jjp1, zdpsrf, pdpsfi) |
---|
543 | |
---|
544 | ! 62. enthalpie potentielle |
---|
545 | ! --------------------- |
---|
546 | |
---|
547 | DO l = 1, llm |
---|
548 | |
---|
549 | DO i = 1, iip1 |
---|
550 | pdhfi(i, 1, l) = cpp * zdtfi(1, l) / ppk(i, 1, l) |
---|
551 | pdhfi(i, jjp1, l) = cpp * zdtfi(ngridmx, l) / ppk(i, jjp1, l) |
---|
552 | ENDDO |
---|
553 | |
---|
554 | DO j = 2, jjm |
---|
555 | ig0 = 1 + (j - 2) * iim |
---|
556 | DO i = 1, iim |
---|
557 | pdhfi(i, j, l) = cpp * zdtfi(ig0 + i, l) / ppk(i, j, l) |
---|
558 | ENDDO |
---|
559 | pdhfi(iip1, j, l) = pdhfi(1, j, l) |
---|
560 | ENDDO |
---|
561 | |
---|
562 | ENDDO |
---|
563 | |
---|
564 | |
---|
565 | ! 62. humidite specifique |
---|
566 | ! --------------------- |
---|
567 | ! Ehouarn: removed this useless bit: was overwritten at step 63 anyways |
---|
568 | ! DO iq=1,nqtot |
---|
569 | ! DO l=1,llm |
---|
570 | ! DO i=1,iip1 |
---|
571 | ! pdqfi(i,1,l,iq) = zdqfi(1,l,iq) |
---|
572 | ! pdqfi(i,jjp1,l,iq) = zdqfi(ngridmx,l,iq) |
---|
573 | ! ENDDO |
---|
574 | ! DO j=2,jjm |
---|
575 | ! ig0=1+(j-2)*iim |
---|
576 | ! DO i=1,iim |
---|
577 | ! pdqfi(i,j,l,iq) = zdqfi(ig0+i,l,iq) |
---|
578 | ! ENDDO |
---|
579 | ! pdqfi(iip1,j,l,iq) = pdqfi(1,j,l,iq) |
---|
580 | ! ENDDO |
---|
581 | ! ENDDO |
---|
582 | ! ENDDO |
---|
583 | |
---|
584 | ! 63. traceurs |
---|
585 | ! ------------ |
---|
586 | ! initialisation des tendances |
---|
587 | pdqfi(:, :, :, :) = 0. |
---|
588 | |
---|
589 | itr = 0 |
---|
590 | DO iq = 1, nqtot |
---|
591 | IF(.NOT.tracers(iq)%isAdvected) CYCLE |
---|
592 | itr = itr + 1 |
---|
593 | DO l = 1, llm |
---|
594 | DO i = 1, iip1 |
---|
595 | pdqfi(i, 1, l, iq) = zdqfi(1, l, itr) |
---|
596 | pdqfi(i, jjp1, l, iq) = zdqfi(ngridmx, l, itr) |
---|
597 | ENDDO |
---|
598 | DO j = 2, jjm |
---|
599 | ig0 = 1 + (j - 2) * iim |
---|
600 | DO i = 1, iim |
---|
601 | pdqfi(i, j, l, iq) = zdqfi(ig0 + i, l, itr) |
---|
602 | ENDDO |
---|
603 | pdqfi(iip1, j, l, iq) = pdqfi(1, j, l, itr) |
---|
604 | ENDDO |
---|
605 | ENDDO |
---|
606 | ENDDO |
---|
607 | |
---|
608 | ! 65. champ u: |
---|
609 | ! ------------ |
---|
610 | |
---|
611 | DO l = 1, llm |
---|
612 | |
---|
613 | DO i = 1, iip1 |
---|
614 | pdufi(i, 1, l) = 0. |
---|
615 | pdufi(i, jjp1, l) = 0. |
---|
616 | ENDDO |
---|
617 | |
---|
618 | DO j = 2, jjm |
---|
619 | ig0 = 1 + (j - 2) * iim |
---|
620 | DO i = 1, iim - 1 |
---|
621 | pdufi(i, j, l) = & |
---|
622 | 0.5 * (zdufi(ig0 + i, l) + zdufi(ig0 + i + 1, l)) * cu(i, j) |
---|
623 | ENDDO |
---|
624 | pdufi(iim, j, l) = & |
---|
625 | 0.5 * (zdufi(ig0 + 1, l) + zdufi(ig0 + iim, l)) * cu(iim, j) |
---|
626 | pdufi(iip1, j, l) = pdufi(1, j, l) |
---|
627 | ENDDO |
---|
628 | |
---|
629 | ENDDO |
---|
630 | |
---|
631 | |
---|
632 | ! 67. champ v: |
---|
633 | ! ------------ |
---|
634 | |
---|
635 | DO l = 1, llm |
---|
636 | |
---|
637 | DO j = 2, jjm - 1 |
---|
638 | ig0 = 1 + (j - 2) * iim |
---|
639 | DO i = 1, iim |
---|
640 | pdvfi(i, j, l) = & |
---|
641 | 0.5 * (zdvfi(ig0 + i, l) + zdvfi(ig0 + i + iim, l)) * cv(i, j) |
---|
642 | ENDDO |
---|
643 | pdvfi(iip1, j, l) = pdvfi(1, j, l) |
---|
644 | ENDDO |
---|
645 | ENDDO |
---|
646 | |
---|
647 | |
---|
648 | ! 68. champ v pres des poles: |
---|
649 | ! --------------------------- |
---|
650 | ! v = U * cos(long) + V * SIN(long) |
---|
651 | |
---|
652 | DO l = 1, llm |
---|
653 | |
---|
654 | DO i = 1, iim |
---|
655 | pdvfi(i, 1, l) = & |
---|
656 | zdufi(1, l) * COS(rlonv(i)) + zdvfi(1, l) * SIN(rlonv(i)) |
---|
657 | pdvfi(i, jjm, l) = zdufi(ngridmx, l) * COS(rlonv(i)) & |
---|
658 | + zdvfi(ngridmx, l) * SIN(rlonv(i)) |
---|
659 | pdvfi(i, 1, l) = & |
---|
660 | 0.5 * (pdvfi(i, 1, l) + zdvfi(i + 1, l)) * cv(i, 1) |
---|
661 | pdvfi(i, jjm, l) = & |
---|
662 | 0.5 * (pdvfi(i, jjm, l) + zdvfi(ngridmx - iip1 + i, l)) * cv(i, jjm) |
---|
663 | ENDDO |
---|
664 | |
---|
665 | pdvfi(iip1, 1, l) = pdvfi(1, 1, l) |
---|
666 | pdvfi(iip1, jjm, l) = pdvfi(1, jjm, l) |
---|
667 | |
---|
668 | ENDDO |
---|
669 | |
---|
670 | !----------------------------------------------------------------------- |
---|
671 | firstcal = .FALSE. |
---|
672 | |
---|
673 | RETURN |
---|
674 | END SUBROUTINE calfis |
---|